Food and Drug Administration, HHS § 1308.33
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PPE Requirements Hazardous Drug Handling
This document’s purpose is only to provide general guidance. It is not a definitive interpretation for how to comply with DOSH requirements. Consult the actual NIOSH hazardous drugs list and program regulations in entirety to understand all specific compliance requirements. Minimum PPE Required Minimum PPE Required Universal (Green) - handling and disposed of using normal precautions. PPE Requirements High (Red) - double gloves, gown, eye and face protection in Low (Yellow) - handle at all times with gloves and appropriate engineering Hazardous Drug Handling addition to any necessary controls. engineering controls. Moderate (Orange) -handle at all times with gloves, gown, eye and face protection (with splash potential) and appropirate engineering controls. Tablet Open Capsule Handling only - Contained Crush/Split No alteration Crush/Split Dispensed/Common Drug Name Other Drug Name Additional Information (Formulation) and (NIOSH CATEGORY #) Minimum PPE Minimum PPE Minimum PPE Minimum PPE Required required required required abacavir (susp) (2) ziagen/epzicom/trizivir Low abacavir (tablet) (2) ziagen/epzicom/trizivir Universal Low Moderate acitretin (capsule) (3) soriatane Universal Moderate anastrazole (tablet) (1) arimidex Low Moderate High android (capsule) (3) methyltestosterone Universal Moderate apomorphine (inj sq) (2) apomorphine Moderate arthotec/cytotec (tablet) (3) diclofenac/misoprostol Universal Low Moderate astagraf XL (capsule) (2) tacrolimus Universal do not open avordart (capsule) (3) dutasteride Universal Moderate azathioprine -
Comparison of the Effects of High Dose Testosterone and 19-Nortestosterone to a Replacement Dose of Testosterone on Strength and Body Composition in Normal Men
J. Steroid Biochem. Molec. Biol. Vol. 40, No. 4-6, pp. 607~12, 1991 0960-0760/91 $3.00 + 0.00 Printed in Great Britain Pergamon Press plc COMPARISON OF THE EFFECTS OF HIGH DOSE TESTOSTERONE AND 19-NORTESTOSTERONE TO A REPLACEMENT DOSE OF TESTOSTERONE ON STRENGTH AND BODY COMPOSITION IN NORMAL MEN KARL E. FRIEDL,* JOSEPH R. DETTORI, CHARLES J. HANNAN JR, TROY H. PATIENCE and STEPHENR. PLYMATE Exercise Physiology Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA and Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, U.S.A. Summary--We examined the extent to which supraphysiological doses of androgen can modify body composition and strength in normally virilized men. In doubly blind tests, 30 healthy young men received testosterone enanthate (TE) or 19-nortestosterone decanoate (ND), at 100mg/wk or 300mg/wk for 6 weeks. The TE-100mg/wk group served as replacement dose comparison, maintaining pretreatment serum testosterone levels, while keeping all subjects blinded to treatment, particularly through reduction in testicular volumes. Isokinetic strength measurements were made for the biceps brachii and quadriceps femoris muscle groups before treatment and 2-3 days after the 6th injection. Small improvements were noted in all groups but the changes were highly variable; a trend to greater and more consistent strength gain occurred in the TE-300mg/wk group. There was no change in weight for TE-100 mg/wk but an average gain of 3 kg in each of the other groups. No changes in 4 skinfold thicknesses or in estimated percent body fat were observed. -
Steroids 78 (2013) 44–52
Steroids 78 (2013) 44–52 Contents lists available at SciVerse ScienceDirect Steroids journal homepage: www.elsevier.com/locate/steroids Alternative long-term markers for the detection of methyltestosterone misuse ⇑ C. Gómez a,b, O.J. Pozo a, J. Marcos a,b, J. Segura a,b, R. Ventura a,b, a Bioanalysis Research Group, IMIM-Hospital del Mar, Barcelona, Spain b Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain article info abstract Article history: Methyltestosterone (MT) is one of the most frequently detected anabolic androgenic steroids in doping Received 21 May 2012 control analysis. MT misuse is commonly detected by the identification of its two main metabolites Received in revised form 28 September excreted as glucuronide conjugates, 17a-methyl-5a-androstan-3a,17b-diol and 17a-methyl-5b-andro- 2012 stan-3a,17b-diol. The detection of these metabolites is normally performed by gas chromatography–mass Accepted 10 October 2012 spectrometry, after previous hydrolysis with b-glucuronidase enzymes, extraction and derivatization Available online 2 November 2012 steps. The aim of the present work was to study the sulphate fraction of MT and to evaluate their potential to improve the detection of the misuse of the drug in sports. MT was administered to healthy volunteers Keywords: and urine samples were collected up to 30 days after administration. After an extraction with ethyl ace- Methyltestosterone Sulphate tate, urine extracts were analysed by liquid chromatography tandem mass spectrometry using electro- Metabolism spray ionisation in negative mode by monitoring the transition m/z 385 to m/z 97. Three diol sulphate LC–MS/MS metabolites (S1, S2 and S3) were detected. -
Degradation of Doping-Relevant Steroids by Rh. Erythropolis
In: W Schänzer, H Geyer, A Gotzmann, U Mareck (eds.) Recent Advances In Doping Analysis (15). Sport und Buch Strauß - Köln 2007 J. Grosse1), C. Rautenberg1), L. Wassill2), D. Ganghofner2), D. Thieme3) Degradation of doping-relevant Steroids by Rh. Erythropolis 1) Institute of Doping Analysis and Sports Biochemistry, D-01731 Kreischa, Germany 2) Amplex Diagnostics GmbH, D-80337 Munich, Germany 3) Institute of Legal Medicine, D-80337 Munich, Germany Introduction Former studies have shown that steroids are potential substrates for microorganisms [1]. As an example, the degradation of testosterone induced by Rhodococcus erythropolis was observed. The formation of 4-androstene-3,17-dione, 1,4-androstadiene-3,17-dione (boldione) and 1,4-androstadiene-17β-hydroxy-3-one (boldenone) was confirmed [2]. Consequently a potential endogenous origin of boldenone and its metabolites has to be taken into consideration for the evaluation of routine doping control samples revealing the presence of these substances at low concentration level [3, 4]. This work presents results obtained from further studies related to the microbial conversion of steroid substrates being relevant in doping analysis. For this purpose incubation by Rh. erythropolis was applied to examine the influence of structural variations (A/B-ring structure, substitution at position 17, conjugation) on the initial steps of the degradation pathway. Experimental Rh. erythropolis culture grown on agar plate “Mueller-Hinton” was utilised. Altogether 16 substrates (see table 1) were examined in this study. The experiments were carried out in a blank urine of a male infant spiked with 1 µg/mL of the selected substrate. Two aliquots of each sample were prepared, one control without addition and one „active“ sample with addition of bacteria solution, and incubated at 30°C for 24 hours. -
Determination of 17 Hormone Residues in Milk by Ultra-High-Performance Liquid Chromatography and Triple Quadrupole Mass Spectrom
No. LCMSMS-065E Liquid Chromatography Mass Spectrometry Determination of 17 Hormone Residues in Milk by Ultra-High-Performance Liquid Chromatography and Triple Quadrupole No. LCMSMS-65E Mass Spectrometry This application news presents a method for the determination of 17 hormone residues in milk using Shimadzu Ultra-High-Performance Liquid Chromatograph (UHPLC) LC-30A and Triple Quadrupole Mass Spectrometer LCMS- 8040. After sample pretreatment, the compounds in the milk matrix were separated using UPLC LC-30A and analyzed via Triple Quadrupole Mass Spectrometer LCMS-8040. All 17 hormones displayed good linearity within their respective concentration range, with correlation coefficient in the range of 0.9974 and 0.9999. The RSD% of retention time and peak area of 17 hormones at the low-, mid- and high- concentrations were in the range of 0.0102-0.161% and 0.563-6.55% respectively, indicating good instrument precision. Method validation was conducted and the matrix spike recovery of milk ranged between 61.00-110.9%. The limit of quantitation was 0.14-0.975 g/kg, and it meets the requirement for detection of hormones in milk. Keywords: Hormones; Milk; Solid phase extraction; Ultra performance liquid chromatograph; Triple quadrupole mass spectrometry ■ Introduction Since 2008’s melamine-tainted milk scandal, the With reference to China’s national standard GB/T adulteration of milk powder has become a major 21981-2008 "Hormone Multi-Residue Detection food safety concern. In recent years, another case of Method for Animal-derived Food - LC-MS Method", dairy product safety is suspected to cause "infant a method utilizing solid phase extraction, ultra- sexual precocity" (also known as precocious puberty) performance liquid chromatography and triple and has become another major issue challenging the quadrupole mass spectrometry was developed for dairy industry in China. -
Testosterone, Injectable
Clinical Criteria Subject: Testosterone, Injectable Document #: ING-CC-0026 Publish Date: 06/10/201909/23/2019 Status: ReviewedRevised Last Review Date: 03/18/201908/16/2019 Table of Contents Overview Coding References Clinical criteria Document history Overview This document addresses indications for the intramuscular (IM) and subcutaneous (SC) administration of testosterone injectables for the treatment of hormone deficient conditions. The following testosterone injection agents are included: • Testosterone cypionate intramuscular: Depo-Testosterone, generic testosterone cypionate • Testosterone enanthate: o Intramuscular: generic testosterone enanthate o Subcutaneous: Xyosted (auto-injector) • Testosterone undecanoate intramuscular: Aveed Testosterone is an androgen hormone responsible for normal growth and development of male sex characteristics. In certain medical conditions such as hypogonadism, the endogenous level of testosterone falls below normal levels. Primary hypogonadism includes conditions such as testicular failure due to cryptorchidism, bilateral torsion, orchitis, or vanishing testis syndrome; bilateral orchidectomy; and inborn errors in the biosynthesis of testosterone. Secondary hypogonadism, also called hypogonadotropic hypogonadism includes conditions such as gonadotropin-releasing hormone (GnRH) deficiency or pituitary-hypothalamic injury resulting from tumors, trauma, surgery, or radiation. In 2015, the Endocrine Society added the following amended recommendations: • Men with metabolic syndrome, who were previously unexamined by the 2010 Endocrine Society Clinical Practice Guidelines, may benefit from testosterone replacement therapy (TRT) based on improvements in biometrics and insulin sensitivity. Effects of TRT on similar endpoints in men with type 2 diabetes mellitus remain unclear; • Effects of TRT on erectile function, even in men refractory to phosphodiesterase type 5 inhibitors, and on quality of life in men with erectile dysfunction remain inconclusive (Seftel, 2015). -
Pharmacology/Therapeutics II Block III Lectures 2013-14
Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine -
Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-Like Cells
ORIGINAL RESEARCH ARTICLE published: 09 May 2013 CELLULAR NEUROSCIENCE doi: 10.3389/fncel.2013.00069 Supraphysiological doses of performance enhancing anabolic-androgenic steroids exert direct toxic effects on neuron-like cells John R. Basile1,2, Nada O. Binmadi 1,3, Hua Zhou1, Ying-Hua Yang1, Antonio Paoli 4 and Patrizia Proia1,5* 1 Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, MD, USA 2 Marlene and Stuart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA 3 Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia 4 Department of Biomedical Sciences, University of Padova, Padova, Italy 5 Department of Sports Science (DISMOT), University of Palermo, Palermo, Italy Edited by: Anabolic-androgenic steroids (AAS) are lipophilic hormones often taken in excessive Chao Deng, University of quantities by athletes and bodybuilders to enhance performance and increase muscle Wollongong, Australia mass. AAS exert well known toxic effects on specific cell and tissue types and organ Reviewed by: systems. The attention that androgen abuse has received lately should be used as an Agata Copani, University of Catania, Italy opportunity to educate both athletes and the general population regarding their adverse Aram Megighian, University of effects. Among numerous commercially available steroid hormones, very few have been Padua, Italy specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological *Correspondence: doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Patrizia Proia, Department of Sports Vitality and apoptotic effects were analyzed, and immunofluorescence staining and Science (DISMOT), University of Palermo, Via Eleonora Duse 2, western blot performed. -
JPET #105668 1 Induction of Rat Intestinal P-Glycoprotein By
JPET Fast Forward. Published on June 1, 2006 as DOI: 10.1124/jpet.106.105668 JPETThis Fast article Forward. has not been Published copyedited and on formatted. June 1, The 2006 final asversion DOI:10.1124/jpet.106.105668 may differ from this version. JPET #105668 1 Induction of rat intestinal p-glycoprotein by spironolactone and its effect on absorption of orally administered digoxin. Carolina I. Ghanem, Paula C. Gómez, María C. Arana, María Perassolo, Griselda Delli Carpini, Marcelo G. Luquita, Luis M. Veggi, Viviana A. Catania, Downloaded from Laura A. Bengochea and Aldo D. Mottino jpet.aspetjournals.org at ASPET Journals on October 2, 2021 Cátedra de Fisiopatología. Departamento de Ciencias Biológicas. Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. Buenos Aires. Argentina (CIG, PCG, MCA, MP, GDC, LAB). Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario. Rosario. Argentina (MGL, LMV, VAC, ADM). Copyright 2006 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on June 1, 2006 as DOI: 10.1124/jpet.106.105668 This article has not been copyedited and formatted. The final version may differ from this version. JPET #105668 2 Running title: Effect of spironolactone on P-gp expression and activity. Author for correspondence: Aldo D. Mottino, PhD Instituto de Fisiología experimental Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR. Suipacha 570. (S2002LRL)-Rosario ARGENTINA Downloaded from TE: 54-341-4305799 FAX: 54-341-4399473 E-mail: [email protected] jpet.aspetjournals.org Text pages: 28 Tables: 0 Figures: 4 at ASPET Journals on October 2, 2021 References: 39 Words in Abstract: 238 Words in Introduction: 501 Words in Discussion: 857 ABBREVIATIONS P-gp - P-glycoprotein; Mdr1 - multidrug resistance protein 1; MDR1 - human multidrug resistance protein 1; SL - spironolactone; Mrp2 - Multidrug resistance- associated protein 2; BBM - brush border membrane. -
Drugs Affectin the Autonomic Nervous System
Fundamentals of Medical Pharmacology Paterson Public Schools Written by Néstor Collazo, Ph.D. Jonathan Hodges, M.D. Tatiana Mikhaelovsky, M.D. for Health and Related Professions (H.A.R.P.) Academy March 2007 Course Description This fourth year course is designed to give students in the Health and Related Professions (H.A.R.P.) Academy a general and coherent explanation of the science of pharmacology in terms of its basic concepts and principles. Students will learn the properties and interactions between chemical agents (drugs) and living organisms for the rational and safe use of drugs in the control, prevention, and therapy of human disease. The emphasis will be on the fundamental concepts as they apply to the actions of most prototype drugs. In order to exemplify important underlying principles, many of the agents in current use will be singled out for fuller discussion. The course will include the following topics: ¾ The History of Pharmacology ¾ Terminology Used in Pharmacology ¾ Drug Action on Living Organisms ¾ Principles of Pharmacokinetics ¾ Dose-Response Relationships ¾ Time-Response Relationships ¾ Human Variability: Factors that will modify effects of drugs on individuals ¾ Effects of Drugs Attributable to Varying Modes of Administration ¾ Drug Toxicity ¾ Pharmacologic Aspects of Drug Abuse and Drug Dependence Pre-requisites Students must have completed successfully the following courses: Biology, Chemistry, Anatomy and Physiology, Algebra I and II Credits: 5 credits Basic Principles of Drug Action Introduction to Pharmacology a. Basic Mechanisms of Drug Actions b. Dose-response relationships c. Drug absorption d. Biotransformation of Drugs e. Pharmacokinetics f. Factors Affecting Drug Distribution g. Drug Allergy and Pharmacogenetics h. -
Table E-46. Therapies Used in Trials Comparing Hormone with Placebo Ar Est Study N Rxcat Dose Route Generic Trade M Dose Martin 1971 1 56 Plac Oral
Table E-46. Therapies used in trials comparing hormone with placebo Ar Est Study N RxCat Dose Route Generic Trade m Dose Martin 1971 1 56 Plac Oral Standar 2 53 EP seq 0.025 mg E + 1 mg P Oral mestranol + norethindrone d 3 56 EP seq 0.05 mg E + 1 mg P Oral mestranol + norethindrone High Campbell 1 68 Plac Oral 1977 2 68 Est 1.25 mg Oral conjugated equine estrogens Premarin High Baumgardner 1 42 Plac Oral 1978 2 42 Est 0.1 mg Oral quinestrol Estrovis Low Standar 3 35 Est 0.2 mg Oral quinestrol Estrovis d 4 37 Est 1.25 mg Oral conjugated estrogen Premarin High E-65 Ar Est Study N RxCat Dose Route Generic Trade m Dose Coope 1981 1 26 Plac Oral UltraLo 2 29 Est 0.3mg Oral piperazine estrone sulphate w Jensen 1983 1 90 Plac Oral estradiol + estriol + 2 41 EP seq 4 mg E + 1 mg P Oral Trisequens Forte High norethisterone acetate Foidart 1991 1 53 Plac VagPes Ortho-Gynest- 2 56 Est 1 mg VagPes estriol Low Depot Eriksen 1992 1 79 Plac VagTab 2 75 Est 0.025 mg VagTab estradiol Vagifem Low Wiklund 1993 11 1 Plac Patch 1 11 Standar 2 Est 0.05 mg Patch estradiol 2 d Derman 1995 1 42 Plac Oral Standar 2 40 EP seq 2 mg E + 1 mg P Oral estradiol + norethindrone acetate Trisequens d Saletu 1995 1 32 Plac Patch Standar 2 32 Est 0.05 mg Patch estradiol Estraderm d Good 1996 1 91 Plac Patch Standar 2 88 Est 0.05 mg Patch estradiol Alora d 3 94 Est 0.10 mg Patch estradiol Alora High Speroff (Study 1) 1 54 Plac Patch 1996 UltraLo 2 54 Est 0.02 mg Patch estradiol FemPatch w E-66 Ar Est Study N RxCat Dose Route Generic Trade m Dose Chung 1996 1 40 Plac Oral Standar -
The Combined Cardiac Effect of the Anabolic Steroid, Nandrolone And
ù1. v -¿. rlc) 77.- *n*hi.rnool oowol,ù*o ffi"/fu -lo *rn*(o fii'o fio¿o¿¿, /v&"ùún lonno **al cooaiæe';¿vfl"- oã. Benjamin D. Phillis, B.Sc. (Hons) Phatmacology Depattment of Clinical & Experimental Pharmacology Ftome Rd. , Medical School Noth Adelaide Univetsity ADEIAIDE SA 5OOO û.)r.'-*hr/7enveltîù Foremost, I would like to thank my two supervisors for the direction that they have given this ptojecr. To Rod, for his unfailing troubleshooting abiJity and to Jenny fot her advice and ability to add scientific rigour' Many thanks to Michael Adams for his technical assistance and especially fot performing the surgery for the ischaemia-reperfusion projects and for his willingness to work late nights and public holidays. Lastly I would like to thank my v¡ife for her extreme patience during the tumult of the last 5 years. Her love, suppoït, patience and undetstanding have been invaluable in this endeavout. Beniamin D. Phillis Octobet,2005 ADE,I-AIDE ii T*(¿t of Ao,t",tù DECI.ARATION I ACKNOWLEDGEMENTS il TABLE OF CONTENTS UI ABBREVIATIONS x ABSTRACT )ilr CÉIAPTER t-l Inttoduction 1-1 1.1 Background 1,-1, 1.2What ate anabolic stetoids? 7-1 1,3 General pharmacology of Anabolic steroids t-2 '1,-2 1.3.1 Genomic effects of anabolic steroids 1.3.2 Non-genomic effects of anabolic steroids 1-3 1.4 Clinical use of AS 1.-4 1.5 Patterns of AS abuse 1.-4 1.5.1 Steroid abuse by athletes 1.-+ 1.5.2 Stetoid abuse by sedentary teenagers r-6 1.5.3 Prevalence of abuse 1-6 1.5.4 Abuse ptevalence in Australia 1.-9 1.6 Cardiotoxicity of anabolic steroids r-9 1.6.1 Reduced cotonary flow 1.-1.1, 1,.6.2 Dtect myocatdial eff ects 1-1 5 1.6.3 Hypertension 1-21 1.7 Difficulties associated with anabolic steroid research 1.-24 1-25 1.8 The polydrug abuse Phenomenon 1.9 The pharmacology of cocaine 1-26 1.10 Pteparations 1-28 1-29 1.11 Metabolism lll 1-30 1.