Slowing Time by Stretching the Waves in Special Relativity Denis Michel

Total Page:16

File Type:pdf, Size:1020Kb

Slowing Time by Stretching the Waves in Special Relativity Denis Michel Slowing time by stretching the waves in special relativity Denis Michel To cite this version: Denis Michel. Slowing time by stretching the waves in special relativity. 2014. hal-01097004v5 HAL Id: hal-01097004 https://hal.archives-ouvertes.fr/hal-01097004v5 Preprint submitted on 16 Jul 2015 (v5), last revised 14 Jan 2021 (v10) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Slowing time by stretching the waves in special relativity Denis Michel Universite de Rennes1. Campus de Beaulieu Bat. 13. 35042 Rennes France. E.mail: [email protected] Abstract 2 A wave distortion is a time dis- tortion The time dilation of special relativity is considered as a pure relativistic phenomenon not deduced from wave- The most striking evidence that distortions of wave- length distortion. Alternatively, it is suggested here that lengths exactly correspond to time distortions has not time distortion always originates from wavelength dis- been provided by a Doppler effect, but by the cosmolog- tortion, including in special relativity. A link between ical redshift. Supernovae are star explosions remaining the special relativistic time and the quantum of time extremely bright for a few weeks, a short duration at is first established to propose that wavelengths are ad- the cosmological scale. This time window is relatively justable uncertainty parameters allowing to maintain the constant for comparable supernovae, but astronomers invariance of the light speed and the number of periods. made a remarkable discovery: the apparent time win- The light clock of Einstein is then used to develop a new dow of brightness depends on the distance of the su- Doppler analysis in the frame of an external observer pernova, in exactly the same proportion that their red- and transformed to cancel the virtual effect between shift. For instance, a distant supernova with a redshift comoving points. This approach yields a conjectural of λapp/λ = 1:5, has precisely a 1.5-fold longer duration Doppler formula with remarkable properties. Contrary of brightness [2]. Hence, apparent time dilation corre- to the previous Doppler equations characterized by their sponds to wavelength increase, or equivalently frequency asymmetry, the new formula gives geometrically sym- decrease, whereas apparent time contraction corresponds metrical Doppler effects in the whole space in front and to wavelength shortening and frequency increase. The behind the closest point from the source, whose center decrease or increase of wavelengths is evaluated by com- of gravity corresponds precisely to a global inter-frame parison with their standard values measured in the co- p 2 dilation factor 1= 1 − (v=c) . These results extend the moving frame, using for example atomic rays identical direct relation between wavelength and time distortion in all inertial frames when viewed by comoving iner- to special relativity. tial observers. Strangely, although the Doppler effect is clearly a phenomenon of wavelength distortion, the scientific community did not establish a clear relation- ship between time dilation and a Doppler effect, perhaps because time dilation depends only on relative speeds whereas a Doppler effect is orientation-dependent. Cer- tain authors stated that there is no necessary relation 1 Introduction at all between the relativity theory and the Doppler ef- fect [3]. But using the light clock of Einstein, it will be shown that relativistic time dilation is analogous to a generalized Doppler effect. While doing so, an intrigu- Time dilation, the keystone of special relativity, is con- ing theoretical Doppler equation will be obtained. The ceived as a pure relativistic phenomenon and the time famous light clock of Einstein is an universal clock that between wave crests is just expected to comply with this is not based on an atomic ray, but on the constancy of time dilation [1]. The inverse view proposed here is that light velocity. time distortion results from wavelength distortion in all contexts. Special relativity does not escape the funda- mental parallel between time and wavelengths which is 3 The light clock of Einstein much more general than special relativity. A conjectural equation based on wave distortion and using the classi- The beat of the light clock of Einstein is the rebound of cal Doppler formula, is obtained by cancelling the virtual a photon between facing mirrors. This clock is placed Doppler effect viewed from a moving frame. It is similar vertically in a wagon rolling at constant speed v. For an to the relativistic formula but with additional properties. external observer, the light path appears oblique when 1 the train moves, whereas for an observer located inside 4 Linking the relativistic and the the train, it appears always vertical (Fig.1). The refer- quantum times ence time interval ∆t corresponds to the frame comoving with the standard clock. 4.1 The quantum of time The apparent paradox of special relativity is that the hypotenuse and the vertical side of the triangle shown in Fig.1 are simultaneously crossed by light at the same speed c. There is a very simple solution to explain this constancy, which consists in modifying the fundamental components of c. The speed of light can be written Figure 1. The famous triangular time-space diagram of the moving Einstein's clock. The horizontal scale is artificially c = λ meters=T seconds (3) stretched relatively to the vertical one for better visualization. where the spatial unit is the wavelength λ and the time unit is the period T . A quantum of time " can With respect to the angle θ of Fig.1, elementary be defined, which depends on the energetic status of the trigonometry says system: It is the time necessary to cross the length unit c∆t ∆t below which successive configurations cannot be distin- sin θ = = (1a) c∆tmov ∆tmov guished because of the uncertainty principle. For a ther- and modynamic system, the length unit is the thermal wave- v∆t v length of de Broglie λ and the mean particle velocity is cos θ = = (1b) c∆tmov c the averaged Maxwell velocity, which gives [4]: which immediately gives, using the relationship sin2 θ + 2 cos θ = 1, λ h ∆tmov 1 " = = = 4 × 10−14 s at T = 300 K (4) = (1c) hvi 4kBT ∆t q v2 1 − c2 where T is the temperature. The corresponding value Another straightforward way to obtain this result is for photons (kBT = hν), is very simple to use the powerful geometrical tool of special relativ- ity: the Minkowski spacetime. The oblique (hypotenuse) 1 λ T " = = = (5) and vertical paths of light are necessarily identical in the 4ν 4c 4 Minkowski spacetime because light starts from and ar- rives to the same points. This common spacetime in- where T is the period. A period has internal sym- terval should reconcile the point of view of an observer metries and can be subdivided into 4 indivisible motifs in the train, for whom the clock appears immobile, and (π=2 windows). Furthermore, the 4 is imposed as a con- that of an ouside observer for whom there is an additional dition for recovering the undulatory behaviour of light translation. Hence, from the definition of " as an "uncertainty window". In- deed, the conception of " as the minimal time interval ∆s2 = (c∆t)2 = (c∆tmov)2 − ∆x2 (2a) during which no evolution can be perceived, means that mov it can be included in a delay differential equation of the giving form ∆t 2 ∆xmov 2 c2 = c2 − (2b) dy(t) ∆tmov ∆tmov = −ky(t − ") (6a) dt and finally of which an undulatory solution is ∆tmov 1 = (2c) ∆t q v2 π 1 − 2 k = (6b) c 2" In spacetime diagrams like the triangular scheme of and Fig.1, the proper time of the clock is obtained when π y(t) = A sin t (6c) the distance to be crossed by light appears minimal. In 2" Fig.1, it corresponds to the vertical path (∆t), whereas In statistical mechanics, for the external observer moving at speed v relatively to the clock this path appears stretched by ∆tmov=∆t = π kBT 1=p1 − (v=c)2. = (6d) 2" ~ 2 (where T is the temperature) and for photons, if adding 4.3 Time dilation of special relativity is to this pulsation a uniform spatial translation along x at a perspective effect speed λ/4" In the experiment of the light clock inside a train de- π 4" scribed above, the distinction between moving and non- y(x; t) = A sin x − t (6e) 2" λ moving frames is irrelevant as they can be permuted. The wagon and the station platform are two equivalent which is the traditional light wave fonction systems of reference and the situation is simply inverted if the clock is put on the platform and if the observer in- x t side the train considers that it is the platform that moves y(x; t) = A sin 2π − (6f) λ T relative to the train in the opposite direction. A perspec- tive effect is naturally reciprocal. (where T is the period). Time and energy can be The best known perspective effect is the apparent con- adjusted in time-energy boxes of uncertainty, provided traction of the size of a person standing far away from us maintaining invariants. In other words, the velocity of compared to a person standing close to us.
Recommended publications
  • Expanding Space, Quasars and St. Augustine's Fireworks
    Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible.
    [Show full text]
  • The Special Theory of Relativity Lecture 16
    The Special Theory of Relativity Lecture 16 E = mc2 Albert Einstein Einstein’s Relativity • Galilean-Newtonian Relativity • The Ultimate Speed - The Speed of Light • Postulates of the Special Theory of Relativity • Simultaneity • Time Dilation and the Twin Paradox • Length Contraction • Train in the Tunnel paradox (or plane in the barn) • Relativistic Doppler Effect • Four-Dimensional Space-Time • Relativistic Momentum and Mass • E = mc2; Mass and Energy • Relativistic Addition of Velocities Recommended Reading: Conceptual Physics by Paul Hewitt A Brief History of Time by Steven Hawking Galilean-Newtonian Relativity The Relativity principle: The basic laws of physics are the same in all inertial reference frames. What’s a reference frame? What does “inertial” mean? Etc…….. Think of ways to tell if you are in Motion. -And hence understand what Einstein meant By inertial and non inertial reference frames How does it differ if you’re in a car or plane at different points in the journey • Accelerating ? • Slowing down ? • Going around a curve ? • Moving at a constant velocity ? Why? ConcepTest 26.1 Playing Ball on the Train You and your friend are playing catch 1) 3 mph eastward in a train moving at 60 mph in an eastward direction. Your friend is at 2) 3 mph westward the front of the car and throws you 3) 57 mph eastward the ball at 3 mph (according to him). 4) 57 mph westward What velocity does the ball have 5) 60 mph eastward when you catch it, according to you? ConcepTest 26.1 Playing Ball on the Train You and your friend are playing catch 1) 3 mph eastward in a train moving at 60 mph in an eastward direction.
    [Show full text]
  • (Special) Relativity
    (Special) Relativity With very strong emphasis on electrodynamics and accelerators Better: How can we deal with moving charged particles ? Werner Herr, CERN Reading Material [1 ]R.P. Feynman, Feynman lectures on Physics, Vol. 1 + 2, (Basic Books, 2011). [2 ]A. Einstein, Zur Elektrodynamik bewegter K¨orper, Ann. Phys. 17, (1905). [3 ]L. Landau, E. Lifschitz, The Classical Theory of Fields, Vol2. (Butterworth-Heinemann, 1975) [4 ]J. Freund, Special Relativity, (World Scientific, 2008). [5 ]J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..) [6 ]J. Hafele and R. Keating, Science 177, (1972) 166. Why Special Relativity ? We have to deal with moving charges in accelerators Electromagnetism and fundamental laws of classical mechanics show inconsistencies Ad hoc introduction of Lorentz force Applied to moving bodies Maxwell’s equations lead to asymmetries [2] not shown in observations of electromagnetic phenomena Classical EM-theory not consistent with Quantum theory Important for beam dynamics and machine design: Longitudinal dynamics (e.g. transition, ...) Collective effects (e.g. space charge, beam-beam, ...) Dynamics and luminosity in colliders Particle lifetime and decay (e.g. µ, π, Z0, Higgs, ...) Synchrotron radiation and light sources ... We need a formalism to get all that ! OUTLINE Principle of Relativity (Newton, Galilei) - Motivation, Ideas and Terminology - Formalism, Examples Principle of Special Relativity (Einstein) - Postulates, Formalism and Consequences - Four-vectors and applications (Electromagnetism and accelerators) § ¤ some slides are for your private study and pleasure and I shall go fast there ¦ ¥ Enjoy yourself .. Setting the scene (terminology) .. To describe an observation and physics laws we use: - Space coordinates: ~x = (x, y, z) (not necessarily Cartesian) - Time: t What is a ”Frame”: - Where we observe physical phenomena and properties as function of their position ~x and time t.
    [Show full text]
  • Lecture Notes 17: Proper Time, Proper Velocity, the Energy-Momentum 4-Vector, Relativistic Kinematics, Elastic/Inelastic
    UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 17 Prof. Steven Errede LECTURE NOTES 17 Proper Time and Proper Velocity As you progress along your world line {moving with “ordinary” velocity u in lab frame IRF(S)} on the ct vs. x Minkowski/space-time diagram, your watch runs slow {in your rest frame IRF(S')} in comparison to clocks on the wall in the lab frame IRF(S). The clocks on the wall in the lab frame IRF(S) tick off a time interval dt, whereas in your 2 rest frame IRF( S ) the time interval is: dt dtuu1 dt n.b. this is the exact same time dilation formula that we obtained earlier, with: 2 2 uu11uc 11 and: u uc We use uurelative speed of an object as observed in an inertial reference frame {here, u = speed of you, as observed in the lab IRF(S)}. We will henceforth use vvrelative speed between two inertial systems – e.g. IRF( S ) relative to IRF(S): Because the time interval dt occurs in your rest frame IRF( S ), we give it a special name: ddt = proper time interval (in your rest frame), and: t = proper time (in your rest frame). The name “proper” is due to a mis-translation of the French word “propre”, meaning “own”. Proper time is different than “ordinary” time, t. Proper time is a Lorentz-invariant quantity, whereas “ordinary” time t depends on the choice of IRF - i.e. “ordinary” time is not a Lorentz-invariant quantity. 222222 The Lorentz-invariant interval: dI dx dx dx dx ds c dt dx dy dz Proper time interval: d dI c2222222 ds c dt dx dy dz cdtdt22 = 0 in rest frame IRF(S) 22t Proper time: ddtttt 21 t 21 11 Because d and are Lorentz-invariant quantities: dd and: {i.e.
    [Show full text]
  • Massachusetts Institute of Technology Midterm
    Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Special Relativity January 18, 2005 7:30–9:30 pm Midterm Instructions • This exam contains SIX problems – pace yourself accordingly! • You have two hours for this test. Papers will be picked up at 9:30 pm sharp. • The exam is scored on a basis of 100 points. • Please do ALL your work in the white booklets that have been passed out. There are extra booklets available if you need a second. • Please remember to put your name on the front of your exam booklet. • If you have any questions please feel free to ask the proctor(s). 1 2 Information Lorentz transformation (along the x­axis) and its inverse x� = γ(x − βct) x = γ(x� + βct�) y� = y y = y� z� = z z = z� ct� = γ(ct − βx) ct = γ(ct� + βx�) � where β = v/c, and γ = 1/ 1 − β2. Velocity addition (relative motion along the x­axis): � ux − v ux = 2 1 − uxv/c � uy uy = 2 γ(1 − uxv/c ) � uz uz = 2 γ(1 − uxv/c ) Doppler shift Longitudinal � 1 + β ν = ν 1 − β 0 Quadratic equation: ax2 + bx + c = 0 1 � � � x = −b ± b2 − 4ac 2a Binomial expansion: b(b − 1) (1 + a)b = 1 + ba + a 2 + . 2 3 Problem 1 [30 points] Short Answer (a) [4 points] State the postulates upon which Einstein based Special Relativity. (b) [5 points] Outline a derviation of the Lorentz transformation, describing each step in no more than one sentence and omitting all algebra. (c) [2 points] Define proper length and proper time.
    [Show full text]
  • General Relativity General Relativity Relativistic Momentum Mass Equivalence Principle
    College Physics B Einstein’s Theories of Relativity Special Relativity Reminder: College Physics B - PHY2054C Time Dilation Length Contraction Special & General Relativity General Relativity Relativistic Momentum Mass Equivalence Principle 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building College Physics B Outline Einstein’s Theories of Relativity Special Relativity 1 Einstein’s Theories of Relativity Reminder: Time Dilation Special Relativity Length Contraction General 2 Reminder: Time Dilation Relativity Relativistic Momentum Mass Equivalence 3 Length Contraction Principle 4 General Relativity Relativistic Momentum Mass Equivalence Principle College Physics B Galilean Relativity and Light Einstein’s Theories of Relativity Galilean Relativity and electromagnetism do predict different Special Relativity results for observers in different inertial frames: Reminder: Time Dilation Experiments showed that Maxwell’s theory was correct. • Length The speed of light in the vacuum is always c. Contraction • General Galilean relativity for how the speed of light depends on Relativity • Relativistic the motion of the source is wrong. Momentum Mass ➜ Equivalence Einstein developed theory of relativity: Special Relativity. Principle Two Postulates 1 All laws of physics are the same in all inertial reference frames. 2 The speed of light in the vacuum is a constant. College Physics B Inertial Reference Frames Einstein’s Theories of Relativity Special Relativity Reminder: Time Dilation Length Contraction General Relativity Relativistic Momentum Mass The modern definition of an inertial reference is one in Equivalence Principle which Newton’s First Law holds: If a particle moves with a constant velocity, then the reference frame is inertial. ➜ Earth’s acceleration is small enough that it can be ignored (can be considered an inertial system).
    [Show full text]
  • Relativity Chap 1.Pdf
    Chapter 1 Kinematics, Part 1 Special Relativity, For the Enthusiastic Beginner (Draft version, December 2016) Copyright 2016, David Morin, [email protected] TO THE READER: This book is available as both a paperback and an eBook. I have made the first chapter available on the web, but it is possible (based on past experience) that a pirated version of the complete book will eventually appear on file-sharing sites. In the event that you are reading such a version, I have a request: If you don’t find this book useful (in which case you probably would have returned it, if you had bought it), or if you do find it useful but aren’t able to afford it, then no worries; carry on. However, if you do find it useful and are able to afford the Kindle eBook (priced below $10), then please consider purchasing it (available on Amazon). If you don’t already have the Kindle reading app for your computer, you can download it free from Amazon. I chose to self-publish this book so that I could keep the cost low. The resulting eBook price of around $10, which is very inexpensive for a 250-page physics book, is less than a movie and a bag of popcorn, with the added bonus that the book lasts for more than two hours and has zero calories (if used properly!). – David Morin Special relativity is an extremely counterintuitive subject, and in this chapter we will see how its bizarre features come about. We will build up the theory from scratch, starting with the postulates of relativity, of which there are only two.
    [Show full text]
  • Special Relativity Length, Momentum, Ami Energy
    Special Relativity Length, Momentum, ami Energy he speed of light is the speed limit for all matter. Suppose that two spaceships are T both traveling at nearly the speed of light and they are moving directly toward each other. The realms of space-time for each spaceship differ in such a way that the relative speed of approach Mass converts to energy and is still less than the speed of light! For example, if both spaceships vice versa. are traveling toward each other at 80% the speed of light with respect to Earth, an observer on each spaceship would measure the speed of approach of the other spaceship as 98% the speed of light. There are no circumstances where the relative speeds of any material objects surpass the speed of light. Why is the speed of light the universal speed limit? To under- stand this, we must know how motion through space affects the length, momentum, and energy of moving objects. 16.1 Length Contraction For moving objects, space as well as time undergoes changes. When viewed by an outside observer, moving objects appear to contract along the direction of motion. The amount of contraction is related to the amount of time dilation. For everyday speeds, the amount of contraction is much too small to be measured. For relativistic speeds, the contraction would be noticeable. A meter stick aboard a Figure 16.1 1 spaceship whizzing past you at 87% the speed of light, for example, A meter stick traveling at 87% would appear to you to be only 0.5 meter long.
    [Show full text]
  • Special Relativity at Action in the Universe
    SPECIAL RELATIVITY AT ACTION IN THE UNIVERSE Gabriele Ghisellini Osservatorio Astronomico di Brera, v. Bianchi 46, I-23807 Merate, Italy e-mail address: [email protected] Abstract Nature succeeds in accelerating extended and massive objects to relativistic velocities. Jets in Active Galactic Nuclei and in galactic superluminal sources and gamma–ray bursts fireballs have bulk Lorentz factors from a few to several hundreds. A variety of effects then arises, such as the beaming of the produced radiation, light aberration, time contraction and the Doppler frequency shift. I will emphasize that special relativity applied to real (i.e. extended) observed objects inevitably must take into account that any piece of information is carried by photons. Being created in different parts of the source, they travel different paths to reach the observer, depending on the viewing angle. The object is seen rotated, not contracted, and at small viewing angles time intervals are observed shorter than intrinsic ones. 1 Introduction We are used to consider earth’s particle accelerators as the realm of special relativity. But nature can do better and bigger, and is able to accelerate really large masses to relativistic speeds. Besides cosmic rays, we now know that in the jets of active galactic nuclei (AGN) which are also strong radio emitters plasma flows at v 0.99c, and that in gamma–ray bursts (GRB) the fireball 52 ∼ resulting from the release of 10 erg in a volume of radius comparable to the Schwarzschild ∼ radius of a solar mass black hole reaches v 0.999c. These speeds are so close to the light ∼ speed that it is more convenient to use the corresponding Lorentz factor of the bulk motion, Γ = (1 β2)−1/2: for Γ 1, we have β 1 1/(2Γ2).
    [Show full text]
  • Physics 209: Notes on Special Relativity
    . Physics 209: Notes on Special Relativity Spring, 2000 Version of March 5, 2000 N. David Mermin Table of Contents 1. The Principle of Relativity ....................................................2 2. Nonrelativistic Addition of Velocities ..........................................9 3. The Speed of Light ..........................................................13 4. Relativistic Addition of Velocities ............................................21 5. Simultaneity and Clock Synchronization ......................................37 6. Slowing Down of Moving clocks; Contraction of Moving Objects ...............46 7. Looking at a Moving Clock ...................................................61 8. Invariance of the Interval between Events .................................... 66 9. Trains of Rockets ............................................................74 10. Space-Time Diagrams .......................................................83 11. E = Mc2 ..................................................................111 12. A Relativstic Tragicomedy .................................................133 c 2000, N. David Mermin 1 1. The Principle of Relativity The principle of relativity is an example of an invariance law. Here are several such laws: All other things being the same: 1. It doesn’t matter where you are. (Principle of translational invariance in space.) 2. It doesn’t matter when you are. (Principle of translational invariance in time.) 3. It doesn’t matter what direction you are oriented in. (Principle of rotational invariance.)
    [Show full text]
  • Superluminal Motion in the Lobe-Dominated Quasars 3C207 and 3C245 Eric Danielson Trinity University
    Trinity University Digital Commons @ Trinity Physics & Astronomy Honors Theses Physics and Astronomy Department 4-17-2007 Superluminal Motion in the Lobe-Dominated Quasars 3C207 and 3C245 Eric Danielson Trinity University Follow this and additional works at: http://digitalcommons.trinity.edu/physics_honors Part of the Physics Commons Recommended Citation Danielson, Eric, "Superluminal Motion in the Lobe-Dominated Quasars 3C207 and 3C245" (2007). Physics & Astronomy Honors Theses. 2. http://digitalcommons.trinity.edu/physics_honors/2 This Thesis open access is brought to you for free and open access by the Physics and Astronomy Department at Digital Commons @ Trinity. It has been accepted for inclusion in Physics & Astronomy Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information, please contact [email protected]. Superluminal Motion in the Lobe-Dominated Quasars 3C207 and 3C245 Eric Danielson Honors Thesis Spring 2007 Advisor: Dr. David Hough Physics and Astronomy Department Trinity University 1 Abstract We are conducting a Very Long Baseline Interferometer (VLBI) survey of a complete sample of 25 lobe-dominated quasars, with the goal of testing relativistic jet models. Since the quasars 3C207 and 3C245 have the most prominent parsec-scale jets, we have observed them intensively with the Very Long Baseline Array (VLBA) from 2003 to 2005 at 15 and 22 GHz. Data from observations made of 3C245 at 22 GHz were not usable due to the weak flux density of the source. We find superluminal motion in 3C207 when observing at 15 GHz, increasing from 2 to 3 times the speed of light (2-3c) in the inner jet (less than 1 milliarcsecond [mas] from the core) to ~11c in the outer (2 mas) jet.
    [Show full text]
  • Gr-Qc/0703090V2 17 Apr 2007 Wni Odn Lc N Htbt Lcsra Zero Read Each Clocks Assume Both That It
    Two Examples of Circular Motion for Introductory Courses in Relativity Stephanie Wortel and Shimon Malin∗ Department of Physics, Colgate University, Hamilton NY 13346 Mark D. Semon† Department of Physics, Bates College, 44 Campus Ave, Lewiston ME 04240 The circular twin paradox and Thomas Precession are presented in a way that makes both acces- sible to students in introductory relativity courses. Both are discussed by examining what happens during travel around a polygon and then in the limit as the polygon tends to a circle. Since rela- tivistic predictions based on these examples can be verified in experiments with macroscopic objects (e.g atomic clocks and the gyroscopes in Gravity Probe B), they are particularly convincing to introductory students. 1. I. INTRODUCTION when the twins first meet. The paradox is the same as in the linear case: since Twin A is moving relative to Twin Experimental confirmations of relativistic effects are B, and Twin B is moving relative to Twin A, each should especially important for students in introductory relativ- measure the other’s clock as running slow compared to ity courses. Each provides a particular situation that their own. However, what distinguishes the circular twin makes the abstract more concrete, and gives students an paradox from the standard twin paradox is that now both actual physical framework in which to understand what twins accelerate in the same manner. It is true that one is (and is not) happening. accelerates in the clockwise and the other in the coun- terclockwise direction but, since time dilation depends One of the most frequently discussed relativistic effects only on the magnitude of the velocity, this can’t matter.
    [Show full text]