Special Relativity Length, Momentum, Ami Energy

Total Page:16

File Type:pdf, Size:1020Kb

Special Relativity Length, Momentum, Ami Energy Special Relativity Length, Momentum, ami Energy he speed of light is the speed limit for all matter. Suppose that two spaceships are T both traveling at nearly the speed of light and they are moving directly toward each other. The realms of space-time for each spaceship differ in such a way that the relative speed of approach Mass converts to energy and is still less than the speed of light! For example, if both spaceships vice versa. are traveling toward each other at 80% the speed of light with respect to Earth, an observer on each spaceship would measure the speed of approach of the other spaceship as 98% the speed of light. There are no circumstances where the relative speeds of any material objects surpass the speed of light. Why is the speed of light the universal speed limit? To under- stand this, we must know how motion through space affects the length, momentum, and energy of moving objects. 16.1 Length Contraction For moving objects, space as well as time undergoes changes. When viewed by an outside observer, moving objects appear to contract along the direction of motion. The amount of contraction is related to the amount of time dilation. For everyday speeds, the amount of contraction is much too small to be measured. For relativistic speeds, the contraction would be noticeable. A meter stick aboard a Figure 16.1 1 spaceship whizzing past you at 87% the speed of light, for example, A meter stick traveling at 87% would appear to you to be only 0.5 meter long. If it whizzed past at the speed of light relative to an 99.5% the speed of light, it would appear to you to be contracted to observer would be measured as one tenth its original length. The width of the stick, perpendicular to only half as long as normal. the direction of travel (Figure 16.1), doesn't change. As relative speed gets closer and closer to the speed of light, the measured lengths of objects contract closer and closer to zero. 232 Chapter 16 Special Relativity—Length, Momentum, and Energy Do people aboard the spaceship also see their meter sticks—and everything else in their environment—contracted? The answer is no. People in the spaceship see nothing at all unusual about the lengths of things in their own reference frame. If they did, it would violate the first postulate of relativity Recall that all the laws of physics are the same in all uniformly moving reference frames. Besides, there is no relative speed between the people on the spaceship and the things they observe in their own reference frame. However, there is a relative speed between themselves and our frame of reference, so they will see our meter sticks contracted and us as well. A rule of relativity is that changes due to alterations of space-time are always en in the frame of reference of the "other guy." Figure 16.2 A to the frame of reference of the meter stick, its length is 1 meter. Observers m this frame see our meter sticks contracted. The effects of relativity are always attributed to "the other guy." The contraction of speeding objects is the contraction of space tself. Space contracts in only one direction, the direction of motion. Lengths along the direction perpendicular to this motion are the same in the two frames of reference. So if an object is moving hori- zontally, no contraction takes place vertically (Figure 16.3). 0 is. 0.87c u-.0.995c =0.999c o=C (1) gure 16.3 A relative speed increases, contraction in the direction of motion increases. gths in the perpendicular direction do not change. 233 Relativistic length contraction is stated mathematically: L= Lol /1— (v2 I c2) In this equation, v is the speed of the object relative to the observer, „ LINK TO BIOLOGY c is the speed of light, L is the length of the moving object as mea- r sured by the observer, and Lo is the measured length of the object at rest.* Suppose that an object is at rest, so that v = 0. When 0 is substi- tuted for v in the equation, we find L= Lo, as we would expect. It was stated earlier that if an object were moving at 87% the speed of light, it would contract to half its length. When 0.87c is substituted for v in the equation, we find L = 0.5L0. Or when 0.995c is substituted for v, we find L= 0.1L0, as stated earlier. If the object could reach the speed c, its length would contract to zero. This is one of the reasons that the .c e st speed of light is the upper limit for the speed of any material object. ztor Eart,, s s . U rise eramlifeti .e secoridel-seemingly;too4',„: III Question .f.brietto.reach the groun A spacewoman travels by a spherical planet so fast that it appears below before decaying.;,, to her to be an ellipsoid (egg shaped). If she sees the short diameter But because niuons Move'. as half the long diameter, what is her speed relative to the planet? at nearly the speed of light, length contraction dramatically shortens their distance to Earth. You are hit by hundreds of muons every second! ?Awn impact, like that of 16.2 Momentum and Inertia all high-speed elementary in Relativity 1particles, causes biologi- cal mutations. So we see If we push an object that is free to move, it will accelerate. If we a link between the effects maintain a steady push, it will accelerate to higher and higher of relativity and the evo- speeds. If we push with a greater and greater force, we expect the lution of living creatures acceleration in turn to increase. It might seem that the speed should on Earth. increase without limit, but there is a speed limit in the universe— the speed of light. In fact, we cannot accelerate any material object enough to reach the speed of light, let alone surpass it. We can understand this from Newton's second law, which Newton originally expressed in terms of momentum: F= Amy/At (which reduces to the familiar F = ma, or a = Fl m). The momentum form, interestingly, remains valid in relativity theory. Recall from Chapter 7 that the change of momentum of an object is equal to the III Answer The spacewoman passes the spherical planet at 87% the speed of light This equation land those that follow) is simply stated as a "guide to thinking" about the ideas of special relativity. The equations are given here without any explanation as to how they are derived. 234 Chapter 16 Special Relativity—Length, Momentum, and Energy fl impulse applied to it. Apply more impulse and the object acquires more momentum. Double the impulse and the momentum doubles. Apply ten times as much impulse and the object gains ten times as ver, much momentum. Does this mean that momentum can increase without any limit, even though speed cannot? Yes, it does. We learned that momentum equals mass times velocity In equa- tion form, p = my (we use p for momentum). To Newton, infinite ti- momentum would mean infinite speed. Not so in relativity. Einstein was showed that a new definition of momentum is required. It is ght, I) in mu •o, peed it the where v is the speed of an object and cis the speed of light. Notice ect. that the square root in the denominator looks just like the one in the formula for time dilation in the previous chapter. It tells us that the relativistic momentum of an object of mass m and speed v is larger than mu by a factor of 1/V1— (v2/c2). At relativistic speed, momentum increases dramatically. As v approaches c, the denominator of the equation approaches zero. el This means that the momentum approaches infinity! An object pushed to the speed of light would have infinite momentum and would require an infinite impulse, which is clearly impossible. So nothing that has mass can be pushed to the speed of light, much less beyond it. Here is another reason that c is the speed limit in the universe. What if v is much less than c? Then the denominator of the equation is nearly equal to I and pis nearly equal to mu. Newton's definition of momentum is valid at low speed. We often say that a particle pushed close to the speed of light acts as if its mass were increasing, because its momentum—its "iner- tia in motion"—increases more than its speed increases. The quan- tity m in the equation above is called the rest mass of the object. It is the a true constant, a property of the object no matter what speed it has. iould Subatomic particles are routinely pushed to nearly the speed of light. The momenta of such particles may be thousands of times Oct more than the Newton expression mu predicts. One way to look at the momentum of a high-speed particle is in terms of the "stiffness" of its trajectory The more momentum it has, the harder it is to At deflect it—the "stiffer" is its trajectory. If it has a lot of momentum, it gum more greatly resists changing course. om to the ELECTROMAGNETS Figure 16.4 If the momentum of the elec- trons were equal to the Newtonian value my, the beam would follow the dashed line. But because the relativistic momentum, or inertia in motion, about is greater, the beam follows the iation as SCREEN "stiffer" trajectory shown by the ELECTRON BEAM) solid line.
Recommended publications
  • Expanding Space, Quasars and St. Augustine's Fireworks
    Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible.
    [Show full text]
  • The Special Theory of Relativity Lecture 16
    The Special Theory of Relativity Lecture 16 E = mc2 Albert Einstein Einstein’s Relativity • Galilean-Newtonian Relativity • The Ultimate Speed - The Speed of Light • Postulates of the Special Theory of Relativity • Simultaneity • Time Dilation and the Twin Paradox • Length Contraction • Train in the Tunnel paradox (or plane in the barn) • Relativistic Doppler Effect • Four-Dimensional Space-Time • Relativistic Momentum and Mass • E = mc2; Mass and Energy • Relativistic Addition of Velocities Recommended Reading: Conceptual Physics by Paul Hewitt A Brief History of Time by Steven Hawking Galilean-Newtonian Relativity The Relativity principle: The basic laws of physics are the same in all inertial reference frames. What’s a reference frame? What does “inertial” mean? Etc…….. Think of ways to tell if you are in Motion. -And hence understand what Einstein meant By inertial and non inertial reference frames How does it differ if you’re in a car or plane at different points in the journey • Accelerating ? • Slowing down ? • Going around a curve ? • Moving at a constant velocity ? Why? ConcepTest 26.1 Playing Ball on the Train You and your friend are playing catch 1) 3 mph eastward in a train moving at 60 mph in an eastward direction. Your friend is at 2) 3 mph westward the front of the car and throws you 3) 57 mph eastward the ball at 3 mph (according to him). 4) 57 mph westward What velocity does the ball have 5) 60 mph eastward when you catch it, according to you? ConcepTest 26.1 Playing Ball on the Train You and your friend are playing catch 1) 3 mph eastward in a train moving at 60 mph in an eastward direction.
    [Show full text]
  • Physics 200 Problem Set 7 Solution Quick Overview: Although Relativity Can Be a Little Bewildering, This Problem Set Uses Just A
    Physics 200 Problem Set 7 Solution Quick overview: Although relativity can be a little bewildering, this problem set uses just a few ideas over and over again, namely 1. Coordinates (x; t) in one frame are related to coordinates (x0; t0) in another frame by the Lorentz transformation formulas. 2. Similarly, space and time intervals (¢x; ¢t) in one frame are related to inter- vals (¢x0; ¢t0) in another frame by the same Lorentz transformation formu- las. Note that time dilation and length contraction are just special cases: it is time-dilation if ¢x = 0 and length contraction if ¢t = 0. 3. The spacetime interval (¢s)2 = (c¢t)2 ¡ (¢x)2 between two events is the same in every frame. 4. Energy and momentum are always conserved, and we can make e±cient use of this fact by writing them together in an energy-momentum vector P = (E=c; p) with the property P 2 = m2c2. In particular, if the mass is zero then P 2 = 0. 1. The earth and sun are 8.3 light-minutes apart. Ignore their relative motion for this problem and assume they live in a single inertial frame, the Earth-Sun frame. Events A and B occur at t = 0 on the earth and at 2 minutes on the sun respectively. Find the time di®erence between the events according to an observer moving at u = 0:8c from Earth to Sun. Repeat if observer is moving in the opposite direction at u = 0:8c. Answer: According to the formula for a Lorentz transformation, ³ u ´ 1 ¢tobserver = γ ¢tEarth-Sun ¡ ¢xEarth-Sun ; γ = p : c2 1 ¡ (u=c)2 Plugging in the numbers gives (notice that the c implicit in \light-minute" cancels the extra factor of c, which is why it's nice to measure distances in terms of the speed of light) 2 min ¡ 0:8(8:3 min) ¢tobserver = p = ¡7:7 min; 1 ¡ 0:82 which means that according to the observer, event B happened before event A! If we reverse the sign of u then 2 min + 0:8(8:3 min) ¢tobserver 2 = p = 14 min: 1 ¡ 0:82 2.
    [Show full text]
  • (Special) Relativity
    (Special) Relativity With very strong emphasis on electrodynamics and accelerators Better: How can we deal with moving charged particles ? Werner Herr, CERN Reading Material [1 ]R.P. Feynman, Feynman lectures on Physics, Vol. 1 + 2, (Basic Books, 2011). [2 ]A. Einstein, Zur Elektrodynamik bewegter K¨orper, Ann. Phys. 17, (1905). [3 ]L. Landau, E. Lifschitz, The Classical Theory of Fields, Vol2. (Butterworth-Heinemann, 1975) [4 ]J. Freund, Special Relativity, (World Scientific, 2008). [5 ]J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..) [6 ]J. Hafele and R. Keating, Science 177, (1972) 166. Why Special Relativity ? We have to deal with moving charges in accelerators Electromagnetism and fundamental laws of classical mechanics show inconsistencies Ad hoc introduction of Lorentz force Applied to moving bodies Maxwell’s equations lead to asymmetries [2] not shown in observations of electromagnetic phenomena Classical EM-theory not consistent with Quantum theory Important for beam dynamics and machine design: Longitudinal dynamics (e.g. transition, ...) Collective effects (e.g. space charge, beam-beam, ...) Dynamics and luminosity in colliders Particle lifetime and decay (e.g. µ, π, Z0, Higgs, ...) Synchrotron radiation and light sources ... We need a formalism to get all that ! OUTLINE Principle of Relativity (Newton, Galilei) - Motivation, Ideas and Terminology - Formalism, Examples Principle of Special Relativity (Einstein) - Postulates, Formalism and Consequences - Four-vectors and applications (Electromagnetism and accelerators) § ¤ some slides are for your private study and pleasure and I shall go fast there ¦ ¥ Enjoy yourself .. Setting the scene (terminology) .. To describe an observation and physics laws we use: - Space coordinates: ~x = (x, y, z) (not necessarily Cartesian) - Time: t What is a ”Frame”: - Where we observe physical phenomena and properties as function of their position ~x and time t.
    [Show full text]
  • Lecture Notes 17: Proper Time, Proper Velocity, the Energy-Momentum 4-Vector, Relativistic Kinematics, Elastic/Inelastic
    UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 17 Prof. Steven Errede LECTURE NOTES 17 Proper Time and Proper Velocity As you progress along your world line {moving with “ordinary” velocity u in lab frame IRF(S)} on the ct vs. x Minkowski/space-time diagram, your watch runs slow {in your rest frame IRF(S')} in comparison to clocks on the wall in the lab frame IRF(S). The clocks on the wall in the lab frame IRF(S) tick off a time interval dt, whereas in your 2 rest frame IRF( S ) the time interval is: dt dtuu1 dt n.b. this is the exact same time dilation formula that we obtained earlier, with: 2 2 uu11uc 11 and: u uc We use uurelative speed of an object as observed in an inertial reference frame {here, u = speed of you, as observed in the lab IRF(S)}. We will henceforth use vvrelative speed between two inertial systems – e.g. IRF( S ) relative to IRF(S): Because the time interval dt occurs in your rest frame IRF( S ), we give it a special name: ddt = proper time interval (in your rest frame), and: t = proper time (in your rest frame). The name “proper” is due to a mis-translation of the French word “propre”, meaning “own”. Proper time is different than “ordinary” time, t. Proper time is a Lorentz-invariant quantity, whereas “ordinary” time t depends on the choice of IRF - i.e. “ordinary” time is not a Lorentz-invariant quantity. 222222 The Lorentz-invariant interval: dI dx dx dx dx ds c dt dx dy dz Proper time interval: d dI c2222222 ds c dt dx dy dz cdtdt22 = 0 in rest frame IRF(S) 22t Proper time: ddtttt 21 t 21 11 Because d and are Lorentz-invariant quantities: dd and: {i.e.
    [Show full text]
  • A Tale of Two Twins
    A tale of two twins L.Benguigui Physics Department and Solid State Institute Technion-Israel Institute of Technology 32000 Haifa Israel Abstract The thought experiment (called the clock paradox or the twin paradox) proposed by Langevin in 1911 of two observers, one staying on earth and the other making a trip toward a Star with a velocity near the light velocity is very well known for its very surprising result. When the traveler comes back, he is younger than the stay on Earth. This astonishing situation deduced form the theory of Special Relativity sparked a huge amount of articles, discussions and controversies such that it remains a particular phenomenon probably unique in Physics. In this article we propose to study it. First, we lookedl for the simplest solutions when one can observe that the published solutions correspond in fact to two different versions of the experiment. It appears that the complete and simple solution of Møller is neglected for complicated methods with dubious validity. We propose to interpret this avalanche of works by the difficulty to accept the conclusions of the Special Relativity, in particular the difference in the times indicated by two clocks, one immobile and the second moving and finally stopping. We suggest also that the name "twin paradox" is maybe related to some subconscious idea concerning conflict between twins as it can be found in the Bible and in several mythologies. 1 Introduction The thought experiment in the theory of Relativity called the "twin paradox" or the "clock paradox" is very well known in physics and even by non-physicists.
    [Show full text]
  • A Short and Transparent Derivation of the Lorentz-Einstein Transformations
    A brief and transparent derivation of the Lorentz-Einstein transformations via thought experiments Bernhard Rothenstein1), Stefan Popescu 2) and George J. Spix 3) 1) Politehnica University of Timisoara, Physics Department, Timisoara, Romania 2) Siemens AG, Erlangen, Germany 3) BSEE Illinois Institute of Technology, USA Abstract. Starting with a thought experiment proposed by Kard10, which derives the formula that accounts for the relativistic effect of length contraction, we present a “two line” transparent derivation of the Lorentz-Einstein transformations for the space-time coordinates of the same event. Our derivation make uses of Einstein’s clock synchronization procedure. 1. Introduction Authors make a merit of the fact that they derive the basic formulas of special relativity without using the Lorentz-Einstein transformations (LET). Thought experiments play an important part in their derivations. Some of these approaches are devoted to the derivation of a given formula whereas others present a chain of derivations for the formulas of relativistic kinematics in a given succession. Two anthological papers1,2 present a “two line” derivation of the formula that accounts for the time dilation using as relativistic ingredients the invariant and finite light speed in free space c and the invariance of distances measured perpendicular to the direction of relative motion of the inertial reference frame from where the same “light clock” is observed. Many textbooks present a more elaborated derivation of the time dilation formula using a light clock that consists of two parallel mirrors located at a given distance apart from each other and a light signal that bounces between when observing it from two inertial reference frames in relative motion.3,4 The derivation of the time dilation formula is intimately related to the formula that accounts for the length contraction derived also without using the LET.
    [Show full text]
  • Massachusetts Institute of Technology Midterm
    Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Special Relativity January 18, 2005 7:30–9:30 pm Midterm Instructions • This exam contains SIX problems – pace yourself accordingly! • You have two hours for this test. Papers will be picked up at 9:30 pm sharp. • The exam is scored on a basis of 100 points. • Please do ALL your work in the white booklets that have been passed out. There are extra booklets available if you need a second. • Please remember to put your name on the front of your exam booklet. • If you have any questions please feel free to ask the proctor(s). 1 2 Information Lorentz transformation (along the x­axis) and its inverse x� = γ(x − βct) x = γ(x� + βct�) y� = y y = y� z� = z z = z� ct� = γ(ct − βx) ct = γ(ct� + βx�) � where β = v/c, and γ = 1/ 1 − β2. Velocity addition (relative motion along the x­axis): � ux − v ux = 2 1 − uxv/c � uy uy = 2 γ(1 − uxv/c ) � uz uz = 2 γ(1 − uxv/c ) Doppler shift Longitudinal � 1 + β ν = ν 1 − β 0 Quadratic equation: ax2 + bx + c = 0 1 � � � x = −b ± b2 − 4ac 2a Binomial expansion: b(b − 1) (1 + a)b = 1 + ba + a 2 + . 2 3 Problem 1 [30 points] Short Answer (a) [4 points] State the postulates upon which Einstein based Special Relativity. (b) [5 points] Outline a derviation of the Lorentz transformation, describing each step in no more than one sentence and omitting all algebra. (c) [2 points] Define proper length and proper time.
    [Show full text]
  • Time Dilation and Length Contraction Shown in Three-Dimensional Space-Time Frames
    TIME DILATION AND LENGTH CONTRACTION SHOWN IN THREE-DIMENSIONAL SPACE-TIME FRAMES Tower Chen Division of Mathematical Sciences University of Guam e-mail:[email protected] Zeon Chen e-mail: zeon [email protected] (Received 9 December 2008; accepted 18 February 2009) Abstract In classical Newtonian physics, space and time are abso- lute quantities. Hence, space and time can be treated inde- pendently and discussed separately. With his theory of rel- ativity, Einstein proved that space and time are dependent and must not be treated separately. To maintain this in- terdependency and inseparability of space and time, a three- Concepts of Physics, Vol. VI, No. 2 (2009) 221 dimensional space-time frame, where time is embedded into a spatial coordinate system, has been conceptualized. Utiliz- ing this new type of frame, the concepts of time dilation and length contraction can easily be visualized with intuitive, ge- ometric graphs. The proposed three-dimensional space-time frame is an alternate mathematical frame that can be used to describe the motion of objects. It may also prove to be a use- ful tool in facilitating the understanding of Special Relativity and providing additional insights into space and time. 222 Concepts of Physics, Vol. VI, No. 2 (2009) TIME DILATION AND LENGTH CONTRACTION... 1 Introduction In classical Newtonian physics, the concepts of space and time are absolute. Space is composed of three orthogonal dimensions, and time is represented as a fourth dimension, perpendicular to each of the spatial axes. Both space and time are free to be discussed in- dependent of the other.
    [Show full text]
  • The Special Theory of Relativity
    The Special Theory of Relativity Chapter II 1. Relativistic Kinematics 2. Time dilation and space travel 3. Length contraction 4. Lorentz transformations 5. Paradoxes ? Simultaneity/Relativity If one observer sees the events as simultaneous, the other cannot, given that the speed of light is the same for each. Conclusions: Simultaneity is not an absolute concept Time is not an absolute concept It is relative How much time does it take for light to Time Dilation Travel up and down in the space ship? a) Observer in space ship: 2D ∆t = proper time 0 c b) Observer on Earth: speed c is the same apparent distance longer ν 2 = v∆t Light along diagonal: 2 D2 + 2 2 D2 + v2∆t 2 / 4 c = = ∆t ∆t 2D ∆t = c 1− v2 / c2 ∆t This shows that moving observers ∆t = 0 = γ∆t 2 2 0 must disagree on the passage of 1− v / c time. Clocks moving relative to an observer run more slowly as compared to clocks at rest relative to that observer Time Dilation Calculating the difference between clock “ticks,” we find that the interval in the moving frame is related to the interval in the clock’s rest frame: ∆t ∆t = 0 1− v2 / c2 ∆t0 is the proper time (in the co-moving frame) It is the shortest time an observer can measure 1 with γ = ∆t = γ∆t 1− v2 / c2 then 0 Applications: Lifetimes of muons in the Earth atmosphere Time dilation on atomic clocks in GPS (v=4 km/s; timing “error” 10-10 s) On Space Travel 100 light years ~ 1016 m If space ship travels at v=0.999 c then it takes ~100 years to travel.
    [Show full text]
  • Lecture 17 Relativity A2020 Prof. Tom Megeath What Are the Major Ideas
    4/1/10 Lecture 17 Relativity What are the major ideas of A2020 Prof. Tom Megeath special relativity? Einstein in 1921 (born 1879 - died 1955) Einstein’s Theories of Relativity Key Ideas of Special Relativity • Special Theory of Relativity (1905) • No material object can travel faster than light – Usual notions of space and time must be • If you observe something moving near light speed: revised for speeds approaching light speed (c) – Its time slows down – Its length contracts in direction of motion – E = mc2 – Its mass increases • Whether or not two events are simultaneous depends on • General Theory of Relativity (1915) your perspective – Expands the ideas of special theory to include a surprising new view of gravity 1 4/1/10 Inertial Reference Frames Galilean Relativity Imagine two spaceships passing. The astronaut on each spaceship thinks that he is stationary and that the other spaceship is moving. http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ Which one is right? Both. ClassMechanics/Relativity/Relativity.html Each one is an inertial reference frame. Any non-rotating reference frame is an inertial reference frame (space shuttle, space station). Each reference Speed limit sign posted on spacestation. frame is equally valid. How fast is that man moving? In contrast, you can tell if a The Solar System is orbiting our Galaxy at reference frame is rotating. 220 km/s. Do you feel this? Absolute Time Absolutes of Relativity 1. The laws of nature are the same for everyone In the Newtonian universe, time is absolute. Thus, for any two people, reference frames, planets, etc, 2.
    [Show full text]
  • Length Contraction the Proper Length of an Object Is Longest in the Reference Frame in Which It Is at Rest
    Newton’s Principia in 1687. Galilean Relativity Velocities add: V= U +V' V’= 25m/s V = 45m/s U = 20 m/s What if instead of a ball, it is a light wave? Do velocities add according to Galilean Relativity? Clocks slow down and rulers shrink in order to keep the speed of light the same for all observers! Time is Relative! Space is Relative! Only the SPEED OF LIGHT is Absolute! A Problem with Electrodynamics The force on a moving charge depends on the Frame. Charge Rest Frame Wire Rest Frame (moving with charge) (moving with wire) F = 0 FqvB= sinθ Einstein realized this inconsistency and could have chosen either: •Keep Maxwell's Laws of Electromagnetism, and abandon Galileo's Spacetime •or, keep Galileo's Space-time, and abandon the Maxwell Laws. On the Electrodynamics of Moving Bodies 1905 EinsteinEinstein’’ss PrinciplePrinciple ofof RelativityRelativity • Maxwell’s equations are true in all inertial reference frames. • Maxwell’s equations predict that electromagnetic waves, including light, travel at speed c = 3.00 × 108 m/s =300,000km/s = 300m/µs . • Therefore, light travels at speed c in all inertial reference frames. Every experiment has found that light travels at 3.00 × 108 m/s in every inertial reference frame, regardless of how the reference frames are moving with respect to each other. Special Theory: Inertial Frames: Frames do not accelerate relative to eachother; Flat Spacetime – No Gravity They are moving on inertia alone. General Theory: Noninertial Frames: Frames accelerate: Curved Spacetime, Gravity & acceleration. Albert Einstein 1916 The General Theory of Relativity Postulates of Special Relativity 1905 cxmsms==3.0 108 / 300 / μ 1.
    [Show full text]