Dissecting the Selinux Context

Total Page:16

File Type:pdf, Size:1020Kb

Dissecting the Selinux Context SELinux System Administration Second Edition Ward off traditional security permissions and effectively secure your Linux systems with SELinux Sven Vermeulen BIRMINGHAM - MUMBAI SELinux System Administration Second Edition Copyright © 2016 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: September 2013 Second edition: December 2016 Production reference: 1131216 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK. ISBN 978-1-78712-695-4 www.packtpub.com Credits Author Copy Editor Sven Vermeulen Madhusudan Uchil Reviewers Project Coordinator David Quigley Judie Jose Sam Wilson Commissioning Editor Proofreader Kartikey Pandey Safis Editing Acquisition Editor Indexer Namrata Patil Pratik Shirodkar Content Development Editor Graphics Amedh Gemraram Pohad Kirk D'Penha Technical Editors Production Coordinator Vishal Kamal Mewada Shantanu N. Zagade Khushbu Sutar About the Author Sven Vermeulen is a long-term contributor to various free software projects and the author of various online guides and resources. He got his first taste of free software in 1997 and never looked back. In 2003, he joined the ranks of the Gentoo Linux project as a documentation developer and has since worked in several roles, including Gentoo Foundation trustee, council member, project lead for various documentation initiatives, and (his current role) project lead for Gentoo Hardened SELinux integration and the system integrity project. During this time, Sven gained expertise in several technologies, ranging from OS-level knowledge to application servers. He used his interest in security to guide his projects further in the areas of security guides using SCAP languages, mandatory access controls through SELinux, authentication with PAM, (application) firewalling, and more. Within SELinux, Sven contributed several policies to the Reference Policy project, and he is an active participant in policy development and user space development projects. In his daily job, Sven is an IT architect in a European financial institution as well as a self- employed solution engineer and consultant. The secure implementation of infrastructures (and the surrounding architectural integration) is, of course, an important part of this. Prior to this, he graduated with an MSc in computer engineering from Ghent University and MSc in ICT enterprise architecture from h t t p ://i n n o . c o m /, and he worked as a web application infrastructure engineer. Sven is the main author of the Gentoo Handbook, which covers the installation and configuration of Gentoo Linux on several architectures. He also authored the Linux Sea online publication, which is a basic introduction to Linux for novice system administrators, and SELinux System Administration and SELinux Cookbook for Packt Publishing. I would like to thank the open source / free software community for its never ending drive to create great software, documentation, artwork and services. It is through this drive that companies and organizations around the world are enjoying high quality services with all the freedom that this software provides. Specifically, I would like to thank the Gentoo community as it provides a great meta-distribution and operating system. The people I meet there are all greatly motivated, highly experienced and/or experts in particular fields. Being around in the community makes me eager to learn more. About the Reviewers David Quigley started his career as a computer systems researcher for the National Information Assurance Research Lab at the NSA, where he worked as a member of the SELinux team. David lead the design and implementation efforts to provide Labeled-NFS support for SELinux. David has previously contributed to the open source community through maintaining the Unionfs 1.0 code base and through code contributions to various other projects. David has presented at conferences such as the Ottawa Linux Symposium, the StorageSS workshop, LinuxCon, and several local Linux User Group meetings where presentation topics have included storage, file systems, and security. David currently works as a ZFS kernel engineer for the High Performance Data Division at Intel. He previously reviewed SELinux Cookbook, published by Packt publishing. I would like to thank my wonderful wife, Kathy, for all she does to make sure I have the time to do things like review this book and travel to give presentations on SELinux. She is the joy of my life and has helped me become the man I am today. I'd also like to thank all my children past and present: Zoe Jane and Caroline, who remind us to love and cherish the time we have as a family. Sam Wilson is a senior systems and security engineer with a newly acquired passion for radio hardware and a focus on Red Hat Enterprise Linux. Because of his extensive security knowledge spanning microservices, infrastructure, and SecOps, Sam is approached regularly for SELinux mentorship and advice across the organizations he collaborates and works with. Sam has been active in GNU/Linux communities since early 2007 and has volunteered his time for NTFreenet, Darwin Community Arts, Ansible, and the Fedora project. More recently, Sam can be found being a cranky neckbeard at h t t p s ://w w w . c y c l o p t i v i t y . n e t as well working with the Atlassian Security Intelligence team on visibility, operational security, and controls to support and protect Atlassian customers in the cloud. www.PacktPub.com For support files and downloads related to your book, please visit www.PacktPub.com. Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at [email protected] for more details. At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks. h t t p s ://w w w . p a c k t p u b . c o m /m a p t Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career. Why subscribe? Fully searchable across every book published by Packt Copy and paste, print, and bookmark content On demand and accessible via a web browser Table of Contents Preface 1 Chapter 1: Fundamental SELinux Concepts 6 Providing more security to Linux 6 Using Linux security modules 8 Extending regular DAC with SELinux 10 Restricting root privileges 11 Reducing the impact of vulnerabilities 11 Enabling SELinux support 13 Labeling all resources and objects 13 Dissecting the SELinux context 15 Enforcing access through types 17 Granting domain access through roles 18 Limiting roles through users 19 Controlling information flow through sensitivities 21 Defining and distributing policies 22 Writing SELinux policies 23 Distributing policies through modules 24 Bundling modules in a policy store 26 Distinguishing between policies 27 Supporting MLS 27 Dealing with unknown permissions 28 Supporting unconfined domains 28 Limiting cross-user sharing 29 Incrementing policy versions 30 Different policy content 32 Summary 33 Chapter 2: Understanding SELinux Decisions and Logging 34 Switching SELinux on and off 34 Setting the global SELinux state 35 Switching to permissive (or enforcing) mode 36 Using kernel boot parameters 38 Disabling SELinux protections for a single service 40 Understanding SELinux-aware applications 42 SELinux logging and auditing 42 Following audit events 43 Uncovering more logging 45 Configuring Linux auditing 45 Configuring the local system logger 47 Reading SELinux denials 48 Other SELinux-related event types 53 USER_AVC 53 SELINUX_ERR 54 MAC_POLICY_LOAD 54 MAC_CONFIG_CHANGE 55 MAC_STATUS 55 NetLabel events 55 Labeled IPsec events 56 Using ausearch 57 Getting help with denials 58 Troubleshooting with setroubleshoot 58 Sending e-mails when SELinux denials occur 60 Using audit2why 61 Interacting with systemd-journal 62 Using common sense 63 Summary 64 Chapter 3: Managing User Logins 65 User-oriented SELinux contexts 65 Understanding domain complexity 66 Querying for unconfined domains 68 SELinux users and roles 69 Listing SELinux user mappings 69 Mapping logins to SELinux users 71 Customizing logins towards services 72 Creating SELinux users 73 Listing accessible domains 74 Managing categories 75 Handling SELinux roles 77 Defining allowed SELinux contexts 77 Validating contexts with getseuser 78 Switching roles with newrole 79 Managing
Recommended publications
  • Have You Driven an Selinux Lately? an Update on the Security Enhanced Linux Project
    Have You Driven an SELinux Lately? An Update on the Security Enhanced Linux Project James Morris Red Hat Asia Pacific Pte Ltd [email protected] Abstract All security-relevant accesses between subjects and ob- jects are controlled according to a dynamically loaded Security Enhanced Linux (SELinux) [18] has evolved mandatory security policy. Clean separation of mecha- rapidly over the last few years, with many enhancements nism and policy provides considerable flexibility in the made to both its core technology and higher-level tools. implementation of security goals for the system, while fine granularity of control ensures complete mediation. Following integration into several Linux distributions, SELinux has become the first widely used Mandatory An arbitrary number of different security models may be Access Control (MAC) scheme. It has helped Linux to composed (or “stacked”) by SELinux, with their com- receive the highest security certification likely possible bined effect being fully analyzable under a unified pol- for a mainstream off the shelf operating system. icy scheme. SELinux has also proven its worth for general purpose Currently, the default SELinux implementation com- use in mitigating several serious security flaws. poses the following security models: Type Enforcement (TE) [7], Role Based Access Control (RBAC) [12], While SELinux has a reputation for being difficult to Muilti-level Security (MLS) [29], and Identity Based use, recent developments have helped significantly in Access Control (IBAC). These complement the standard this area, and user adoption is advancing rapidly. Linux Discretionary Access Control (DAC) scheme. This paper provides an informal update on the project, With these models, SELinux provides comprehensive discussing key developments and challenges, with the mandatory enforcement of least privilege, confidential- aim of helping people to better understand current ity, and integrity.
    [Show full text]
  • Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car
    2015-01-0224 Published 04/14/2015 Copyright © 2015 SAE International doi:10.4271/2015-01-0224 saepcelec.saejournals.org Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car Patrick Shelly Mentor Graphics Corp. ABSTRACT With the dramatic mismatch between handheld consumer devices and automobiles, both in terms of product lifespan and the speed at which new features (or versions) are released, vehicle OEMs are faced with a perplexing dilemma. If the connected car is to succeed there has to be a secure and accessible method to update the software in a vehicle's infotainment system - as well as a real or perceived way to graft in new software content. The challenge has become even more evident as the industry transitions from simple analog audio systems which have traditionally served up broadcast content to a new world in which configurable and interactive Internet- based content rules the day. This paper explores the options available for updating and extending the software capability of a vehicle's infotainment system while addressing the lifecycle mismatch between automobiles and consumer mobile devices. Implications to the design and cost of factory installed equipment will be discussed, as will expectations around the appeal of these various strategies to specific target demographics. CITATION: Shelly, P., "Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8(1):2015, doi:10.4271/2015-01-0224. INTRODUCTION be carefully taken into account. The use of app stores is expected to grow significantly in the coming years as automotive OEMs begin to Contemporary vehicle infotainment systems face an interesting explore apps not only on IVI systems, but on other components of the challenge.
    [Show full text]
  • Demystifying Internet of Things Security Successful Iot Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M
    Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Chandler, AZ, USA Chandler, AZ, USA Ned Smith David M. Wheeler Beaverton, OR, USA Gilbert, AZ, USA ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8 https://doi.org/10.1007/978-1-4842-2896-8 Copyright © 2020 by The Editor(s) (if applicable) and The Author(s) This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material.
    [Show full text]
  • A Framework for Prototyping and Testing Data-Only Rootkit Attacks
    1 A Framework for Prototyping and Testing Data-Only Rootkit Attacks Ryan Riley [email protected] Qatar University Doha, Qatar Version 1.0 This is a preprint of the paper accepted in Elsevier Computers & Security Abstract—Kernel rootkits—attacks which modify a running of 25 rootkit attacks to test with, but end up stating, “Of operating system kernel in order to hide an attacker’s presence— the 25 that we acquired, we were able to install 18 in our are significant threats. Recent advances in rootkit defense tech- virtual test infrastructure. The remainder either did not support nology will force rootkit threats to rely on only modifying kernel data structures without injecting and executing any new our test kernel version or would not install in a virtualized code; however these data-only kernel rootkit attacks are still environment.” In [2], the authors test with 16 Linux rootkits, both realistic and powerful. In this work we present DORF, a but only 12 of them overlap with [1]. In [3], the authors give framework for prototyping and testing data-only rootkit attacks. no results that involved testing with rootkit attacks. DORF is an object-oriented framework that allows researchers to As another example, in our own work involving kernel construct attacks that can be easily ported between various Linux distributions and versions. The current implementation of DORF rootkit defense [2], [4], [5], [6] we found ourselves locked in contains a group of existing and new data-only attacks, and the to an older version of Linux due to the rootkits we planned to portability of DORF is demonstrated by porting it to 6 different test with.
    [Show full text]
  • Linux Kernel Debugging and Security (Lfd440)
    Contact Us [email protected] HOME > COURSE CATALOG > LINUX FOUNDATION > SECURITY > LINUX KERNEL DEBUGGING AND SECURITY (LFD440) Linux Kernel Debugging and Security (LFD440) DURATION 4 Days COURSE LNX-LFD440 AVAILABLE FORMATS Classroom Training, Online Training Course Description Overview Learn the methods and internal infrastructure of the Linux kernel. This course focuses on the important tools used for debugging and monitoring the kernel, and how security features are implemented and controlled. Objectives This four day course includes extensive hands-on exercises and demonstrations designed to give you the necessary tools to develop and debug Linux kernel code. Students will walk away from this course with a solid understanding of Linux kernel. debugging techniques and tools. Audience 9/27/2021 1 of 11 1:47:42 PM This course is for experienced developers who need to understand the methods and internal infrastructure of the Linux kernel. Prerequisites To make the most of this course, you should: Be proficient in the C programming language; Be familiar with basic Linux (UNIX) utilities such as ls, grep and tar; Be comfortable using any of the available text editors (e.g. emacs, vi, etc.); Experience with any major Linux distribution is helpful but not strictly required; Have experience equivalent to having taken : Linux Kernel Internals and Development. Topics Introduction Objectives Who You Are The Linux Foundation Linux Foundation Training Certification Programs and Digital Badging Linux Distributions Platforms Preparing Your System
    [Show full text]
  • Trustworthy Whole-System Provenance for the Linux Kernel Adam Bates, Dave (Jing) Tian, and Kevin R.B
    Trustworthy Whole-System Provenance for the Linux Kernel Adam Bates, Dave (Jing) Tian, and Kevin R.B. Butler, University of Florida; Thomas Moyer, MIT Lincoln Laboratory https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates This paper is included in the Proceedings of the 24th USENIX Security Symposium August 12–14, 2015 • Washington, D.C. ISBN 978-1-939133-11-3 Open access to the Proceedings of the 24th USENIX Security Symposium is sponsored by USENIX Trustworthy Whole-System Provenance for the Linux Kernel Adam Bates, Dave (Jing) Tian, Thomas Moyer Kevin R.B. Butler University of Florida MIT Lincoln Laboratory {adammbates,daveti,butler}@ufl.edu [email protected] Abstract is presently of enormous interest in a variety of dis- In a provenance-aware system, mechanisms gather parate communities including scientific data processing, and report metadata that describes the history of each ob- databases, software development, and storage [43, 53]. ject being processed on the system, allowing users to un- Provenance has also been demonstrated to be of great derstand how data objects came to exist in their present value to security by identifying malicious activity in data state. However, while past work has demonstrated the centers [5, 27, 56, 65, 66], improving Mandatory Access usefulness of provenance, less attention has been given Control (MAC) labels [45, 46, 47], and assuring regula- to securing provenance-aware systems. Provenance it- tory compliance [3]. self is a ripe attack vector, and its authenticity and in- Unfortunately, most provenance collection mecha- tegrity must be guaranteed before it can be put to use.
    [Show full text]
  • IBM Research Report Docker and Container Security White Paper
    RC25625 (WAT1607-027) July 15, 2016 Computer Science IBM Research Report Docker and Container Security White Paper Salman Baset, Stefan Berger, James Bottomley, Canturk Isci, Nataraj Nagaratnam1, Dimitrios Pendarakis, J. R. Rao, Gosia Steinder, Jayashree Ramanatham1 IBM Research Division Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, NY 10598 USA 1IBM Cloud Research Division Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich Docker and Container Security White Paper Contributors: Salman Baset, Stefan Berger, James Bottomley, Canturk Isci, Nataraj Nagaratnam, Dimitrios Pendarakis, JR Rao, Gosia Steinder, Jayashree Ramanatham Introduction This paper presents IBM's comprehensive point of view of security and privacy for Cloud Computing services based on container technologies, in particular Docker containers. The objective is to highlight benefits as well as security challenges for Docker containers, highlight ongoing efforts that address these challenges and to motivate additional work that the Docker community and IBM are undertaking to further strengthen the security of the Docker container ecosystem. Potential users of Docker container based cloud services can use this paper to evaluate the benefits and risks associated with deploying various workloads on Docker containers, understand the evolution of Docker containers and decide what additional security mechanisms and tools to employ to further reduce security risks. The paper starts with an overview of the applicable threat model and then compares the security properties of base technologies such as Linux containers, Docker, as well hypervisors, which are the basis of Infrastructure as a Service (IaaS) offerings. Next we describe some of the gaps in security for Docker containers and how IBM has helped and continues to help the community to address them.
    [Show full text]
  • Linux Security Modules: General Security Support for the Linux Kernel
    Linux Security Modules: General Security Support for the Linux Kernel Chris Wright and Crispin Cowan ∗ Stephen Smalley † WireX Communications, Inc. NAI Labs, Network Associates, Inc. James Morris Greg Kroah-Hartman ‡ Intercode Pty Ltd IBM Linux Technology Center August 17, 2002 Abstract 1 Introduction The critical role of operating system protection mech- anisms in providing system security has been well- The access control mechanisms of existing mainstream understood for over thirty years, yet the access control operating systems are inadequate to provide strong sys- mechanisms of existing mainstream operating systems tem security. Enhanced access control mechanisms have are still inadequate to provide strong security [2, 37, 27, failed to win acceptance into mainstream operating sys- 16, 25, 6, 29]. Although many enhanced access control tems due in part to a lack of consensus within the se- models and frameworks have been proposed and imple- curity community on the right solution. Since general- mented [9, 1, 4, 39, 22, 10, 28, 35], mainstream oper- purpose operating systems must satisfy a wide range of ating systems typically still lack support for these en- user requirements, any access control mechanism inte- hancements. In part, the absence of such enhancements grated into such a system must be capable of supporting is due to a lack of agreement within the security com- many different access control models. The Linux Secu- munity on the right general solution. rity Modules (LSM) project has developed a lightweight, general purpose, access control framework for the main- Like many other general-purpose operating systems, the stream Linux kernel that enables many different access Linux kernel only provides discretionary access controls control models to be implemented as loadable kernel and lacks any direct support for enhanced access control modules.
    [Show full text]
  • Pex: a Permission Check Analysis Framework for Linux Kernel
    PeX: A Permission Check Analysis Framework for Linux Kernel Tong Zhang* Wenbo Shen† Dongyoon Lee Changhee Jung Virginia Tech Zhejiang University Stony Brook University Purdue University Ahmed M. Azab‡ Ruowen Wang‡ Samsung Research America Samsung Research America Abstract is often implemented in the form of permission checks before the use of privileged functions accessing the critical resources. Permission checks play an essential role in operating system security by providing access control to privileged functionali- Over the course of its evolution, Linux kernel has employed ties. However, it is particularly challenging for kernel develop- three different access control models: Discretionary Access ers to correctly apply new permission checks and to scalably Controls (DAC), Capabilities, and Linux Security Modules verify the soundness of existing checks due to the large code (LSM). DAC distinguishes privileged users (a.k.a., root) from base and complexity of the kernel. In fact, Linux kernel con- unprivileged ones. The unprivileged users are subject to vari- tains millions of lines of code with hundreds of permission ous permission checks, while the root bypasses them all [4]. checks, and even worse its complexity is fast-growing. Linux kernel v2.2 divided the root privilege into small units Capabilities This paper presents PeX, a static Permission check error and introduced to allow more fine-grained access LSM detector for LinuX, which takes as input a kernel source code control. From kernel v2.6, Linux adopted in which vari- and reports any missing, inconsistent, and redundant permis- ous security hooks are defined and placed on critical paths of sion checks. PeX uses KIRIN (Kernel InteRface based In- privileged operations.
    [Show full text]
  • Domain and Type Enforcement in Linux
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2003 Domain and type enforcement in Linux Serge Edward Hallyn College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Computer Sciences Commons Recommended Citation Hallyn, Serge Edward, "Domain and type enforcement in Linux" (2003). Dissertations, Theses, and Masters Projects. Paper 1539623428. https://dx.doi.org/doi:10.21220/s2-0x9t-ag80 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Domain and Type Enforcement in Linux A Dissertation Presented to The Faculty of the Department of Computer Science The College of William & Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Serge Edward Hallyn 2003 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Serge E. Hally: Approved, September 2003 Phil Kearns Thesis Advisor Weizhen Mao Xiaodong Zhang Haining Wang I / * / I/ A__ / / t - / -A | /z t Jean Michigan Technological University Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. To my mother. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Acknowledgments xi List of Figures xiv Abstract xv 1 Introduction 2 1.1 Contributions ..................................................................................................................
    [Show full text]
  • A Compendium of Container Escapes
    A Compendium of Container Escapes Brandon Edwards & Nick Freeman BLACK HAT USA 2019 Scope Prologue: Container Basics Part I: Escape via Weakness in Deployment Part II: Vulnerabilities in Container Engines Part III: Kernel Exploitation Prologue: Container Basics Container Basics Container != VM Container Basics Container PID 1 A task, or set of tasks, with special properties PID 2 to isolate the task(s), PID 3 and restrict access to system resources. task_struct The kernel refers to volatile long state processes (and threads) as void *stack …lots of fields... tasks int pid int tgid The kernel manages tasks task_struct *parent using the task_struct cred *cred fs_struct *fs char comm[TASK_COMM_LEN] Everything the kernel knows nsproxy *nsproxy css_set *cgroups about a task is inside or ...many more fields... reachable via the task_struct /proc is a special task_struct filesystem mount (procfs) volatile long state for accessing system and void *stack …lots of fields... process information int pid 1 directly from the kernel by int tgid 1 reading “file” entries task_struct *parent cred *cred user@host:~$ cat /proc/1/comm systemd fs_struct *fs char comm “systemd” nsproxy *nsproxy css_set *cgroups ...many more fields... /proc is a special task_struct filesystem mount (procfs) volatile long state for accessing system and void *stack …lots of fields... process information int pid 1 directly from the kernel by int tgid 1 reading “file” entries task_struct *parent cred *cred user@host:~$ cat /proc/1/comm systemd fs_struct *fs char comm “systemd” PID of process nsproxy *nsproxy css_set *cgroups ...many more fields... /proc is a special task_struct filesystem mount (procfs) volatile long state for accessing system and void *stack …lots of fields..
    [Show full text]
  • Linux Security Modules: General Security Support for the Linux Kernel
    USENIX Association Proceedings of the 11th USENIX Security Symposium San Francisco, California, USA August 5-9, 2002 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Linux Security Modules: General Security Support for the Linux Kernel Chris Wright and Crispin Cowan Stephen Smalley WireX Communications, Inc. NAI Labs, Network Associates, Inc. [email protected], [email protected] [email protected] James Morris Greg Kroah-Hartman Intercode Pty Ltd IBM Linux Technology Center [email protected] [email protected] Abstract mented [9, 1, 4, 41, 23, 10, 29, 37], mainstream oper- ating systems typically still lack support for these en- hancements. In part, the absence of such enhancements The access control mechanisms of existing mainstream is due to a lack of agreement within the security com- operating systems are inadequate to provide strong sys- munity on the right general solution. tem security. Enhanced access control mechanisms have failed to win acceptance into mainstream operating sys- Like many other general-purpose operating systems, the tems due in part to a lack of consensus within the se- Linux kernel only provides discretionary access controls curity community on the right solution.
    [Show full text]