A Case Study of Wildlife Roadkill in Malaysia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3.4 ORDER CARNIVORA Bowdich, 1821
3.4 ORDER CARNIVORA Bowdich, 1821 3.4.1 Family Ursidae Fischer, 1817 There are eight species of bears in the world: - American Black Bear Ursus americanus - Brown Bear Ursus arctos - Polar Bear Ursus maritimus - Sloth Bear Melursus ursinus - Spectacled Bear Tremarctos ornatus - Giant Panda Ailuropoda melanoleuca - Asiatic Black Bear Ursus thibetanus - Malayan Sun Bear Helarctos malayanus The last two species are the only members of the family Ursidae known in Southeast Asia. They differ from each other by their furs and body sizes and both are threatened with extinction (Nowak, 1991; Corbet & Hill 1992). Bears have relatively undeveloped carnassial teeth; narrow premolars, crushing molars with flat crowns and large robust canines. 127 3.4.1.1 Subfamily Ursinae Fischer, 1817, Plate 3(A1 to B3) As mentioned above, two genera and two species represent the subfamily Ursinae in Southeast Asia, namely: - Malayan Sun Bear (Figure 3.8, A), Ursus/Helarctos malayanus (Raffles, 1821) with the scientific name Ursu and synonym Helarctos is distributed in the south west of China, Assam, Myanmar, Vietnam, Peninsular Malaysia, to the islands of Sumatra and Borneo. It is the smallest of all bears found in the tropical rainforests of Southeast Asia. - Asiatic Black Bear (Figure 3.8, B), Ursus thibetanus Cuvier, 1823 is mainly localized in the Himalayas, Afghanistan to southern China, Myanmar, northern Thailand and Indochina. It has several alternative names including Asiatic Black Bear, Himalayan Black Bear, Moon Bear and inhabits mountain forests. Figure 3.8 Malayan Sun Bear (A) and Asiatic Black Bear (B) in Zoo Negara, Malaysia National Zoological Park. -
Evolutionary History of MHC Class I Genes in the Mammalian Order Perissodactyla
J Mol Evol (1999) 49:316–324 © Springer-Verlag New York Inc. 1999 Evolutionary History of MHC Class I Genes in the Mammalian Order Perissodactyla E.C. Holmes,1 S.A. Ellis2 1 The Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 2 Institute for Animal Health, Compton, Nr Newbury, RG20 7NN, UK Received: 17 November 1998 / Accepted: 7 April 1999 Abstract. We carried out an analysis of partial se- intracellular pathogens to cytotoxic T lymphocytes and quences from expressed major histocompatibility com- thus elicit an immune response. The MHC class I region plex (MHC) class I genes isolated from a range of equid varies in size and complexity between mammalian spe- species and more distantly related members of the mam- cies, most probably due to frequent expansions and con- malian order Perissodactyla. Phylogenetic analysis re- tractions of that area of the genome (Delarbre et al. 1992; vealed a minimum of six groups, five of which contained Vincek et al. 1987). In all examples studied to date genes and alleles that are found in equid species and one (mostly primate and rodent), between one and three group specific to the rhinoceros. Four of the groups con- genes are expressed and have antigen presenting func- tained only one, or very few sequences, indicating the tion—the classical class I, or class Ia, genes. All other presence of relatively nonpolymorphic loci, while an- genes in the region either are not expressed or have un- other group contained the majority of the equid se- known or unrelated functions—the nonclassical class I, quences identified. -
University of Florida Thesis Or Dissertation Formatting
UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens. -
Borneo, Malaysia) 2019 October 7Th-31St Lennart Verheuvel
Tripreport Sabah (Borneo, Malaysia) 2019 October 7th-31st Lennart Verheuvel www.shutterednature.com Sabah October 7th till October 31st. This was the second part of the trip I had planned to do after my studies were finished. Initially the plan was to go to Borneo for three months, I actually have asked for advice on the forum of Mammalwatching.com for that. Later I decided to change my mind and go for South-America, even later I decided to go for a combo: first three months South-America and then three weeks in Borneo. The road to Borneo was a long and bumpy one and I also ran into some difficulties during the trip, but in the end it was all worth it. The funny thing was that literally a week before my plane left, I still wasn’t sure if I could go, so looking back I’m really glad it all worked out. I travelled by myself but I did the first thirteen days of the trip together with Duncan McNiven and Debbie Pain from England and later we did our first five nights in Deramakot with Stuart Chapman and Nick Cox. It was nice searching for mammals (and birds) with these guys and it was really cool that the four of use managed to see Clouded Leopard together on one of the last nights of Stuart and Nick. I did fly on Tawau, which is not the nearest airport if you want to go to Danum but that was because I was first supposed to go with someone else, who backed out last minute and it was too expensive to change the destination. -
Mammals Seen at Taman Negara NP, Malaysia, 11
MammalsseenatTamanNegaraNP,Malaysia,11Ͳ16June2012 ByPaulCarter ThisreportliststhemammalsseenbymyselfandDaveSargeantonour5dayvisittoTamanNegaraNP.Wespent 4nightsintheKualaTahanareaandthen2nightsatSungaiRelau(seethenotesattheendofthereportonareas visitedandlogistics).Wesaw22mammals,125birdsand3snakes.Foranyqueriesandcorrectionsonthisreport [email protected]. Davesdetailedreportonthebirdrecordsisavailableathttp://norththailandbirding.com/.Birdsseenincluded LargeFrogmouth,BarredEagleͲOwl,JambuFruitDoveandGarnetPitta. MAMMALLIST EnglishandlatinnamesusedarethosegiveninthemammalSpeciesoftheWorldlist(version3)byWilsonand Reeder(2005):athttp://www.bucknell.edu/msw3/. Alternatecommonnames(fromAFieldGuidetotheMammalsofThailandandSouthͲeastAsiabyCMFrancis, 2008)areshowninbracketsinthelistbelow. 1ͲCommonTreeͲshrew(Tupaiaglis) 2012Ͳ06Ͳ12.KualaTahanvillage,atahouseneartheschool. 2ͲCrabͲeatingMacaque(Macacafascicularis)Ͳ(LongͲtailedMacaque) 2012Ͳ06Ͳ15.TahanHide. 2012Ͳ06Ͳ15.SungaiRelauArea,aroundtheNPChalets. 3ͲWhiteͲthighedSurili(Presbytissiamensis)(WhiteͲthighedLangur) 2012Ͳ06Ͳ13.KumbangHide;andthetrailtothehidefromKualaTerenggan. 4ͲBlackGiantSquirrel(Ratufabicolor) 2012Ͳ06Ͳ16.SungaiRelauArea;ontheNegeramTrail. 5ͲGrayͲbelliedSquirrel(Calloscuriuscaniceps) 2012Ͳ06Ͳ12.Mutiararesort.Verycommonherebutnotseenelsewhere. 6ͲPlantainSquirrel(Callosciurusnotatus) 2012Ͳ06Ͳ12.OnthetrackfromMutiararesorttotheCanopyWalkway. 7ͲBlackͲstripedSquirrel(Callosciurusnigrovittatus)Ͳ(SundaBlackͲbandedSquirrel) 2012Ͳ06Ͳ12.KumbangHide.Oneenteredthehideearlymorningsandtheevenings,afterfood.Photobelow. -
Lotus Wind Power Project
Initial Environmental Examination – Appendix H Project Number: 54211-001 March 2021 Document Stage: Draft Viet Nam: Lotus Wind Power Project Prepared by ERM Vietnam for Lien Lap Wind Power Joint Stock Company, Phong Huy Wind Power Joint Stock Company, and Phong Nguyen Wind Power Joint Stock Company as a requirement of the Asian Development Bank. The initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Biodiversity survey Wet season report Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam 7 July 2020 Prepared by ERM’s Subcontractor for ERM Vietnam Document details Document title Biodiversity survey Wet season report Document subtitle Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam Date 7 July 2020 Version 1.0 Author ERM’s Subcontractor Client Name ERM Vietnam Document history Version Revision Author Reviewed by ERM approval to issue Comments Name Date Draft 1.0 Name Name Name 00.00.0000 Text Version: 1.0 Client: ERM Vietnam 7 July 2020 BIODIVERSITY SURVEY WET SEASON REPORT CONTENTS Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam CONTENTS 1. -
Indonesia 24 September to 15 October 2013
Indonesia 24 September to 15 October 2013 Dave D Redfield Mammal Tour Picture: Sunda Flying Lemur (Colugo) with young by Richard White Report compiled by Richard White The story: 5 islands, 22 days and 52 mammals... A journey to a land where lizards fly, squirrels are the size of mice, civets look like otters and deer are no bigger than small annoying poodles...Indonesia! Where did this all begin...? In late June I was thinking of heading to Asia for a break. After yet another Tasmanian winter I wanted to sweat, get soaked in a tropical rain shower, get hammered by mosquitoes...I wanted to eat food with my hands (and not get stared at), wear sandals, drink cheap beer...and of course experience an amazing diversity of life. While researching some options I contacted my former employer and good friend Adam Riley from Rockjumper Birding Tours/Indri and he suggested I touch base with a client that I had arranged trips for before. The client (and now friend!) in question, Dave Redfield, has seen an aPD]LQJYDULHW\RIWKHZRUOG¶VPDPPDO species but, at that time, had yet to visit Indonesia. So, armed with a target list and a 22 day budget, I sat down and began researching and designing a tour in search of a select suit of mammal species for Dave. Time, terrain, concentration of species and cost were considered. We settled on a few days in mammal hotspots on Java, Sumatra, Borneo, Sulawesi and finally Bali, in that order. %DOLZDVDOVRFKRVHQDVDJRRGSODFHWRZLQGGRZQDIWHUµURXJKLQJLW¶ though the rest of Indonesia. It is also worth mentioning that Dave, realising that seeing all the ZRUOG¶Vmammals in the wild is an impossible target, does count mammals seen in captivity; the target list of species was thus not what one might have expected (for example, a Red Spiny Mouse was a priority but Babirusa was not). -
Indonesia Mammal Watching Trip Report
Indonesia Mammal Watching Trip Report This is a report of the wildlife (mostly mammals) observed on a trip to Indonesia by Ian Loyd (Reef and Rainforest Tours), Lorna Watson and Steve Morgan in late June and early July 2014. We visited TanjungPuting National Park in Indonesian Borneo in the first week and then teamed up with Steve Morgan, a friend and fellow mammal enthusiast for a long stay at Way Kambas National Park in southern Sumatra. The trip was an overall success with some superb wildlife seen but we also came away slightly frustrated by the poor views of unidentified cats. For species lists see the bottom of this report. Kalimantan We flew from London Heathrow to Jakarta via Abu Dhabi on Etihadand spent a night at the FM7 Resort Hotel on arrival. The next day we flew on Trigana Air to PangkalanBuun in southern central Kalimantan, Indonesian Borneo to spend four days exploring TanjungPuting National Park. Our guide Eddy was very knowledgeable, humorous and had excellent English. While exploring TanjungPuting we stayed at Rimba Eco lodge. The lodge is located in TanjungKeluang village and is ƚŚĞŽŶůLJĂĐĐŽŵŵŽĚĂƚŝŽŶŽƉƚŝŽŶŝŶƚŚĞƉĂƌŬŝĨLJŽƵĚŽŶ͛ƚǁĂŶƚƚŽƐůĞĞƉŽŶƚŚĞKlotokhouse boats. TanjungPuting TanjungPuting is the largest protected forest in central Kalimantan and covers 3,040 square km of lowland dipterocarp and peat swamp forest and is probably home to highest density (over 6000) of wild orang-utans in the world. The best wildlife viewing centres on Camp Leakey (2 hours upstream from Rimba Eco Lodge). Camp Leakey was set up in 1971 byLouis Leakey to support researchinto orang-utans and, over the years,scientists here have habituated andstudied hundreds of orang- utans.The chief researcher is BiruteGaldikas who, together with JaneGoodall and Dian Fossey, workedwith Leakey to form many of thecurrent theories on primate behaviour and biology. -
Analysis of Colubroidea Snake Venoms by Liquid Chromatography with Mass Spectrometry: Evolutionary and Toxinological Implications
RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2003; 17: 2047–2062 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcm.1148 Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications Bryan G. Fry1,2*, Wolfgang Wu¨ ster3, Sheik Fadil Ryan Ramjan2, Timothy Jackson1, Paolo Martelli4 and R. Manjunatha Kini2 1Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic 3010, Australia 2Department of Biological Sciences, Faculty of Science, National University of Singapore 119260, Singapore 3School of Biological Sciences, University of Wales, Bangor LL57 2UW, Wales, UK 4Veterinary Department, Singapore Zoo, Mandai Rd., Singapore Received 12 June 2003; Revised 7 July 2003; Accepted 9 July 2003 The evolution of the venomous function of snakes and the diversification of the toxins has been of tremendous research interest and considerable debate. It has become recently evident that the evo- lution of the toxins in the advanced snakes (Colubroidea) predated the evolution of the advanced, front-fanged delivery mechanisms. Historically, the venoms of snakes lacking front-fanged venom- delivery systems (conventionally grouped into the paraphyletic family Colubridae) have been lar- gely neglected. In this study we used liquid chromatography with mass spectrometry (LC/MS) to analyze a large number of venoms from a wide array of species representing the major advanced snake clades Atractaspididae, -
MAHS Care Sheet Master List *By Eric Roscoe Care Sheets Are Often An
MAHS Care Sheet Master List *By Eric Roscoe Care sheets are often an excellent starting point for learning more about the biology and husbandry of a given species, including their housing/enclosure requirements, temperament and handling, diet , and other aspects of care. MAHS itself has created many such care sheets for a wide range of reptiles, amphibians, and invertebrates we believe to have straightforward care requirements, and thus make suitable family and beginner’s to intermediate level pets. Some species with much more complex, difficult to meet, or impracticable care requirements than what can be adequately explained in a one page care sheet may be multiple pages. We can also provide additional links, resources, and information on these species we feel are reliable and trustworthy if requested. If you would like to request a copy of a care sheet for any of the species listed below, or have a suggestion for an animal you don’t see on our list, contact us to let us know! Unfortunately, for liability reasons, MAHS is unable to create or publish care sheets for medically significant venomous species. This includes species in the families Crotilidae, Viperidae, and Elapidae, as well as the Helodermatidae (the Gila Monsters and Mexican Beaded Lizards) and some medically significant rear fanged Colubridae. Those that are serious about wishing to learn more about venomous reptile husbandry that cannot be adequately covered in one to three page care sheets should take the time to utilize all available resources by reading books and literature, consulting with, and working with an experienced and knowledgeable mentor in order to learn the ropes hands on. -
Tapir Tracks Dear Educator
TAPIR TRACKS A Curriculum Guide for Educators 2 Tapir Tracks Dear Educator, Welcome to Tapir Tracks! This curriculum was created for classroom teachers and educators at zoos and other nonformal science learning centers to enable you and your students to discover tapirs of the Americas and Asia. Because tapirs spread seeds from the fruits they eat, these little-known mammals are essential to the health of the forests they inhabit. However, tapir populations are rapidly declining. Loss of their habitat and hunting threaten tapir survival. An international team of scientists and conservationists works to study wild tapirs, manage the zoo-based population, protect habitat, and educate local communities. We collaborate through the Tapir Specialist Group, of the International Union for Conservation of Nature (IUCN) Species Survival Commission. This packet includes background information along with lesson plans and activities that can easily be adapted for kindergarten, elementary and secondary school students (grades K-12). An online link is included for you to download images and videos to use in your teaching: http://tapirs.org/resources/educator-resources. This toolkit is designed to enable you to meet curriculum requirements in multiple subjects. Students can explore the world’s tapirs through science, environmental studies, technology, social studies, geography, the arts and creative writing activities. We hope that by discovering tapirs through these lessons and engaging activities that students will care and take action to protect tapirs -
D:\Pindahan\Mydocuments D
Jurnal Biologi Indonesia 8(2): 247-254 (2012) Analisis Kariotipe Ular Trawang (Coelognathus radiatus, (Boie 1827)) Tony Febri Qurniawan, Tuty Arisuryanti & Niken Satuti Nur Handayani Fakultas Biologi Universitas Gadjah Mada Yogyakarta ABSTRACT Analysis of Radiated Ratsnakes (Coelognathus radiatus, (Boie 1827) Karyotype. Radiated ratsnake is a reptile which has an economic potential an export comodyty. However, there are few reports on genetic studies of radiated ratsnake. The aim of this research was to examine chromosome characters of the radiated ratsnake collected from Sewon, Bantul, Daerah Istimewa Yogyakarta. Chromosome preparation method used was splash using blood culture. The results revealed that the diploid chromosome number (2n) of radiated ratsnake was 30, classified as metacentric (chromosome pairs number 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, dan 11), submetacentric (chromosome pairs number 12 and 13), and telocentric (chromosome pairs number 14 and 15). Therefore the karyotype formula of radiated ratsnake was 2n = 2x = 30 = 22 m + 4 sm + 4 t. The result showed that the shortest of short arm chromosomes was 0 µm, the longest one was 0.665 ± 0.0504 µm, the shortest of long arm chromosomes was 0.268 ± 0.0011µm, the longest one was 0.746 ± 0.0059 µm, the shortest of total length chromosomes was 0.27 ± 0.001 µm, and the longest of total length chromosomes was 1.41 ± 0.045 µm. The R value was 5.267 ± 0.15408 indicating that radiated ratsnake from Sewon, Bantul, Daerah Istimewa Yogyakarta has chromosome variation size. Keywords: Coelognathus radiatus, blood culture, chromosome character, karyotype PENDAHULUAN serta dagingnya sebagai komoditas ekspor.