Venera-D: Expanding Our Horizon of Terrestrial Planet Climate and Geology Through the Comprehensive Exploration of Venus

Total Page:16

File Type:pdf, Size:1020Kb

Venera-D: Expanding Our Horizon of Terrestrial Planet Climate and Geology Through the Comprehensive Exploration of Venus Venera-D: Expanding our Horizon of Terrestrial Planet Climate and Geology through the Comprehensive Exploration of Venus Venera-D Joint Science Definition Team Authors and Study Participants Name Institution Co-Chairs D. Senske Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA L. Zasova Space Research Institute, Moscow, Russia Joint Science Definition Team Members N. Ignatiev Space Research Institute, Moscow, Russia O. Korablev Space Research Institute, Moscow, Russia N. Eismont Space Research Institute, Moscow, Russia I. Lomakin Lavochkin Association, Moscow, Russia M. Gerasimov Space Research Institute, Moscow, Russia M. Ivanov Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, Russia M. Martynov Lavochkin Association, Moscow, Russia I. Khatuntsev Space Research Institute, Moscow, Russia S. Limaye University of Wisconsin, Madison, WI K. Lea Jessup Southwest Research Institute, Boulder, CO T. Economou University of Chicago, Chicago, IL L. Esposito University of Colorado, LASP, Boulder, CO A. Ocampo NASA Headquarters, Washington, DC The Venera-D JSDT would like to thank and acknowledge the support and contribution to this report provided by: Oleg Vaisberg (IKI RAS) for his contribution to the “Solar Wind-Venus Interaction and Venus Magnetosphere” discussion; Alexander Kosov (IKI RAS) for evaluating the scenario and calculating the volume of data that could be transmitted from the Lander to the Orbiter; and Alexander Simonov (Lavochkin Association) for trajectory calculations. The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech. © 2017. All rights reserved. Table of Contents 1 Executive Summary .................................................................................................................................................1 2 The Allure of Venus ..................................................................................................................................................5 2.1 Introduction ................................................................................................................................................... 5 2.2 The Venera-D Concept ................................................................................................................................. 5 2.3 Baseline Venera-D Concept and Science Priorities ..................................................................................... 6 2.3.1 Mission Elements ............................................................................................................................. 6 2.3.2 Prioritized Overarching Science Goals ............................................................................................ 6 2.4 Venera-D Joint Science Definition Team.................................................................................................... 12 3 Science Background, Current Open Questions and Relation to Venera-D ............................................................15 3.1 The Venus Atmosphere .............................................................................................................................. 15 3.1.1 What We Know About the Venus Atmosphere and Open Questions ............................................ 15 3.1.2 Needed Measurements .................................................................................................................. 26 3.2 Science at the Surface of Venus ................................................................................................................ 28 3.2.1 Venus Geology .............................................................................................................................. 28 3.2.2 Venus Geochemistry ...................................................................................................................... 32 3.3 Traceability of Venera-D Goals and Objectives to the Decadal Survey and VEXAG................................. 36 3.4 Venera-D Science Relative to Ongoing and Potential Other Future Missions ........................................... 49 3.5 Science Gaps ............................................................................................................................................. 49 4 Mission Architecture ...............................................................................................................................................51 4.1 General Architecture ................................................................................................................................... 51 4.1.1 Launch, Cruise, and Orbit Insertion at Venus ................................................................................ 51 4.1.2 The Composite Venera-D Spacecraft ............................................................................................ 54 4.1.3 Communication and Data Transmission ........................................................................................ 55 4.1.4 Spacecraft Mass ............................................................................................................................ 56 4.1.5 Architecture Summary ................................................................................................................... 56 5 Technology, Challenges (CH) and Enablers (EN)..................................................................................................57 5.1 Baseline Mission ......................................................................................................................................... 57 5.2 Other Potential Mission Components ......................................................................................................... 59 5.3 Potential Technology Demonstrations ........................................................................................................ 62 6 Opportunities for Lab Work ....................................................................................................................................63 6.1 Baseline Mission ......................................................................................................................................... 63 6.2 Other Potential Mission Components ......................................................................................................... 63 7 Potential Contributions to the Baseline Venera-D Concept ...................................................................................64 7.1 Aerial Platform ............................................................................................................................................ 64 7.2 Small Long-Lived-Stations .......................................................................................................................... 65 8 JSDT Findings and Recommendations ..................................................................................................................67 8.1 Science That Could Be Achieved by Venera-D .......................................................................................... 67 8.2 Strategic Needs for Future Development ................................................................................................... 69 8.3 Architectural Options .................................................................................................................................. 69 8.4 Assessment of JSDT–Chartered Tasks ..................................................................................................... 70 9 Framework for Future Work ...................................................................................................................................71 10 References .............................................................................................................................................................72 Appendix A: Technology Summary Table .....................................................................................................................80 Venera-D Final Report i List of Tables Table 2.3-1. Venera-D Science from Orbit ......................................................................................................................8 Table 2.3-2. Venera-D Descent and Landed Science ...................................................................................................11 Table 2.4-1. Members of the Venera-D Joint Science Definition Team ........................................................................13 Table 3.2-1. Areas of the most important units from different regimes of resurfacing on Venus ..................................30 Table 3.2-2. Results of chemical analyses conducted by the Venera (V) and VEGA (Vg) landers ..............................33 Table 3.3-1. Mapping of the science capability of Venera-D to the NASA Planetary Decadal Survey .........................37 Table 3.3-2. Mapping of science capability of Venera-D to the VEXAG Objectives and Investigations for Atmospheric Science ..............................................................................................................................................42 Table 3.3-3. Mapping of science capability of Venera-D to the VEXAG Objectives and Investigations for Surface Science .....................................................................................................................................................45
Recommended publications
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Characterization of the Stray Light in a Space Borne Atmospheric AOTF Spectrometer
    Characterization of the stray light in a space borne atmospheric AOTF spectrometer Korablev Oleg 1, Fedorova Anna 1, Eric Villard 2,3, Lilian Joly 4, Alexander Kiselev 1, Denis Belyaev 1, Jean-Loup Bertaux 2 1Space Research Institute (IKI), 84/32 Profsoyuznaya, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, Institutsky dr. 9, 141700 Dolgoprudnyi, Russia 2LATMOS/CNRS, 78280 Guyancourt , France. 3ALMA/European Southern Observatory, Santiago, Chile 4GSMA/CNRS Univ. de Reims, Moulin de la Housse, BP 1039, 51687 Reims, France. [email protected] Abstract : Acousto-optic tunable filter (AOTF) spectrometers are being criticized for spectral leakage, distant side lobes of their spectral response (SRF) function, or the stray light. SPICAM-IR is the AOTF spectrometer in the range 1000-1700 nm with a resolving power of 1800-2200 operating on the Mars Express interplanetary probe. It is primarily dedicated to measurements of water vapor in the Martian atmosphere. SPICAM H2O retrievals are generally lower than simultaneous measurements with other instruments, the stray light suggested as a likely explanation. We report the results of laboratory measurements of water vapor in quantity characteristic for the Mars atmosphere with the Flight Spare model of SPICAM-IR. The level of the stray light is below 1.3·10 -4, and the accuracy to measure water vapor is ~0.2 pr. µm, mostly determined by measurement uncertainties and the accuracy of the synthetic modeling. We demonstrate that the AOTF spectrometer dependably measures the water abundance and can be employed as an atmospheric spectrometer. References and links 1. N. J. Chanover, D. A.
    [Show full text]
  • A Systematic Concept Exploration Methodology Applied to Venus in Situ Explorer
    Session III: Probe Missions to the Giant Planets, Titan and Venus A Systematic Concept Exploration Methodology Applied to Venus In Situ Explorer Jarret M. Lafleur *, Gregory Lantoine *, Andrew L. Hensley *, Ghislain J. Retaureau *, Kara M. Kranzusch *, Joseph W. Hickman *, Marc N. Wilson *, and Daniel P. Schrage † Georgia Institute of Technology Atlanta, Georgia 30332 ABSTRACT One of the most critical tasks in the design of a complex system is the initial conversion of mission or program objectives into a baseline system architecture. Presented in this paper is a methodology to aid in this process that is frequently used for aerospace problems at the Georgia Institute of Technology. In this paper, the methodology is applied to initial concept formulation for the Venus In Situ Explorer (VISE) mission. Five primary steps are outlined which encompass program objective definition through evaluation of candidate designs. Tools covered include the Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and morphological matrices. Direction is given for the application of modeling and simulation as well as for subsequent iterations of the process. The paper covers both theoretical and practical aspects of the tools and process in the context of the VISE example, and it is hoped that this methodology may find future use in interplanetary probe design. 1. INTRODUCTION One of the most critical tasks in the design of a complex engineering system is the initial conversion of mission or program objectives and requirements into a baseline system architecture. In completing this task, the challenge exists to comprehensively but efficiently explore the global trade space of potential designs.
    [Show full text]
  • SFSC Search Down to 4
    C M Y K www.newssun.com EWS UN NHighlands County’s Hometown-S Newspaper Since 1927 Rivalry rout Deadly wreck in Polk Harris leads Lake 20-year-old woman from Lake Placid to shutout of AP Placid killed in Polk crash SPORTS, B1 PAGE A2 PAGE B14 Friday-Saturday, March 22-23, 2013 www.newssun.com Volume 94/Number 35 | 50 cents Forecast Fire destroys Partly sunny and portable at Fred pleasant High Low Wild Elementary Fire alarms “Myself, Mr. (Wally) 81 62 Cox and other administra- Complete Forecast went off at 2:40 tors were all called about PAGE A14 a.m. Wednesday 3 a.m.,” Waldron said Wednesday morning. Online By SAMANTHA GHOLAR Upon Waldron’s arrival, [email protected] the Sebring Fire SEBRING — Department along with Investigations into a fire DeSoto City Fire early Wednesday morning Department, West Sebring on the Fred Wild Volunteer Fire Department Question: Do you Elementary School cam- and Sebring Police pus are under way. Department were all on think the U.S. govern- The school’s fire alarms the scene. ment would ever News-Sun photo by KATARA SIMMONS Rhoda Ross reads to youngsters Linda Saraniti (from left), Chyanne Carroll and Camdon began going off at approx- State Fire Marshal seize money from pri- Carroll on Wednesday afternoon at the Lake Placid Public Library. Ross was reading from imately 2:40 a.m. and con- investigator Raymond vate bank accounts a children’s book she wrote and illustrated called ‘A Wildflower for all Seasons.’ tinued until about 3 a.m., Miles Davis was on the like is being consid- according to FWE scene for a large part of ered in Cyprus? Principal Laura Waldron.
    [Show full text]
  • Status After the Venus Flybys
    Acta Astronautica 63 (2008) 68–73 www.elsevier.com/locate/actaastro The MESSENGER mission to Mercury: Status after the Venusflybys Ralph L. McNutt Jr.a,∗, Sean C. Solomonb, David G. Granta, Eric J. Finnegana, Peter D. Bedinia, the MESSENGER Team aThe Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015, USA Available online 21 April 2008 Abstract NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched on 3 August 2004, is well into its voyage to initiate a new era in our understanding of the terrestrial planets. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet during three flybys and a one-year-long, near-polar-orbital observational campaign. The cruise phase to date has been used to commission the spacecraft and instruments and begin the transition to automated use of the instruments with on-board, time-tagged commands. An Earth flyby one year after launch, a large propulsive maneuver in December 2005, and Venus flybys in October 2006 and June 2007 began the process of changing MESSENGER’s heliocentric motion. The second Venus flyby was also used to complete final rehearsals for Mercury flyby operations in January 2008 while coordinating observations with the European Space Agency’s Venus Express mission. The upcoming Mercury flyby will be the first since that of Mariner 10 in 1975. Along with the second and third MESSENGER flybys in October 2008 and September 2009, that flyby will provide images of the hemisphere of Mercury never seen before by spacecraft as well as the first high-resolution information on Mercury’s surface mineralogy.
    [Show full text]
  • Jjmonl 1710.Pmd
    alactic Observer John J. McCarthy Observatory G Volume 10, No. 10 October 2017 The Last Waltz Cassini’s final mission and dance of death with Saturn more on page 4 and 20 The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue INTERNATIONAL OBSERVE THE MOON NIGHT ...................... 4 SOLAR ACTIVITY ........................................................... 19 MONTE APENNINES AND APOLLO 15 .................................. 5 COMMONLY USED TERMS ............................................... 19 FAREWELL TO RING WORLD ............................................ 5 FRONT PAGE ...............................................................
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Impact Melt Emplacement on Mercury
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-24-2018 2:00 PM Impact Melt Emplacement on Mercury Jeffrey Daniels The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jeffrey Daniels 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Daniels, Jeffrey, "Impact Melt Emplacement on Mercury" (2018). Electronic Thesis and Dissertation Repository. 5657. https://ir.lib.uwo.ca/etd/5657 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact cratering is an abrupt, spectacular process that occurs on any world with a solid surface. On Earth, these craters are easily eroded or destroyed through endogenic processes. The Moon and Mercury, however, lack a significant atmosphere, meaning craters on these worlds remain intact longer, geologically. In this thesis, remote-sensing techniques were used to investigate impact melt emplacement about Mercury’s fresh, complex craters. For complex lunar craters, impact melt is preferentially ejected from the lowest rim elevation, implying topographic control. On Venus, impact melt is preferentially ejected downrange from the impact site, implying impactor-direction control. Mercury, despite its heavily-cratered surface, trends more like Venus than like the Moon.
    [Show full text]
  • Tanga Laboratoire Cassiopée - Observatoire De La Côte D’Azur
    Twilight phenomena in the atmosphere of Venus during the 2004 inferior conjunction Paolo Tanga Laboratoire Cassiopée - Observatoire de la Côte d’Azur Twilight phenomena in the atmosphere of Venus during the 2004 inferior conjunction Paolo Tanga Laboratoire Cassiopée - Observatoire de la Côte d’Azur Abstract - Twilight phenomena of Venus are peculiar aspects visible in proximity of the inferior conjunctions of the planet. They include the refraction image of the Sun that has been observed during the planet transits, and the cusp extensions observable at greater elongations. Those two phenomena have deeply different origins, the first being ascribed to refraction, the second to scattering by a thin layer of aerosols. In the following we briefly summarize the historical record of observations, giving some physical considerations and practical advices for observation close to the June 2004 Venus conjunction with the Sun. Introduction Starting with the 1761 event, several The transit of the planet Venus across observers has signalled the presence of an the Sun allows us to observe in detail some “aureola” around the planet disk, i.e. a phenomena that inspired several scientific luminescent arc running all around Venus speculations in the past. globe, or limited to the portion projected Starting from the end of the 19th beyond the Sun’s limb, against the sky. century, the observers have reported some Often, when Venus was partially peculiar phenomena promptly attributed to external to the Sun disk, the bright arc has Venus atmosphere: among them, in appeared broken in segments, reduced in particular, the outstanding cusp extension, extension or limited to a single bright point that tends to transform the thin crescent of (Fig.
    [Show full text]
  • Geologic Map of the Victoria Quadrangle (H02), Mercury
    H01 - Borealis Geologic Map of the Victoria Quadrangle (H02), Mercury 60° Geologic Units Borea 65° Smooth plains material 1 1 2 3 4 1,5 sp H05 - Hokusai H04 - Raditladi H03 - Shakespeare H02 - Victoria Smooth and sparsely cratered planar surfaces confined to pools found within crater materials. Galluzzi V. , Guzzetta L. , Ferranti L. , Di Achille G. , Rothery D. A. , Palumbo P. 30° Apollonia Liguria Caduceata Aurora Smooth plains material–northern spn Smooth and sparsely cratered planar surfaces confined to the high-northern latitudes. 1 INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy; 22.5° Intermediate plains material 2 H10 - Derain H09 - Eminescu H08 - Tolstoj H07 - Beethoven H06 - Kuiper imp DiSTAR, Università degli Studi di Napoli "Federico II", Naples, Italy; 0° Pieria Solitudo Criophori Phoethontas Solitudo Lycaonis Tricrena Smooth undulating to planar surfaces, more densely cratered than the smooth plains. 3 INAF, Osservatorio Astronomico di Teramo, Teramo, Italy; -22.5° Intercrater plains material 4 72° 144° 216° 288° icp 2 Department of Physical Sciences, The Open University, Milton Keynes, UK; ° Rough or gently rolling, densely cratered surfaces, encompassing also distal crater materials. 70 60 H14 - Debussy H13 - Neruda H12 - Michelangelo H11 - Discovery ° 5 3 270° 300° 330° 0° 30° spn Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy. Cyllene Solitudo Persephones Solitudo Promethei Solitudo Hermae -30° Trismegisti -65° 90° 270° Crater Materials icp H15 - Bach Australia Crater material–well preserved cfs -60° c3 180° Fresh craters with a sharp rim, textured ejecta blanket and pristine or sparsely cratered floor. 2 1:3,000,000 ° c2 80° 350 Crater material–degraded c2 spn M c3 Degraded craters with a subdued rim and a moderately cratered smooth to hummocky floor.
    [Show full text]
  • Long-Term Venus Lander
    Western Michigan University ScholarWorks at WMU Honors Theses Lee Honors College 4-20-2021 Long-Term Venus Lander Scott Miller Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/honors_theses Part of the Space Vehicles Commons Recommended Citation Miller, Scott, "Long-Term Venus Lander" (2021). Honors Theses. 3383. https://scholarworks.wmich.edu/honors_theses/3383 This Honors Thesis-Open Access is brought to you for free and open access by the Lee Honors College at ScholarWorks at WMU. It has been accepted for inclusion in Honors Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. Long-Duration Venus Explorer Aidan Wales, Ethan Reid, and Scott Miller Group #04-21-01 Faculty Advisor: Dr. Kristina Lemmer Western Michigan University College of Engineering and Applied Sciences Table of Contents Abstract .............................................................................................................. pg. 1 Disclaimer .......................................................................................................... pg. 1 Introduction ....................................................................................................... pg. 2 Methodology ...................................................................................................... pg. 2 Preliminary Research ............................................................................. pg. 2 Decision Matrices
    [Show full text]
  • Detection of Ionospheric Layers in the Dayside Ionosphere of Venus at Altitudes of 80–120 Km from Venera15 and 16 TwoFrequency RadioOccultation Results A
    ISSN 00167932, Geomagnetism and Aeronomy, 2009, Vol. 49, No. 8, pp. 1223–1225. © Pleiades Publishing, Ltd., 2009. Original Russian Text © A.L. Gavrik, A.G. Pavelyev, Yu.A. Gavrik, 2008, published in SolnechnoZemnaya Fizika, 2008, Vol. 12, No. 2, pp. 203–205. Detection of Ionospheric Layers in the Dayside Ionosphere of Venus at Altitudes of 80–120 km from Venera15 and 16 TwoFrequency RadioOccultation Results A. L. Gavrik, A. G. Pavelyev, and Yu. A. Gavrik Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia Received November 17, 2008 Abstract—We propose a technique for analyzing radiooccultation data that allows the effects of the noise, ionosphere, and atmosphere on the radiooccultation results to be reliably separated. This enables a more accurate investigation into the ionosphere formation mechanisms. Ionized layers are shown to exist in the dayside ionosphere of Venus at altitudes from 80 to 120 km. The position of the lower boundary of this ionized region can vary over the range of 80–100 km and the electron density gradients can change several times sev eral. DOI: 10.1134/S0016793209080362 1. INTRODUCTION 2. THE TECHNIQUE OF MEASUREMENTS The ionosphere of Venus was discovered in the Twofrequency radiooccultation observations of radiooccultation experiment conducted in 1967 with the ionosphere were performed from October 12, Mariner 5. Systematic studies of the Venusian iono 1983, to September 24, 1984, when Venera 15 and 16 sphere were carried out from 1975 to 1994 with Venera went behind the Venusian disk and emerged from 9 and 10 [Aleksandrov et al., 1978], Pioneer–Venus behind it.
    [Show full text]