Common Snakes of the Kruger National Park

Total Page:16

File Type:pdf, Size:1020Kb

Common Snakes of the Kruger National Park COMMON SNAKES OF THE KRUGER NATIONAL PARK VERY DANGEROUS MILDLY DANGEROUS VENOMOUS HARMLESS Has caused Painful bite, but does Not thought Not dangerous human fatalities not require antivenom to be harmful to humans VERY VERY VERY DANGEROUS DANGEROUS DANGEROUS DANGEROUS Black Mamba Mozambique Spitting Cobra Snouted Cobra Intermediate Shield-nose Cobra (Dendroaspis polylepis) (Naja mossambica) (Naja annulifera) (Aspidelaps scutatus intermedius) VERY DANGEROUS VERY DANGEROUS DANGEROUS DANGEROUS Common Boomslang - male Bibron’s Stiletto Snake Puff Adder Snouted Night Adder (Dispholidus typus viridis) (Atractaspis bibronii) Photo Warren Dick (Bitis arietans arietans) (Causus defilippii) VERY MILDLY CAN INFLICT DANGEROUS VENOMOUS A NASTY BITE HARMLESS Southern Twig Snake Marbled Tree Snake Southern African Python Brown House Snake (Thelotornis capensis capensis) (Dipsadoboa aulica) (Python natalensis) (Boaedon capensis) MILDLY HARMLESS MILDLY MILDLY VENOMOUS VENOMOUS VENOMOUS Herald or Red-lipped Snake Spotted Bush Snake Olive Grass Snake Western Yellow-bellied Sand Snake (Crotaphopeltis hotamboeia) (Philothamnus semivariegatus) (Psammophis mossambicus) (Psammophis subtaeniatus) MILDLY MILDLY MILDLY VENOMOUS HARMLESS VENOMOUS VENOMOUS Striped Skaapsteker Rhombic Egg-eater Rufous Beaked Snake Eastern Tiger Snake (Psammophylax tritaeniatus) (Dasypeltis scabra) (Rhamphiophis rostratus) (Telescopus semiannulatus) © Johan Marais African Snakebite Institute Snakebite African © Johan Marais JOHAN MARAIS is the author of various books on reptiles including the best-seller A Complete Guide to Snakes of Southern Africa. He is a popular public speaker and offers a variety of courses including Snake Johan Marais | African Snakebite Institute Awareness, Scorpion Awareness and Venomous Snake Handling. +27 82 494 2039 | [email protected] Johan is accredited by the International Society of Zoological Sciences (ISZS) and is a Field Guides Association of Southern Africa (FGASA) www.AFRICANSNAKEBITEINSTITUTE.com and Travel Doctor-approved service provider. His courses are also accredited by the Health Professions Council of South Africa (HPCSA)..
Recommended publications
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Journal of the East Africa Natural History Society and National Museum
    JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUM 15 October, 1978 Vol. 31 No. 167 A CHECKLIST OF mE SNAKES OF KENYA Stephen Spawls 35 WQodland Rise, Muswell Hill, London NIO, England ABSTRACT Loveridge (1957) lists 161 species and subspecies of snake from East Mrica. Eighty-nine of these belonging to some 41 genera were recorded from Kenya. The new list contains some 106 forms of 46 genera. - Three full species have been deleted from Loveridge's original checklist. Typhlops b. blanfordii has been synonymised with Typhlops I. lineolatus, Typhlops kaimosae has been synonymised with Typhlops angolensis (Roux-Esteve 1974) and Co/uber citeroii has been synonymised with Meizodon semiornatus (Lanza 1963). Of the 20 forms added to the list, 12 are forms collected for the first time in Kenya but occurring outside its political boundaries and one, Atheris desaixi is a new species, the holotype and paratypes being collected within Kenya. There has also been a large number of changes amongst the 89 original species as a result of revisionary systematic studies. This accounts for the other additions to the list. INTRODUCTION The most recent checklist dealing with the snakes of Kenya is Loveridge (1957). Since that date there has been a significant number of developments in the Kenyan herpetological field. This paper intends to update the nomenclature in the part of the checklist that concerns the snakes of Kenya and to extend the list to include all the species now known to occur within the political boundaries of Kenya. It also provides the range of each species within Kenya with specific locality records .
    [Show full text]
  • Dangerous Snakes Soutpansberg
    DANGEROUS SNAKES OF THE SOUTPANSBERG There are around 60 different types of snakes in the Soutpansberg. Six of them are capable of inflicting very painful bites VERY DANGEROUS and six are considered potentially deadly. DANGEROUS Has caused Painful bite, but does human fatalities not require antivenom VERY VERY VERY VERY DANGEROUS DANGEROUS DANGEROUS DANGEROUS Black Mamba Black Mamba Snouted Cobra Snouted Cobra - banded phase (Dendroaspis polylepis) (Dendroaspis polylepis) (Naja annulifera) (Naja annulifera) VERY VERY VERY DANGEROUS DANGEROUS DANGEROUS DANGEROUS Mozambique Spitting Cobra Mozambique Spitting Cobra Puff Adder Rhombic Night Adder (Naja mossambica) (Naja mossambica) (Bitis arietans arietans) (Causus rhombeatus) VERY VERY VERY DANGEROUS DANGEROUS DANGEROUS DANGEROUS Snouted Night Adder Common Boomslang - male Common Boomslang - female Common Boomslang - juvenile (Causus defilippii) (Dispholidus typus viridis) (Dispholidus typus viridis) Photo André Coetzer (Dispholidus typus viridis) VERY DANGEROUS DANGEROUS DANGEROUS DANGEROUS Southern Twig Snake Bibron’s Stiletto Snake Speckled Shield-nosed Cobra Horned Adder (Thelotornis capensis capensis) (Atractaspis bibronii) (Aspidelaps scutatus) (Bitis caudalis) © Johan Marais African Snakebite Institute Snakebite African © Johan Marais JOHAN MARAIS is the author of various books on reptiles including the best-seller A Complete Guide to Snakes of Southern Africa. He is a popular public speaker and offers a variety of courses including Snake Awareness, Scorpion Awareness EMERGENCY PROTOCOL and Venomous Snake Handling. Johan is accredited by the International Society of Zoological Sciences (ISZS) and is a IN THE EVENT OF A SNAKE BITE Field Guides Association of Southern Africa (FGASA) and DO NOT ww Travel Doctor-approved service provider. His courses are 1 Keep the victim calm, immobilized and ..
    [Show full text]
  • Herpetological Bulletin
    The HERPETOLOGICAL BULLETIN Number 80 — Summer 2002 PUBLISHED BY THE BRITISH HERPETOLOGICAL SOCIETY THE HERPETOLOGICAL BULLETIN The Herpetological Bulletin is produced quarterly and publishes, in English, a range of articles concerned with herpetology. These include full-length papers of mostly a semi-technical nature, book reviews, letters from readers, society news, and other items of general herpetological interest. Emphasis is placed on natural history, conservation, captive breeding and husbandry, veterinary and behavioural aspects. Articles reporting the results of experimental research, descriptions of new taxa, or taxonomic revisions should be submitted to The Herpetological Journal (see inside back cover for Editor's address). ISSN 1473-0928 © The British Herpetological Society. All rights reserved. No part of this publication may be reproduced without the permission of the Editor. Printed by Metloc Printers Limited, Old Station Road, Loughton, Essex. Information for contributors 1. Contributions should be submitted in hard copy form (2 copies of manuscript, double-spaced) AND on computer diskette in Windows format only. The Bulletin is typeset directly from the author's diskette, so wherever possible all manuscripts should be prepared using a word-processor. Please indicate word-processing software used, and if possible also include a text-only version of the file. The text should be arranged in the following order: Title; Name(s) of author(s); Address(es) of authors (please indicate corresponding author); Abstract (optional - if included should not exceed 10% of total word length); Text; Acknowledgements; References; Appendices. Footnotes should not be included. Refer to this issue for style and format information. 2. Slides and high resolution scanned images are the preferred form of illustration, although good quality prints are also acceptable.
    [Show full text]
  • Substrate Thermal Properties Influence Ventral Brightness Evolution In
    ARTICLE https://doi.org/10.1038/s42003-020-01524-w OPEN Substrate thermal properties influence ventral brightness evolution in ectotherms ✉ Jonathan Goldenberg 1 , Liliana D’Alba 1, Karen Bisschop 2,3, Bram Vanthournout1 & Matthew D. Shawkey 1 1234567890():,; The thermal environment can affect the evolution of morpho-behavioral adaptations of ectotherms. Heat is transferred from substrates to organisms by conduction and reflected radiation. Because brightness influences the degree of heat absorption, substrates could affect the evolution of integumentary optical properties. Here, we show that vipers (Squa- mata:Viperidae) inhabiting hot, highly radiative and superficially conductive substrates have evolved bright ventra for efficient heat transfer. We analyzed the brightness of 4161 publicly available images from 126 species, and we found that substrate type, alongside latitude and body mass, strongly influences ventral brightness. Substrate type also significantly affects dorsal brightness, but this is associated with different selective forces: activity-pattern and altitude. Ancestral estimation analysis suggests that the ancestral ventral condition was likely moderately bright and, following divergence events, some species convergently increased their brightness. Vipers diversified during the Miocene and the enhancement of ventral brightness may have facilitated the exploitation of arid grounds. We provide evidence that integument brightness can impact the behavioral ecology of ectotherms. 1 Evolution and Optics of Nanostructures group, Department
    [Show full text]
  • Zimbabwe Zambia Malawi Species Checklist Africa Vegetation Map
    ZIMBABWE ZAMBIA MALAWI SPECIES CHECKLIST AFRICA VEGETATION MAP BIOMES DeserT (Namib; Sahara; Danakil) Semi-deserT (Karoo; Sahel; Chalbi) Arid SAvannah (Kalahari; Masai Steppe; Ogaden) Grassland (Highveld; Abyssinian) SEYCHELLES Mediterranean SCruB / Fynbos East AFrican Coastal FOrest & SCruB DrY Woodland (including Mopane) Moist woodland (including Miombo) Tropical Rainforest (Congo Basin; upper Guinea) AFrO-Montane FOrest & Grassland (Drakensberg; Nyika; Albertine rift; Abyssinian Highlands) Granitic Indian Ocean IslandS (Seychelles) INTRODUCTION The idea of this booklet is to enable you, as a Wilderness guest, to keep a detailed record of the mammals, birds, reptiles and amphibians that you observe during your travels. It also serves as a compact record of your African journey for future reference that hopefully sparks interest in other wildlife spheres when you return home or when travelling elsewhere on our fragile planet. Although always exciting to see, especially for the first-time Africa visitor, once you move beyond the cliché of the ‘Big Five’ you will soon realise that our wilderness areas offer much more than certain flagship animal species. Africa’s large mammals are certainly a big attraction that one never tires of, but it’s often the smaller mammals, diverse birdlife and incredible reptiles that draw one back again and again for another unparalleled visit. Seeing a breeding herd of elephant for instance will always be special but there is a certain thrill in seeing a Lichtenstein’s hartebeest, cheetah or a Lilian’s lovebird – to name but a few. As a globally discerning traveller, look beyond the obvious, and challenge yourself to learn as much about all wildlife aspects and the ecosystems through which you will travel on your safari.
    [Show full text]
  • Venomous Snakes of the Horn of Africa
    VENOMOUS SNAKES OF THE HORN OF AFRICA Venomous Snake Identification Burrowing Asps Boomslang, Vine and Tree Snakes Snakebite Prevention Behavior: Venomous snakes are found throughout the Horn of Africa. Assume that any snake you encounter is venomous. Leave Long, Flattened Head, Round Fixed Front Smooth Long, Cylindrical Behavior: Burrowing asps spend the majority of time underground in burrows under stones, concrete slabs, logs, snakes alone. Many people are bitten because they try to kill a snake or get a closer look at it. Slightly Distinct from Neck Pupils Fangs Scales Body, Thin Tail They are active during both the daytime and nighttime. or wooden planks. 5-8 feet in length They live in trees and feed on bats, birds, and lizards. They are active on the surface only during the nighttime hours or after heavy rains flood their burrows. They are not aggressive: will quickly flee to nearest tree or bush if surprised on ground. Snakebites occur most often: MAMBAS They feed on small reptiles and rodents found in holes or underground. They do not climb. When molested, they inflate their bodies or necks as threat posture before biting. After rainstorms that follow long, dry spells or after rains in desert areas. Dendroaspis spp. SAVANNA VINE They are not aggressive: bites usually occur at night when snakes are stepped on accidentally. SNAKE During the half-hour before total darkness and the first two hours after dark. Habitats: Trees next to caves, coastal bush and reeds, tropical forests, open savannas, Thelotornis Habitats: Burrows in sand or soft soil, semi-desert areas, woodlands, and savannas.
    [Show full text]
  • A Spatial and Temporal Assessment of Human Snake Conflicts in Windhoek 2018.Pdf
    Environmental Information Service, Namibia for the Ministry of Environment and Tourism, the Namibian Chamber of Environment and the Namibia University of Science and Technology. The Namibian Journal of Environment (NJE) covers broad environmental areas of ecology, agriculture, forestry, agro-forestry, social science, economics, water and energy, climate change, planning, land use, pollution, strategic and environmental assessments and related fields. The journal addresses the sustainable development agenda of the country in its broadest context. It publishes two categories of articles. SECTION A: Peer-reviewed papers includes primary research findings, syntheses and reviews, testing of hypotheses, in basic, applied and theoretical research. SECTION B: Open articles will be editor-reviewed. These include research conference abstracts, field observations, preliminary results, new ideas and exchange of opinions, book reviews. NJE aims to create a platform for scientists, planners, developers, managers and everyone involved in promoting Namibia’s sustainable development. An Editorial Committee will ensure that a high standard is maintained. ISSN: 2026-8327 (online). Articles in this journal are licensed under a Creative Commons Attribution 4.0 License. Editor: BA CURTIS SECTION A: PEER-REVIEWED PAPERS Recommended citation format: Hauptfleisch ML & Theart F (2018) A spatial and temporal assessment of human-snake conflicts in Windhoek, Namibia. Namibian Journal of Environment 2 A: 128-133. Namibian Journal of Environment 2018 Vol 2. Section A: 128-133 A spatial and temporal assessment of human-snake conflicts in Windhoek, Namibia ML Hauptfleisch1, F Theart2 URL: http://www.nje.org.na/index.php/nje/article/view/volume2-hauptfleisch Published online: 5th December 2018 1 Namibia University of Science and Technology.
    [Show full text]
  • Patterns of Species Richness, Endemism and Environmental Gradients of African Reptiles
    Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Patterns of species richness, endemism ARTICLE and environmental gradients of African reptiles Amir Lewin1*, Anat Feldman1, Aaron M. Bauer2, Jonathan Belmaker1, Donald G. Broadley3†, Laurent Chirio4, Yuval Itescu1, Matthew LeBreton5, Erez Maza1, Danny Meirte6, Zoltan T. Nagy7, Maria Novosolov1, Uri Roll8, 1 9 1 1 Oliver Tallowin , Jean-Francßois Trape , Enav Vidan and Shai Meiri 1Department of Zoology, Tel Aviv University, ABSTRACT 6997801 Tel Aviv, Israel, 2Department of Aim To map and assess the richness patterns of reptiles (and included groups: Biology, Villanova University, Villanova PA 3 amphisbaenians, crocodiles, lizards, snakes and turtles) in Africa, quantify the 19085, USA, Natural History Museum of Zimbabwe, PO Box 240, Bulawayo, overlap in species richness of reptiles (and included groups) with the other ter- Zimbabwe, 4Museum National d’Histoire restrial vertebrate classes, investigate the environmental correlates underlying Naturelle, Department Systematique et these patterns, and evaluate the role of range size on richness patterns. Evolution (Reptiles), ISYEB (Institut Location Africa. Systematique, Evolution, Biodiversite, UMR 7205 CNRS/EPHE/MNHN), Paris, France, Methods We assembled a data set of distributions of all African reptile spe- 5Mosaic, (Environment, Health, Data, cies. We tested the spatial congruence of reptile richness with that of amphib- Technology), BP 35322 Yaounde, Cameroon, ians, birds and mammals. We further tested the relative importance of 6Department of African Biology, Royal temperature, precipitation, elevation range and net primary productivity for Museum for Central Africa, 3080 Tervuren, species richness over two spatial scales (ecoregions and 1° grids). We arranged Belgium, 7Royal Belgian Institute of Natural reptile and vertebrate groups into range-size quartiles in order to evaluate the Sciences, OD Taxonomy and Phylogeny, role of range size in producing richness patterns.
    [Show full text]
  • A Logical Break-Up of the Genus Telescopus Wagler, 1830 (Serpentes: Colubridae) Along Phylogenetic and Morphological Lines
    Australasian Journal of Herpetology 43 Australasian Journal of Herpetology 35:43-53. ISSN 1836-5698 (Print) Published 20 July 2017. ISSN 1836-5779 (Online) A logical break-up of the genus Telescopus Wagler, 1830 (Serpentes: Colubridae) along phylogenetic and morphological lines. RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 2 September 2016, Accepted 18 December 2016, Published 20 July 2017. ABSTRACT The Catsnake genus Telescopus Wagler, 1830 as currently understood includes a diverse assemblage of distantly related and morphologically similar snakes from south-west Asia, southern Europe and north, central and southern Africa. The various species groups are self-evidently morphologically and regionally distinct and so it is surprising that not all have been formally named in accordance with the International Code of Zoological Nomenclature (Ride et al. 1999) or earlier codes. This paper breaks up the genus along logical lines, the result being as follows: Telescopus Wagler, 1830 (type species: Coluber obtusus Reuss, 1834) includes the North African assemblage commonly referred to in the literature as “the dhara-obtusus group”. Tarbophis Fleischmann, 1831 (type species: Tarbophis fallax Fleischmann, 1831) is treated as a subgenus of Telescopus and includes the species with a distribution centred on the Middle-east and nearby parts of southern Europe and south-west Asia. Ruivenkamporumus subgen. nov. is erected to accommodate two divergent species within Telescopus with a distribution centred on Pakistan and Iran. Elfakhariorumserpens gen. nov. is erected to accommodate the very different four described species-level taxa from south-west Africa, and another from sub-Saharan Africa, with Matsonserpens subgen.
    [Show full text]
  • Reptiles & Amphibians
    AWF FOUR CORNERS TBNRM PROJECT : REVIEWS OF EXISTING BIODIVERSITY INFORMATION i Published for The African Wildlife Foundation's FOUR CORNERS TBNRM PROJECT by THE ZAMBEZI SOCIETY and THE BIODIVERSITY FOUNDATION FOR AFRICA 2004 PARTNERS IN BIODIVERSITY The Zambezi Society The Biodiversity Foundation for Africa P O Box HG774 P O Box FM730 Highlands Famona Harare Bulawayo Zimbabwe Zimbabwe Tel: +263 4 747002-5 E-mail: [email protected] E-mail: [email protected] Website: www.biodiversityfoundation.org Website : www.zamsoc.org The Zambezi Society and The Biodiversity Foundation for Africa are working as partners within the African Wildlife Foundation's Four Corners TBNRM project. The Biodiversity Foundation for Africa is responsible for acquiring technical information on the biodiversity of the project area. The Zambezi Society will be interpreting this information into user-friendly formats for stakeholders in the Four Corners area, and then disseminating it to these stakeholders. THE BIODIVERSITY FOUNDATION FOR AFRICA (BFA is a non-profit making Trust, formed in Bulawayo in 1992 by a group of concerned scientists and environmentalists. Individual BFA members have expertise in biological groups including plants, vegetation, mammals, birds, reptiles, fish, insects, aquatic invertebrates and ecosystems. The major objective of the BFA is to undertake biological research into the biodiversity of sub-Saharan Africa, and to make the resulting information more accessible. Towards this end it provides technical, ecological and biosystematic expertise. THE ZAMBEZI SOCIETY was established in 1982. Its goals include the conservation of biological diversity and wilderness in the Zambezi Basin through the application of sustainable, scientifically sound natural resource management strategies.
    [Show full text]
  • Parasites of Domestic and Wild Animals in South Africa. XLVII. Ticks of Tortoises and Other Reptiles
    Onderstepoort Journal of Veterinary Research, 73:215–227 (2006) Parasites of domestic and wild animals in South Africa. XLVII. Ticks of tortoises and other reptiles I.G. HORAK1, I.J. MCKAY2*, B.T. HENEN3, HELOISE HEYNE2, MARGARETHA D. HOFMEYR3 and A.L. DE VILLIERS4 ABSTRACT HORAK, I.G., MCKAY, I.J., HENEN, B.T., HEYNE, HELOISE, HOFMEYR, MARGARETHA D. & DE VIL LIERS, A.L. 2006. Parasites of domestic and wild animals in South Africa. XLVII. Ticks of tortoises and other reptiles. Onderstepoort Journal of Veterinary Research, 73:215–227 A total of 586 reptiles, belonging to 35 species and five subspecies, were examined in surveys aimed at determining the species spectrum and geographic distribution of ticks that infest them. Of these rep- tiles 509 were tortoises, 28 monitor or other lizards, and 49 snakes. Nine ixodid tick species, of which seven belonged to the genus Amblyomma, and one argasid tick, Ornithodoros compactus were re- covered. Seven of the ten tick species are parasites of reptiles. Amongst these seven species Am bly- omma marmoreum was most prevalent and numerous on leopard tortoises, Geochelone pardalis; Amblyomma nuttalli was present only on Bell’s hinged tortoises, Kinixys belliana; and most Amblyomma sylvaticum were collected from angulate tortoises, Chersina angulata. Amblyomma exornatum (for- merly Aponomma exornatum) was only recovered from monitor lizards, Varanus spp.; most Ambly- omma latum (formerly Aponomma latum) were from snakes; and a single nymph of Amblyomma trans versale (formerly Aponomma transversale) was collected from a southern African python, Python natalensis. All 30 Namaqualand speckled padloper tortoises, Homopus signatus signatus, examined were infested with O.
    [Show full text]