Navigation Challenges During Exomars Trace Gas Orbiter Aerobraking Campaign
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of the Stray Light in a Space Borne Atmospheric AOTF Spectrometer
Characterization of the stray light in a space borne atmospheric AOTF spectrometer Korablev Oleg 1, Fedorova Anna 1, Eric Villard 2,3, Lilian Joly 4, Alexander Kiselev 1, Denis Belyaev 1, Jean-Loup Bertaux 2 1Space Research Institute (IKI), 84/32 Profsoyuznaya, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, Institutsky dr. 9, 141700 Dolgoprudnyi, Russia 2LATMOS/CNRS, 78280 Guyancourt , France. 3ALMA/European Southern Observatory, Santiago, Chile 4GSMA/CNRS Univ. de Reims, Moulin de la Housse, BP 1039, 51687 Reims, France. [email protected] Abstract : Acousto-optic tunable filter (AOTF) spectrometers are being criticized for spectral leakage, distant side lobes of their spectral response (SRF) function, or the stray light. SPICAM-IR is the AOTF spectrometer in the range 1000-1700 nm with a resolving power of 1800-2200 operating on the Mars Express interplanetary probe. It is primarily dedicated to measurements of water vapor in the Martian atmosphere. SPICAM H2O retrievals are generally lower than simultaneous measurements with other instruments, the stray light suggested as a likely explanation. We report the results of laboratory measurements of water vapor in quantity characteristic for the Mars atmosphere with the Flight Spare model of SPICAM-IR. The level of the stray light is below 1.3·10 -4, and the accuracy to measure water vapor is ~0.2 pr. µm, mostly determined by measurement uncertainties and the accuracy of the synthetic modeling. We demonstrate that the AOTF spectrometer dependably measures the water abundance and can be employed as an atmospheric spectrometer. References and links 1. N. J. Chanover, D. A. -
Status After the Venus Flybys
Acta Astronautica 63 (2008) 68–73 www.elsevier.com/locate/actaastro The MESSENGER mission to Mercury: Status after the Venusflybys Ralph L. McNutt Jr.a,∗, Sean C. Solomonb, David G. Granta, Eric J. Finnegana, Peter D. Bedinia, the MESSENGER Team aThe Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015, USA Available online 21 April 2008 Abstract NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched on 3 August 2004, is well into its voyage to initiate a new era in our understanding of the terrestrial planets. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet during three flybys and a one-year-long, near-polar-orbital observational campaign. The cruise phase to date has been used to commission the spacecraft and instruments and begin the transition to automated use of the instruments with on-board, time-tagged commands. An Earth flyby one year after launch, a large propulsive maneuver in December 2005, and Venus flybys in October 2006 and June 2007 began the process of changing MESSENGER’s heliocentric motion. The second Venus flyby was also used to complete final rehearsals for Mercury flyby operations in January 2008 while coordinating observations with the European Space Agency’s Venus Express mission. The upcoming Mercury flyby will be the first since that of Mariner 10 in 1975. Along with the second and third MESSENGER flybys in October 2008 and September 2009, that flyby will provide images of the hemisphere of Mercury never seen before by spacecraft as well as the first high-resolution information on Mercury’s surface mineralogy. -
The Pancam Instrument for the Exomars Rover
ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1548 The PanCam Instrument for the ExoMars Rover A.J. Coates,1,2 R. Jaumann,3 A.D. Griffiths,1,2 C.E. Leff,1,2 N. Schmitz,3 J.-L. Josset,4 G. Paar,5 M. Gunn,6 E. Hauber,3 C.R. Cousins,7 R.E. Cross,6 P. Grindrod,2,8 J.C. Bridges,9 M. Balme,10 S. Gupta,11 I.A. Crawford,2,8 P. Irwin,12 R. Stabbins,1,2 D. Tirsch,3 J.L. Vago,13 T. Theodorou,1,2 M. Caballo-Perucha,5 G.R. Osinski,14 and the PanCam Team Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. -
ESTRACK Facilities Manual (EFM) Issue 1 Revision 1 - 19/09/2008 S DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2Page Ii of Ii
fDOCUMENT document title/ titre du document ESA TRACKING STATIONS (ESTRACK) FACILITIES MANUAL (EFM) prepared by/préparé par Peter Müller reference/réference DOPS-ESTR-OPS-MAN-1001-OPS-ONN issue/édition 1 revision/révision 1 date of issue/date d’édition 19/09/2008 status/état Approved/Applicable Document type/type de document SSM Distribution/distribution see next page a ESOC DOPS-ESTR-OPS-MAN-1001- OPS-ONN EFM Issue 1 Rev 1 European Space Operations Centre - Robert-Bosch-Strasse 5, 64293 Darmstadt - Germany Final 2008-09-19.doc Tel. (49) 615190-0 - Fax (49) 615190 495 www.esa.int ESTRACK Facilities Manual (EFM) issue 1 revision 1 - 19/09/2008 s DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2page ii of ii Distribution/distribution D/EOP D/EUI D/HME D/LAU D/SCI EOP-B EUI-A HME-A LAU-P SCI-A EOP-C EUI-AC HME-AA LAU-PA SCI-AI EOP-E EUI-AH HME-AT LAU-PV SCI-AM EOP-S EUI-C HME-AM LAU-PQ SCI-AP EOP-SC EUI-N HME-AP LAU-PT SCI-AT EOP-SE EUI-NA HME-AS LAU-E SCI-C EOP-SM EUI-NC HME-G LAU-EK SCI-CA EOP-SF EUI-NE HME-GA LAU-ER SCI-CC EOP-SA EUI-NG HME-GP LAU-EY SCI-CI EOP-P EUI-P HME-GO LAU-S SCI-CM EOP-PM EUI-S HME-GS LAU-SF SCI-CS EOP-PI EUI-SI HME-H LAU-SN SCI-M EOP-PE EUI-T HME-HS LAU-SP SCI-MM EOP-PA EUI-TA HME-HF LAU-CO SCI-MR EOP-PC EUI-TC HME-HT SCI-S EOP-PG EUI-TL HME-HP SCI-SA EOP-PL EUI-TM HME-HM SCI-SM EOP-PR EUI-TP HME-M SCI-SD EOP-PS EUI-TS HME-MA SCI-SO EOP-PT EUI-TT HME-MP SCI-P EOP-PW EUI-W HME-ME SCI-PB EOP-PY HME-MC SCI-PD EOP-G HME-MF SCI-PE EOP-GC HME-MS SCI-PJ EOP-GM HME-MH SCI-PL EOP-GS HME-E SCI-PN EOP-GF HME-I SCI-PP EOP-GU HME-CO SCI-PR -
Initial Maven Observations of Ion Cyclotron Waves and Pickup Protons: a Measurement of Hydrogen Loss in the Upper Martian Exosphere F
46th Lunar and Planetary Science Conference (2015) 2628.pdf INITIAL MAVEN OBSERVATIONS OF ION CYCLOTRON WAVES AND PICKUP PROTONS: A MEASUREMENT OF HYDROGEN LOSS IN THE UPPER MARTIAN EXOSPHERE F. J. Crary1, J. E. P. Connerney2, J. R. Espley3 and J. P. McFadden4, 1Laboratory for Space and Atmospheric Physics, University of Col- orado, Boulder, 1234 Innovation Dr., Boulder, CO, 80303, [email protected] 2Goddard Space Flight Center, Mail Code 695, Greenbelt, MD, 20771, [email protected] 3Goddard Space Flight Center, Mail Code 695, Greenbelt, MD, 20771, [email protected], 4Space Science Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450, [email protected]. Introduction: Observations by the Mars Global Surveyor, Mars Express and Phobos 2 spacecraft [1],[2],[3] have shown that Mars has a hydrogen exo- sphere which extends as much as ten Martian radii from the planet. These hydrogen atoms ionize and are “picked up” in the solar wind flow. Neither the associ- ated hydrogen loss rate nor the structure of this extend- ed exosphere, have previously been well determined. The resulting pickup protons have a distinctive veloci- ty distribution and generate low frequency electromag- netic waves near the ion cyclotron frequency. Proton pickup ions have been observed by Mars Express [4] and proton cyclotron waves have been observed by Mars Global Surveyor [2]. The MAVEN spacecraft is the first Mars orbiter able to simultane- ously measure both ion cyclotron waves. Data from the spacecraft’s magnetometer [5], providing the vector magnetic field at a rate of 32 samples per second, is Fourier transformed to produce dynamic spectra of right-circularly polarized (whistler mode) and left- circularly polarized (ion cyclotron mode) ultralow fre- quency electromagnetic waves. -
OVERVIEW of the PHOENIX MARS LANDER MISSION. P. H. Smith1, 1Lunar and Planetary Lab, University of Arizona, Tucson, AZ 85721, [email protected]
Martian Sulfates as Recorders of Atmospheric-Fluid-Rock Interactions (2006) 7069.pdf OVERVIEW OF THE PHOENIX MARS LANDER MISSION. P. H. Smith1, 1Lunar and Planetary Lab, University of Arizona, Tucson, AZ 85721, [email protected]. Introduction: The Phoenix lander is ples of this biological paydirt and test for the next mission to study the surface of signatures related to biology. Mars in situ. By studying the active water Baseline Mission: After the initial as- cycles in the polar region, it complements sessment of the landing site by the science the Mars Exploration Rovers that look at team, the primary science phase of the the ancient history of Mars contained in mission begins with the collection of sur- the solid rocks. Lacking mobility, Phoenix face samples. Two major science instru- explores the subsurface to the north of the ments receive and analyze the samples. lander, studying the mineralogy and The first is the thermal evolved gas ana- chemistry of the soils and ice. lyzer (TEGA). A sample is delivered to a Scientific Objectives, Phoenix Follows hopper that feeds a small amount of soil the Water: The Phoenix mission targets into a tiny oven, which is sealed and the northern plains between 65 and 72 N. heated slowly to temperatures approaching High-resolution images from the Mars Or- 1000 C. The heater power profile neces- biter Camera on the Mars Global Surveyor sary to maintain a constant temperature spacecraft show a “basketball-like” texture gradient contains peaks and valleys that on the surface with low hummocks spaced indicate phase transitions. For instance, 10’s of meters apart; polygonal terrain, or ice will show a feature at its melting point patterned ground, is also common. -
First Year of Coordinated Science Observations by Mars Express and Exomars 2016 Trace Gas Orbiter
MANUSCRIPT PRE-PRINT Icarus Special Issue “From Mars Express to ExoMars” https://doi.org/10.1016/j.icarus.2020.113707 First year of coordinated science observations by Mars Express and ExoMars 2016 Trace Gas Orbiter A. Cardesín-Moinelo1, B. Geiger1, G. Lacombe2, B. Ristic3, M. Costa1, D. Titov4, H. Svedhem4, J. Marín-Yaseli1, D. Merritt1, P. Martin1, M.A. López-Valverde5, P. Wolkenberg6, B. Gondet7 and Mars Express and ExoMars 2016 Science Ground Segment teams 1 European Space Astronomy Centre, Madrid, Spain 2 Laboratoire Atmosphères, Milieux, Observations Spatiales, Guyancourt, France 3 Royal Belgian Institute for Space Aeronomy, Brussels, Belgium 4 European Space Research and Technology Centre, Noordwijk, The Netherlands 5 Instituto de Astrofísica de Andalucía, Granada, Spain 6 Istituto Nazionale Astrofisica, Roma, Italy 7 Institut d'Astrophysique Spatiale, Orsay, Paris, France Abstract Two spacecraft launched and operated by the European Space Agency are currently performing observations in Mars orbit. For more than 15 years Mars Express has been conducting global surveys of the surface, the atmosphere and the plasma environment of the Red Planet. The Trace Gas Orbiter, the first element of the ExoMars programme, began its science phase in 2018 focusing on investigations of the atmospheric composition with unprecedented sensitivity as well as surface and subsurface studies. The coordination of observation programmes of both spacecraft aims at cross calibration of the instruments and exploitation of new opportunities provided by the presence of two spacecraft whose science operations are performed by two closely collaborating teams at the European Space Astronomy Centre (ESAC). In this paper we describe the first combined observations executed by the Mars Express and Trace Gas Orbiter missions since the start of the TGO operational phase in April 2018 until June 2019. -
Insight Spacecraft Launch for Mission to Interior of Mars
InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November 26, 2018. It will allow us to better understand the origin of Mars. First Launch of Project Orion Project Orion took its first unmanned mission Exploration flight Test-1 (EFT-1) on December 5, 2014. It made two orbits in four hours before splashing down in the Pacific. The flight tested many subsystems, including its heat shield, electronics and parachutes. Orion will play an important role in NASA's journey to Mars. Orion will eventually carry astronauts to an asteroid and to Mars on the Space Launch System. Mars Rover Curiosity Lands After a nine month trip, Curiosity landed on August 6, 2012. The rover carries the biggest, most advanced suite of instruments for scientific studies ever sent to the martian surface. Curiosity analyzes samples scooped from the soil and drilled from rocks to record of the planet's climate and geology. Mars Reconnaissance Orbiter Begins Mission at Mars NASA's Mars Reconnaissance Orbiter launched from Cape Canaveral August 12. 2005, to find evidence that water persisted on the surface of Mars. The instruments zoom in for photography of the Martian surface, analyze minerals, look for subsurface water, trace how much dust and water are distributed in the atmosphere, and monitor daily global weather. Spirit and Opportunity Land on Mars January 2004, NASA landed two Mars Exploration Rovers, Spirit and Opportunity, on opposite sides of Mars. -
Mars Global Surveyor and 2001 Mars Odyssey Science Data Archives
Lunar and Planetary Science XXXIII (2002) 1303.pdf MARS GLOBAL SURVEYOR AND 2001 MARS ODYSSEY SCIENCE DATA ARCHIVES. S. Slavney, R. E. Arvidson, and E. A. Guinness, Department of Earth and Planetary Sciences, McDonnell Center for the Space Sciences, Washington University, St. Louis, MO, 63130 ([email protected]). Introduction: Science data sets from NASA's leases will occur every three months. GRS begins ac- Mars Exploration Program missions are archived with quiring data about 100 days after the start of mapping, the Planetary Data System (PDS) [1]. The PDS works with its first release in February 2003 [4]. with the missions to help them design and produce THEMIS generates multispectral visible and ther- quality, well-documented science archives. The PDS mal infrared images in image cube format. The total receives the archives produced by the missions and volume of raw and derived THEMIS data products is distributes them to the science community and the expected to be approximately five terabytes. general public. This abstract gives the status of science The GRS experiment generates gamma ray spectra data archives for the two Mars Exploration Program and derived maps of elemental ratios and concentra- missions currently in operation, Mars Global Surveyor tions, and the associated HEND and NS experiments and 2001 Mars Odyssey. produce spectra from which maps of hydrogen con- Mars Global Surveyor: The MGS spacecraft has centrations are derived. The data volume will not be been orbiting Mars since September 1997. Its primary as great as that of THEMIS, about 300 gigabytes. mission was completed January 31, 2001, and it is MARIE data sets are planned to consist of hydro- currently conducting an Extended Mission through gen and helium energy spectra associated with solar April 2002. -
Mars Global Reference Atmospheric Model GRAM Virtual Workshop September 21, 2017
Mars Global Reference Atmospheric Model GRAM Virtual Workshop September 21, 2017 Lee Burns, Ph.D. Raytheon/Jacobs ESSSA NASA Marshall Space Flight Center Natural Environments Branch [email protected] What is Mars-GRAM? Mars-GRAM is a statistical description of the Martian atmosphere applicable for engineering design analyses, mission planning, and operational decision making. Provides mean, dispersed values of atmospheric state variables. • Temperature • Chemical constituents • Density • Scale heights • Pressure • Radiative fluxes • 3-D Wind components . Variability based on numerous independent variables. • Latitude • Local True Solar Time (LTST) • Longitude • Ls (season) • Height • Dust optical depth (t) • Solar activity Mars-GRAM can be requested at https://software.nasa.gov/software/MFS-33158-1 [email protected] Mars-GRAM Customization . User-selectable inputs specify various analysis scenarios. • Uniform dust optical depths or Thermal Emission Spectrometer (TES) observed dust opacities. • Scalable perturbations for analyzing dispersed environments. • Global and time-evolving local dust storms. • Latitude-dependent stationary and propagating density waves. • Individual scale parameters for density, wind, and boundary layer dynamics. Runtime options provide flexibility. • Auto-generated profiles with variable step sizes. • Detailed perturbation model for applications in Monte Carlo simulations. • User-defined trajectory files. • User-specified auxiliary profile option for detailed analysis along an observed corridor. [email protected] Mars-GRAM applications and exclusions . Mars-GRAM supports analysis throughout mission timeline. • Advanced concept development. • Mission planning and sequencing; requirements specification. • Hardware design and verification. • Operations support. • Post mission analysis. Mars-GRAM is not a prognostic model. • Not physics based; no primitive equations of motion. • No forward time-stepping; no issues with computational stability or “spin-up.” • Does not require assignment of initial or boundary conditions. -
Cleaning the Dishes 29 November 2019
Cleaning the dishes 29 November 2019 activities. "This was the first time such an operation was conducted on an ESA deep space antenna, and despite its complexity, all involved teams managed to conduct the activity smoothly returning the antenna to service within just a week." Scheduled maintenance of high-tech equipment also took place while the antenna power was off, as well as a series of frequency and timing enhancements, an upgrade of data routers and the installation of a new safety rail. Credit: ESA / Suzy Jackson On 6 November, during the antenna maintenance, the New Norcia site was visited by Hon. Kim Beazley AC, formerly Deputy Prime Minister and current Governor of Western Australia. Large antennas are our only current way of communicating through space across vast What are we looking at? distances, and every now and then they need to be spruced up to ensure we can keep in touch with The New Norcia station in Western Australia is one our deep-space exploration spacecraft. of three deep-space dishes in ESA's ESTRACK network. Early this November, ESA's Deep Space Antenna in New Norcia, Australia, was subject to major New Norcia currently supports several flying maintenance, with a wide range of updates spacecraft such as BepiColombo, Cluster, Gaia, implemented to keep it in pristine order. Mars Express and XMM. It will also support many of ESA's future missions including JUICE, Solar To communicate with ESA's fleet of spacecraft, the Orbiter and Euclid. position of the antenna needs to be controlled with high accuracy. The huge 35-metre diameter You can now find out which spacecraft these construction relies on gearboxes to alter its antennas are talking to at any moment, as well as position, offering sweeping views of every inch of other dishes in the network, with ESTRACK now. -
Mars Pathfinder
NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mars Pathfinder Mars Pathfinder was the first completed mission events, ending in a touchdown which left all systems in NASAs Discovery Program of low-cost, rapidly intact. developed planetary missions with highly focused sci- The landing site, an ancient flood plain in Mars ence goals. With a development time of only three northern hemisphere known as Ares Vallis, is among years and a total cost of $265 million, Pathfinder was the rockiest parts of Mars. It was chosen because sci- originally designed entists believed it to as a technology be a relatively safe demonstration of a surface to land on way to deliver an and one which con- instrumented lander tained a wide vari- and a free-ranging ety of rocks robotic rover to the deposited during a surface of the red catastrophic flood. planet. Pathfinder In the event early in not only accom- Mars history, sci- plished this goal but entists believe that also returned an the flood plain was unprecedented cut by a volume of amount of data and water the size of outlived its primary North Americas design life. Great Lakes in Pathfinder used about two weeks. an innovative The lander, for- method of directly mally named the entering the Carl Sagan Martian atmos- Memorial Station phere, assisted by a following its suc- parachute to slow cessful touchdown, its descent through and the rover, the thin Martian atmosphere and a giant system of named Sojourner after American civil rights crusader airbags to cushion the impact.