KAERI/RR-2035/99 KR0000196 M

Development of Environmental Radiation Protection Technology

Radioecological Studies on Terrestrial Food Chain Analysis for Accidental Release

7)

7|

31/ 40 KAER1/RR-2035/99

2=|

Development of Environmental Radiation Protection Technology

Radioecological Studies on Terrestrial Food Chain Analysis for Accidental Release

71 Please be aware that all of the Missing Pages in this document were originally blank pages n\

2000^

o| o|

0| o|

a

o|

0| I.

n.

16 tfltb

^ 71^ III. ifl-g-

~-S- Co-57, Sr-85, Ru-103, Cs-134) ^ H-3

D/B H

Sr-90

^ Rl Ill

tp#te

[opt

001 ^ '((« 005 ^

fr IbU-te

a ^

>9-«IAI -R

T

*AI 2. H-3

HT0

H-3 HTO -f 101000% TFWT > #71 > > TFWT

HTO H-3) ^ TFWT ^ TFWT 0.04-0.05% 6]^-ifl OBT ^ TFWT ^3Efi| 0.6-0.8% ^elA]

OBT OBT TFWT 0.01~0.4%

0.13-0.35%, 0.02-0.66%^!

3.

5.1

IV 10"2~ 2.1 xiO'1, fe- 2.4X10''1 1-8.5x10"" ^

6)^4

1 7}^ fe. 7.6-22.0%,

7.6xl0""4~9.7xl0""34 fe 1^ 99%

I 7> >i 1.6 /g 0.03-0.04 -Al z]- «-

^ < 6.5

4. ^ D/B

D/B 5 , Co, Sr, Cs, Ru f-)

s.^ visual Basic^- A °g^^- Visual Basic4 ^ o]s.^x]^ ACCESS ^^l-^4. D/B 5 RTRACK(Radionuclide TRAnsfer data for Crop plants of Korean 5.

Rr 5~6 ^iE^jL -fi-7]!- ^£- 2~3%

Cs-1373f Sr-90 ^£^ 44 4.5-13.4 Bq/kg-dry 0.7-2.5 # ^

^ Cs-1374 Sr- (m2/kg-dry)^ AA £°oHl 4^- 3.8xi0"5-2.0xl0"4 ^ 9.5XlO~5~6.5x 10"4^] ^^^ Sr-90 ^*]^l^r7l- Cs-137 ^A

20-30 aflM- ^7>§l-^3l Sr-90^1 ^ 2-3 Cs-137 Q°]A^A Sr-90 ^^^^^4 0^^^ 2

^ Cs-1375] ^4- j/ej A4 Sr-90^] ^-f

2-3 afl ^S. fe^^-4 Sr-90^ ^-f 20-50 tifl ^£14 ^^4. Cs-137^ «l«ll 2|3L 20 tifl 3

30-70

VI 6. A>JL^^ *i|#i>J Yi^H! T^^r A*

fe 2.5X1O"5~8.3X 35-60%

45-61% ^S^^-M- Sr-90^1 ^-f 4.6x 10""33-2.4x

4-8 tifl ^ 50-150

7.

7]^

lysimeterl- V.

*}3L*}

D/B^r tB«J-o]4 Ef

SI4.

3%

vin SUMMARY

I . Project Title

Radioecological Studies on Terrestrial Food Chain Analysis for Accidental Release

II. Objectives and Importance

A lot of Korean people are concerned about the environmental safety issue of nuclear facilities including 16 nuclear power plants operating in Korea. Especially, because of the site characteristics that agricultural land is widely distributed in the vicinity of Korean NPPs, it is urgently required to have a capability of doing the environmental impact assessment and counter-measure implementation timely and realistically. When the terrestrial ecosystem is contaminated with radionuclides by an accidental release from nuclear facilities, contaminated crop plants would contribute to human internal exposure through food chain. Therefore, understanding the migrational behavior of radionuclides in the ecosystem and their pathways to human is necessary in predicting the environmental impact and implementing a reasonable counter- measure plan for human safety. Since plant contamination parameters of radionuclides are dependent on site-specific factors such as the meteorological condition, soil properties and agricultural practice, the generation of domestic data is quite important.

IX This study was carried out to experimentally analyze the direct contamination pathways of some major radionuclides in Korean staple food crops and produce domestic data on various model parameters concerning the plant direct contamination. Experimental studies were also performed for investigating root uptake by rice in soils collected around NPP sites to produce short-term and long-term site-specific transfer factors.

HI. Scope and Contents

For investigating the contamination pathways of major radionuclides in staple food crops, greenhouse experiments in which rice, Chinese cabbage and radish were exposed to mixed r radionuclides of Mn-54, Co-60, Sr-85, Ru-103 and Cs-134 and H-3 at different growth stages, were conducted to generate data on parameters concerning the direct contamination of those crops. Experiments of the exposure to iodine gas were also performed for rice and radish at their various growth stages to obtain contamination parameters of elemental iodine. Based on data obtained from the experiments mentioned above, a database program was constructed to make it possible to search parameter values for different radionuclides, crops and deposition times in an easy way and have an graphic output of the variation in the contamination parameter with deposition times. Paddy-field soils were collected from 5 or 6 places around Kori and Youngkwang NPPs and physicochemical properties and background radioactivity levels of the soils were investigated. Soil-to-rice transfer factors of Sr-90 and Cs-137 in the collected soils were determined for different RI application times. For Kori soils, transfer factors were also measured in the second year to investigate the yearly variation. In addition, the conceptual design of an automatized experimental greenhouse was performed to be used as a basic material for a detailed design for the construction in the future.

IV. Results

1. Analysis of the contamination pathway of mixed gamma radiomiclides in staple food crops

For rice, Chinese cabbage and radish, the plant interception factor showed little difference among applied radionuclides of Mn-54, Co-57, Sr-85, Ru-103 and Cs-134 and tended to increase as the application time approached the harvest. It increased very rapidly during the early part of growth and very slowly during the late part. The maximum value measured was 0.94 for rice, 0.87 for Chinese cabbage and 0.86 for radish. The remaining percentage at harvest varied with plants and radionuclides. As the application time approached the harvest, the value usually increased. For rice, the remaining percentage was highest in Ru-103 at the earliest application and in Cs-134 at the latest application while for Chinese cabbage and radish, it was highest in Cs-134 at the earliest application and in Ru-103 at the latest application.

XI Translocation factors decreased in the order of Cs-134 > Co-57 > Mn-54 > Sr-85 > Ru-103 for hulled rice seeds, and Co-57 > Cs-134 > Sr-85 > Mn-54 > Ru-103 for radish root. Difference in the translocation factor among radionuclides was by a factor of up to 500 in rice seeds and by a factor of up to 100 in radish root. Variation in the translocation factor with the application time was greater in hulled seeds than in radish root. Of the 5 radionuclides, Cs-134 showed the smallest variation. It was indicated that rain played an important role in determining the remaining percentage in Chinese cabbage and radish. The rain frequency turned out, however, not to significantly affect the remaining percentage in rice when the frequency difference was by a factor of less than 2. Tying the upper end of Chinese cabbage shortly before RI application reduced effectively radionuclide concentrations in the edible portion of the mature plant.

2. Analysis of the H-3 contamination pathway in staple food crops

HTO absorption coefficients in leaf, which are realtive TFWT (tissue free-water H-3) concentrations (percent of the average H-3 concentration in air moisture) in leaf at the end of 1 h exposure of crop plants to HTO vapor in an exposure box, were about 100% in rice but less than 50% in Chinese cabbage and radish. The absorption coefficient decreased in the order of leaf > stem > ear for rice, outer leaves > inner leaves for Chinese cabbage, and leaf > upper root > lower root for radish. The TFWT concentrations at harvest were lower than those at the end of exposure by factors of several hundreds to

xn several hundred-thousands. In the nighttime experiment for rice, absorption coefficients were in the range of 6—37% depending on plant parts and exposure times and dilution factors were also somewhat different from those in the daytime experiment. In the exposure experiments carried out a few days before and after rice heading, the leaf OBT (organically-bound H-3) concentration (Bq per m# of combustion water) at the end of exposure was about 1% of the initial leaf TFWT concentration but the leaf OBT concentration at harvest was only about 0.04 — 0.05% of the initial TFWT concentration. In ear at the end of rice exposure performed during the early seed development, OBT concentrations were 0.6 ~ 0.8% of TFWT concentrations, which were much higher than observed in exposure experiments made during the late seed development. The OBT production factor (percent ratio of the OBT concentration in the edible part at harvest to the initial leaf TFWT concentration) in hulled rice seeds was in the range of 0.01—0.4% depending on exposure times and highest when the exposure was made at the stage of an active seed development. The OBT production factor varied 0.1 3 — 0.35% in outer leaves of Chinese cabbage, 0.02 — 0.66% in inner leaves of Chinese cabbage and 0.1—0.3% in radish on the whole.

3. Analysis of the I gas contamination pathway in staple food crops

Absorption coefficients (deposition coefficients, i/g) of I gas (elemental iodine) for rice at its different growth stages were in the range of 5.1xl0"2-2.1xl0"1 in straw and 2.4xl0"1~8.5xl0"1 in ear. In both parts, the absorption coefficient was highest at the exposure made

Xlll on Aug. 18, a few days after heading. The absorption coefficient in ear was a little higher when the exposure was performed during the early seed development than when it was performed during the late seed development. In straw, however, no noticeable tendency was found about the difference in the absorption coefficient among exposure times. Remaining percentages of I gas at harvest were in the range of 7. 6—22.0% at the pre-heading exposures and in the range of 3.1—7.1% at the post-heading exposures. Even at the pre-heading exposures, early exposures resulted in the much higher percentage than an near-heading exposure. Translocation factors of I gas in hulled rice

—A — Q seeds were in the range of 7.6x10 —9.7x10 ' depending on exposure times. The lowest was observed at the latest exposure and the highest was observed at the exposure made shortly after heading. More than 99% of the remaining activity at harvest was contained in straw. At the early growth stage of radish, the absorption coefficient of I gas in leaves was 1.6 I /g while at the middle and late growth stages, the absorption coefficients in leaves were about 1.0 0,/g and those in the upper root were as low as 0.03 — 0.04 I /g. The retention coefficient (ratio of the amount contained in a plant part at harvest to the amount absorbed by the plant) of I gas in the upper root of the radish plant exposed to I gas 28 days before harvest, was 3.8x10 and that for the whole root was estimated to be not higher than 6.5x10" .

4. Establishment of D/B program for contamination parameters

A D/B program was constructed with the data on various contamination parameters obtained through our experiments.

XIV Soil-to-plant transfer factors, interception factors, remaining percentages and translocation factors of radionuclides (Mn, Co, Sr, Cs, Ru, etc.) were stored in the program and parameter values for different radionuclides, crop plants and deposition times can be searched for. The Visual Basic language was used for constructing the D/B program to promote a windows-based environment and the ACCESS program, which is well compatible with the Visual Basic, was used for data input. The D/B program was named "RTRACK (Radionuclide TRAnsfer data for Crop plants of Korea)."

5. Radioecological studies for paddy-field soils around NPP sites

The pHs of paddy-field soils collected from both Kori and Youngkwang sites were 5 — 6 and their organic matter contents were 2-3%. These properties are characteristic of the soil generated from weathering of granite, which is generally sterile and acidic. The soil concentrations of Cs-137 and Sr-90 are measured to be in the range of 4.5—13.4 Bq/kg-dry and 0.7-2.5 Bq/kg-dry, respectively. These activities belong to the general background levels in Korea. In Kori soils, soil-to-plant transfer factors (m /kg-dry) of Cs-137 and Sr-90 for hulled rice seeds were in the range of 3.8xlO~5 — 2.0xl0~4 and 9.5x10 5~6.5xl0~4, respectively, at the RI application made before transplanting. At the application made shortly before heading, the Cs-137 transfer factors increased by factors of 20 — 30 compared with the pre-transplanting application while the Sr-90 transfer factors increased only by factors of 2—3. As the result, Sr-90 had on an average 3—4 times higher transfer factors than Cs-137 at the

XV pre-transplanting application but to the contrary Cs-137 had 2 — 3 times higher transfer factors at the later application. At the application made shortly after transplanting, Cs-137 and Sr-90 transfer factors were in the range of 1.3xl0~4~4.5xl0"4 and 2.5xl0~4~7.1xl0~4, respectively. Trends of the variations in transfer factors with application times and the difference between radionuclides in Youngkwang soils were similar to those in Kori soils. The Cs-137 transfer factors for hulled rice seeds in Youngkwang soils were not significantly different from those in Kori soils but the Sr-90 transfer factors were on the whole slightly lower in Youngkwang soils than in Kori soils. Transfer factors of Cs-137 were about 2—3 times higher in rice straw than in hulled seeds but those of Sr-90 were about as great as 20—50 times higher in rice straw. Cs-137 transfer factors for straw were higher at the application made shortly before heading than at the pre-transplanting application by factors of up to 20 while Sr-90 transer factors showed no great difference. In straw, transfer factors of Sr-90 were 30—70 times higher than those of Cs-137.

6. Root uptake of Cs-137 and Sr-90 in the 2nd year following their deposition

In Kori soils, the transfer factors of Cs-137 for hulled rice seeds in the second year after RI application were in the range of 2.5x10"5 — 8.3xlO~5 resulting from the decrease by 35—60% of the first year values. In contrast, Sr~90 transfer factors showed little change. Also in straw, transfer factors of Cs-137 decreased to 45—61% of the 1st year to be in the range of 5.1x10 5~2.3x10 4 while those of Sr-90 changed

XVI little to be in the range of 4.6xl0~3~2.4xl0~2. Transfer factors for hulled seeds and straw in the second year were different between Cs-137 and Sr-90 by factors of 4~8 and 50-150, respectively, depending on soils. These difference between the 2 radionuclides were bigger than those in the 1st year.

7. Design of automatized experimental greenhouse

The conceptual design was performed for an experimental greenhouse with automatic weather control system to simulate weather conditions on real agricultural sites. Basic structure, specifications and requirements were given in the design. Also, the design concept of installing and managing large scale lysimeters has been established for the realistic simulation of the farm land. Requirements for climate factors were suggested so as to simulate weathers of the whole year in Korea.

V. Plan for the Use of Results

The experimental results regarding the direct contamination pathways of radionuclides for staple food crops would be used for the establishment of mathematical models for predicting the internal radiation dose of Korean people due to food consumption following an accidental release. The data on radionuclide behaviors in crop plants and the database program constructed would be helpful for universities and other institutes to study related topics.

XVll Soil-to-rice transfer factors obtained from experimental measurements with soils collected around NPP sites can be used for the prediction of radionuclide concentrations in rice when an accident occurs at a specific NPP site. The use of such site-specific data may contribute to the realistic impact assessment and promote residents' confidence in the assessment. These data would also provide useful information for a basic study on the behavior of the element in the soil-plant system and for the establishment of countermeasures for contaminated crop fields. The technology obtained through this study would be applied to assess the behavior of heavy metals and other toxic chemicals in ecosystem. Such applications would contribute to the good relationship between the nuclear industry and other fields worrying about environmental safety. The conceptual design of an automatized experimental greenhouse is going to be used as a basic material for a detailed design for the construction in the future. The greenhouse will make it possible to realistically simulate agricultural sites so the research using it will increase the reliability of data and reduce the uncertainties of our knowledge on the radionuclide behaviors in the terrestial ecosystem.

xvm CONTENTS

Chapter I . Introduction 1

Section 1. Objective and Importance of the Project 3

Section 2. Scope and Contents of the Project 4

Chapter n. State of the Art 7

Section 1. State in Foreign Countries 9

Section 2. State in Korea 13

Chapter IE. Contents and Results of the Research 15

Section 1. Analysis of the Contamination Pathway of Mixed Gamma Radionuclides in Staple Food Crops 17

1. Background and scope 17

2. Materials and methods 18

A. Culture of test crops 18

B. Application of RIs 20

C. Sampling and measurement 24

D. Calculation of contamination parameters 25

xix 3. Results and discussion 26

A. Interception factors of radionuclides 26

B. Remaining percentage in the mature plant 34

C. Translocation factors of radionuclides 46

D. Effect of rain 50

E. Effect of tying the upper end of Chinese cabbage 57

Section 2. Analysis of the H-3 Contamination Pathway in Staple Food Crops 61

1. Background and scope 61

2. Materials and methods 62

A. Culture of test crops 62

B. Plant exposure to HTO 62

C. Sampling and measurement 64

3. Results and discussion 65

A. Meteorological condition and atmospheric

HTO concentration in the exposure box 65

B. Growth of crop plants 70

C. TFWT concentrations 74

1) Grain crop 74

2) Leafy vegetable 88

XX 3) Root vegetable 93

D. OBT concentrations 93

1) Grain crop 93

2) Leafy vegetable Ill

3) Root vegetable Ill

Section 3. Analysis of the I gas Contamination Pathway in Staple Food Crops 117

1. Background and scope 117

2. Materials and methods 117

A. Culture of test crops 117

B. Plant exposure to I gas 118

C. Sampling and measurement 120

D. Calculation of contamination parameters 120

3. Results and discussion 121

A. Contamination parameters of I gas in grain crop 121

1) Meteorological condition and atmospheric

I gas concentration in the exposure box 121

2) Growth of the crop plant 123

3) Absorption coefficient of I gas 123

4) Remaining percentage in the mature plant 126

xxi 5) Translocation factor of I gas 128

B. Contamination parameters of I gas in root vegetable 128

1) Meteorological condition and atmospheric I gas concentration in the exposure box 128

2) Growth of the crop plant 132

3) Absorption coefficient and retention factor 132

Section 4. Establishment of D/B Program for Contamination Parameters 135

1. Contents and approach 135

2. Result 135

Section 5. Radioecological Studies for Paddy-Field Soils around NPP Sites 140

1. Background and scope 140

2. Materials and methods 141

A. Collection of paddy soils 141

B. Rice culture 141

C. Application of RIs 145

D. Sampling and measurement 145

E. Calculation of transfer factor 146

XXll 3. Results and discussion • < 146

A. Properties of paddy soils around NPP sites 146

B. Soil-to-plant transfer factors of Cs-137

and Sr-90 • • 146

1) Transfer factors for hulled rice seeds 146

2) Transfer factors for straw 154

Section 6. Root Uptake of Cs-137 and Sr-90 in the 2nd Year following Their Deposition 154

1. Background and scope 154

2. Materials and methods 159

3. Results and discussion • 159

A. Transfer factors for hulled rice seeds in the 2nd year 159

B. Transfer factors for straw in the 2nd year 161

Section 7. Design of Automatized Experimental Greenhouse 161

1. Contents and approach 161

2. Result 163

A. Overview 163

B. Structure of greenhouse 163

XXlll 1) The 2nd story 163

2) The 1st story 165

Chapter IV. Accomplishment and Contribution of the Project 167

Chapter V. Conclusion 171

Section 1. Summary of Results 173

Section 2. Plans for the Use of Results 174

Chapter VI. References 175

Appendix A : Program file of the RTRACK 187

XXIV an PS- • 1

^ ^^ 3

ifl-g- ^ ^^ 4

^7111: ^% 7

^7} 9

^7]- 13

15

«ll^ 17

1. 17

2. 18

18

....20

4. 24

25

XXV 3. ^ ^ 5L% 26

7\. y<^H s-9f^ *\#AiT 26

34

46

50

57

-# H-3 ^.^^S. sfl^ 61

1. ^^wfl^ ^ $3 61

2. ^flS ^ ^-^ 62

7>. ^^^-# ^^ 62

M-. ^#^| HTO 3£)^ 62

rf. A]£ ^fl#] ^ tij-A}^ £.3 64

3. €4 ^ jl# 65

7>. 5i|^-^>vfl 7l^>^^i ^ ^7]^ HTO ^£ 65

14. 3-#^ ^^- 70

4. 3-#*IN TFWT ^£ 74

1) ^^3)-# 74

2) <^ir 88

3) esfl-fF- 93

XXVI OBT ^£ • 93

1) ^*Hi- 93

2) M^- Ill

3) ^flit Ill

^M*H- I 7}^ SL<$?§£. n^ 117

1. ^^afl^ ^ U41 117

2. ^flS ^ y<^ 117

7}. 21-1: ^-^ 117

4. ^is *m ^ ^^ 120

3. 14 ^ JL% 121

7}. ^•^•^•i- I 7}£L _£. <££!*}- 121

L) -^H -~t o ^r '\ o -*— •T! ^ o -^1 6 1 ^r-—- o ——J ±£i±

2) 4#^]sl ^^ 123

3) I 7}^ ^^r^l^r 123

4) I 7>i ^^-4 126

5) I 7}^ ^i^-^l^r 128

4. e^ll-W- I 7>>i ^.^^1^} 128

xxvii 2) 4#*)1^1 AS^ 132 3) I 7}+ ^7)}^ ^ ^BMi^r 132

D/B *rti 135

1. 135

2. 135

^^ 140

1. 140

2. 141

> 141

14. ^o) ^.^ 141

4. RI *i s] 145

^ 145

146

3. 146

146

. S'S-^-l-^l Cs-137 ^ Sr-90 ^H^ 146

1) ^t^jA]^ #ol7fl^ 146

2) ^^

XXVlll 154

1. 154

2. 159

3. 159

7\. 159

161

161

1. 161

2. 163

7\. 163 M-. 163 I) 163

2) 165

167

171

7^ 173

174

xxix 175

A : RTRACK51 ^S.H$ 4^ 187

XXX S. 1. ^till^M ^ 15cm £<££] #2]-3W9 s^ 19 (Physical and chemical properties of top 15cm soil in the culture box)

2. ^£| «?^ *r#31^1 tfitb °14^1 7l^£ 33 (Percent of the total plant interception that was contributed by the rice ear)

: 35 (Biomass production of rice at harvest)

4. tifl^^l ^r^H ^

5. ^ ^3-A] A^^^- 37 (Biomass production of radish at harvest)

3. 6. *]<*}*] «|#1 ^eH^HI 4# «:^^1 ?1^^7l • 43 (Weathering half lives of the radionuclides applied to the rice plant at 6 different times during its growth)

S. 7. tifl^MH «|#1 *13A17H ^^ ^^^I^^^-7l 44 (Weathering half lives of the radionuclides applied onto the aerial part of Chinese cabbage at 5 different times before harvest)

XXXI 8. ^H ^l ^e)A]7li 4-E- ^^47^^7) 45 (Weathering half lives of the radionuclides applied to the radish plant at 5 different times before harvest)

| ^) ] ^ 51 (Distribution of the radionuclides in different parts of the rice plant at harvest)

10. ^7}x] 7j-4- ^#^1 ?Hr^ 53 (Percent of initial plant deposition that remained at harvest after 2 different simulations of rain frequency)

11. ¥7H 7j-ftil£6)l *X6\*\ T$A}S§ ?fl^^ #%v #^n^r 54 (Translocation factors of the radionuclides after 2 different simulations of rain frequency)

& 12. #-f*^7l- n^ ^SH ^^^ ^s.^6fl V]T]^ c$tfr 55 (Effects of a simulated rain on the radionuclide levels in mature Chinese cabbage)

13. #-f*]£|7)- ^ ^43H ^^^ ^^-^ri ^]^1^

14. 3HM]]r ^4^ lri ll ^^ 58 (Effects of a simulated rain on the translocation factors of the radionuclides in mature radish root)

XXXll 15. *1]^M *}#o]l v)x}^ <$i£ 59 (Effects of tying the upper end of Chinese cabbage on the interception of the radionuclides by the plant)

16. n^$\ *l*lfe

17. ^ HTO 3|S.^A1 ^tifls°o^ t^-SH^ s.^ 63 (Physical and chemical properties of the soil used in the experiment of rice exposure to HTO)

18. v) HTO sj^l s]s.^>tfl 71^-2:^ ^ ^7] ^^-^ HTO ^£ 67 (Meteorological conditions and HTO concentration in the exposure box during each exposure of rice plants to HTO)

19. wfl^ HTO HTO ^5. 68 (Meteorological conditions and HTO concentration in the exposure box during each exposure of Chinese cabbage plants to HTO)

20. ^f HTO 3)^-^1 s|^-#;*|-ifl 7]^-^^ ^ ^-71 ^r^-f1 HTO ^S-SL 69 (Meteorological conditions and HTO concentration in the exposure box during each exposure of radish plants to HTO)

xxxm 21. a} HTO ^?>s)# *1?H 4# 4^1 TFWT SH^^r 85 (Dilution factors of TFWT in different parts of the rice plant exposed to HTO during the daytime at different growth stages)

22. a} HTO °)#s|^Al ^31 TFWT s)*Ml=r 89 (Dilution factors of TFWT in different parts of the rice plant exposed to HTO during the nighttime)

23. *fl^ HTO 3}s.A|7H n^ Jf^ TFWT £|^7fl^ 92 (Dilution factors of TFWT in different parts of the Chinese cabbage plant exposed to HTO at different growth stages)

3. 24. ^ HTO 3]s.Al7H tcj-s Jf

25. an 7}£ }J } h ^£ 122 (Meteorological conditions and h concentration in the exposure box during each exposure of rice plants to I gas)

26. I 7}+ z\&X\7)d\) rrfs y +^A] ^ 4^^ g^ 130 (Distribution of I gas in different parts of the rice plant at harvest)

XXXIV 27. ^ I 7}^ h ^H 131 (Meteorological conditions and h concentration in the exposure box during each exposure of radish plants to I gas)

3 28. I 7}di SHM^r 134 (Absorption of I gas by radish and percent remaining at harvest)

S. 29. ^ ^# fe £«9= ^^^1^ ^i 142 (Addresses of the sampling points for paddy-field soils around 2 NPP sites)

30. It si fe £<$£] 1-^-Sj-tv^ s>g ^ T$A}^ ^# 147 (Physical and chemical properties and radionuclide concentrations of paddy-field soils around Kori NPP)

31. •£# fe £°

3. 32. Jiel fc £°oH] 9X°]^ Cs-1374 Sr £^-€^ ^°1^1^ 150 (Transfer factors of Cs-137 and Sr-90 for hulled rice seeds varying with the times of the RI application to soils collected around Kori NPP)

XXXV 3. 33. . S^-^t ^°1 3l^r • 151 (Transfer factors of Cs-137 and Sr-90 for hulled rice seeds varying with the times of the RI application to soils collected around Youngkwang NPP)

3 34. JLB\ fe £°

35. °j# fe- £°

3. 36. JL5] fe £6 Cs-1374 S

£^-#^ ^o]^]^ 160 (Transfer factors of Cs-137 and Sr-90 for hulled rice seeds in Kori soils in the 2nd year after the RI application)

3 37. JIB] fe SooH]Ai S]B| 2 \!*1- Cs-1374 S £«#-#£ ^iol^l^r 162 (Transfer factors of Cs-137 and Sr-90 for rice straw in Kori soils in the 2nd year after the RI application)

XXXVI 21 (Scene of spraying crop plants with the solution of mixed 7 radioisotopes)

2. *HH 9^^x3ti>4+4S^e]=# 31SJ £A} 22 (Method of manipulating the spray for the exposure of plants to RI solution : 9 locations x 3 times+4 corners =31 shots)

3. ^^^] 313] ^-A}^O.S £AH «|^^ S^^^ ^^£ 23 (Uniformity of RI concentration distribution on the bottom of the exposure box when the spray was manipulated as in Fig. 2)

4. *\ ^Al7H ofs. youpj s^^ ^}^:^^ 27 (Interception factors of the radionuclides by the rice plant at different growth stages)

5. Hfl^ >$3-Al7H 4^ W§ ^^ ^^^l^r 28 (Interception factors of the radionuclides by the Chinese cabbage plant at different growth stages)

6. Jf *33-*l7H 4^ yov^H ^^ ^>^^1^ 29 (Interception factors of the radionuclides by the radish plant at different growth stages)

xxxvn 7. ^f- ^>«l|^-3i|^^^i>H ^£| ^^Hi 30 (Growth curves of the rice plant in the mixed y RIs experiment)

8. «v ^r^.^^oiH Hfl^.^ 4!#^Mi 31 (Growth curve of the Chinese cabbage plant in the mixed y RIs experiment)

9. ^ ^p}tn^ sj^g^^H ^ ^^ 32 (Growth curves of the radish plant in the mixed y RIs experiment)

10. ^^ ^H ^^ ^el^l7H n^-s ^^.A] sj}^ ^s.o. 38 (Percent of initial deposition that remained in the rice plant at harvest)

11. «lj^ ^H ^^ ^etA] oflA^ m^ ^-3.^. 39 (Percent of initial deposition that remained in whole leaves of Chinese cabbage at harvest)

12. wfl^ oflA^ ^^ ^^-^ 40 (Percent of initial deposition that remained in inner leaves of Chinese cabbage at harvest)

13. -ffi] W$ *A^ ^2l^l7li n^-s ^^-A] sfl^ #if..§. 41 (Percent of initial deposition that remained in the radish plant at harvest)

XXXVlll 14. 3|f^I ^e|^7li n^ #<£ ^31^ • 47 (Translocation factors of the radionuclides in hulled rice seeds for different times of radionuclide application)

15. ajf^I ^51^7]^ 4€- ^ tfe^- *l^l^r 48 (Translocation factors of the radionuclides in the upper root of radish for different times of radionuclide application)

16. *J]^1 n^^}7}o\] tr}--E ^ *}^ £^n^r 49 (Translocation factors of the radionuclides in the lower root of radish for different times of radionuclide application)

17. #ff- TFWT ^ *1:&^ OBT ^7]%*) 7^\^S. 66 (Schematic diagram of the system for removing residual TFWT and exchangeable OBT)

18. HTO 3t|a^^6j|A-1 v\$) ^^-^Ai 71 (Growth curves of the rice plant in the HTO experiment)

19. HTO ^l^^olH afl^ ^#^r# 72 (Growth curve of the Chinese cabbage plant in the HTO experiment)

20. HTO 3X]iH^oiH ^-^1 *M^& 73 (Growth curves of the radish plant in the HTO experiment)

XXXIX 21-1. v\ HTO ^r?}^^ if- Jf^l TFWT (31 ^-^ : 81 11

21-2. ^ HTO ^?}z\^ $• ^3! TFWT (sl^

21-3. v\ HTO ^r#s)^ ^ ^^ TFWT (3i|^-<§] : 81 21oa) 77 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 21)

21-4. v] HTO ^^>s)s. jpi ;»=Liflig TFWT (z\^°i • 8€ 25°^) 78 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 25)

21-5. tq HTO ^r#^s. J=L W.O^ TFWT m^-°4 • 8^ 28^) 79 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 28)

xl 21-6. *\ HTO ^^>5X]a J£ JjUflig TFWT (3]^^ : 9^ 1

21-7. *} HTO ^A^ $• ^31 TFWT (s|3-1J : 9€ 5^) 81 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Sep. 5)

21-8. ^ HTO ^r#3}s. ^ ^-^1 TFWT (SJ41J : 9^ 10^) • 82 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Sep. 10)

21-9. ^ HTO ^#3]s. ^ w.^^ TFWT (2)^13 : 9€ 191D 83 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Sep. 19)

22-1. ^ HTO ^>s)^ ^ ^fli TFWT } m^Q : 8€ 25O^) 86 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its nighttime exposure to atmospheric HTO on Aug. 25)

xli 22-2. ^ HTO ^m^l^- ^ ^t TFWT (^^ : 9€ 1«U) 87 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its nighttime exposure to atmospheric HTO on Sep. 1)

23. HTO 3z)S.Al7]ofl uHE- 3)3- 3^ afl*^ TFWT ^£ 90 (TFWT concentrations in the Chinese cabbage plant at the end of its exposure to atmospheric HTO at different growth stages)

24. HTO 3i)S-Al7H 4^ ^sa-A] nfl^vfl TFWT ^£ 91 (TFWT concentrations in the Chinese cabbage plant at harvest after its exposure to atmospheric HTO at different growth stages)

25. HTO 31S.A]7H] tt}-s. 3)3. 2)J=L ;o w.^^ TFWT ^£ 94 (TFWT concentrations in the radish plant at the end of its exposure to atmospheric HTO at different growth stages)

26. HTO 3)#AJ7H1 ^m ^*] ^ Jf^m TFWT ^£ 95 (TFWT concentrations in the radish plant at harvest after its exposure to atmospheric HTO at different growth stages)

27-1. ^ HTO ^#2)^ ^ ^'I OBT (8^ 11

xlii (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 11)

27-2. *\ HTO ^t}0\% ^ ^-^^ OBT (8-i 18^) 98 (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 18)

27-3. ^ HTO ^^r^^- ^ ^-^1 OBT (81 211D 99 (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 21)

27-4. *\ HTO ^r#^ $• ^t OBT (81 251D • 100 (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 25)

27-5. ^ HTO ^r#3j^- ^ ^-^^ OBT (81 28^) 101 (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 28)

27-6. *\ HTO ^r#3i|s. «i a.o^ QBT 102

xliii (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 1)

27-7. *\ HTO ^#3)s. $- ^1 OBT (9€ 5H) • 103 (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 5)

27-8. ^ HTO ^#2)^- $• ^fl! OBT (91 1011) 104 (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 10)

27-9. ^ HTO ^#s^ $- 43^1 OBT J (9€ 19H) 105 (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 19)

28. HTO 3|^Al7ll #<^^ OBT ^#31^ 107 (OBT production factors in hulled seeds of the mature rice for different exposure times to HTO - factors in % of leaf TFWT cone, at the end of exposure)

29-1. ^ HTO dR>s)^- is: «.ifligj OBT (8€ 2511) 108

xliv (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its nighttime exposure to HTO on Aug. 25)

29-2. v\ HTO 6)#3}^- ^^3! OBT (9-i 1

30. HTO 333-A1711 «fl^ ^SH OBT tftfl^s. 112 (Relative OBT concentrations in mature Chinese cabbage exposed to HTO at different growth stages)

31. HTO 3liH7]l Jf ^%X\ ^01^ OBT tftfl^s. 113 (Relative OBT concentrations in the upper leaves of mature radish exposed to HTO at different growth stages)

32. HTO 3Jj^A]7]l ^ ^la-A] o>^oi^ OBT tftfl^JE 114 (Relative OBT concentrations in the lower leaves of mature radish exposed to HTO at different growth stages)

33. HTO 3}#Al7Jt ^ ^3H Aj-e«.o) 0BT ^tfi^s. 115 (Relative OBT concentrations in the upper root of mature radish exposed to HTO at different growth stages)

xlv 34. HTO ^^A]7lt ^ ^SW ^e^ OBT tftfl^H 116 (Relative OBT concentrations in the lower root of mature radish exposed to HTO at different growth stages)

35. 3^#*>ifl *H-*H tfl^ I 7>i s)s- S-^E. •• 119 (Schematic diagram showing the exposure of rice plants to I gas in an exposure box)

36. I 7}^ 3)S.^^OI]A^ ^ /g^-^^ 124 (Growth curves of the rice plant in the iodine experiment)

37. I 7}+ s\&x\7]T£. *\$) I 7>i ^7\W • 125 (Absorption coefficients of elemental iodine in rice straw and ear for different times of their exposure to atmospheric h gas)

38. I 7}£: 3^171! v\ ^%X\ 2]-l-^ I 7}^ ^^-^r 127 (Percent of initial plant deposition of elemental iodine that remained in the rice plant at harvest)

39. I 7}+ 3]#Al7]l I 7}+$] #«£ ^^-^)^ 129 (Translocation factors of elemental iodine in hulled rice seeds at harvest)

40. I 7}+ 31)3-^ *{}*] ^-^ 4j#^l 133 (Growth curves of the radish plant in the iodine experiment)

xlvi 41-1. RTRACK3 2,7} Q^ 136 (Title screen of RTRACK)

41-2. RTRACK^ ^ $"$. 137 (Menu screen of RTRACK)

41-3. RTRACK^W £«§*!*> ^ 3^ 138 (Data output screen of RTRACK)

41-4. M q ^j^ } ^^l^^ m $t& 139 (Graph output screen of RTRACK)

42. Jiel NPP ^ fe £.<$ ^#1^1^ 143 (Sampling points for paddy-field soils around Kori NPP)

43. <£# NPP ^^ fe £,<& tft^Q 144 (Sampling points for paddy-field soils around Youngkwang NPP)

O 44. 3ie] fe- £ 6H 3X°]*} Cs-1374 Sr £^-€^- ^^1^]^ 152 (Transfer factors of Cs-137 and Sr-90 for hulled rice seeds in Kori paddy soils)

45. i $l]\ 4 ^ \^\}^

£<^-#^- ^ol^^ 153 (Transfer factors of Cs-137 and Sr-90 for hulled rice seeds in Younkwang paddy soils)

xlvii 46. jie] fc £°

47. <3# ^ £°

48. (A : ##, B : s>^) • 164 (Conceptual structure of the automatized experimental greenhouse / A : the 2nd story, B : the 1st story)

xlviii M

-1- B)

£

A}JL7}

fe 1950 3H-7SU [7-14] 7151

*]-%•

-3- Cs-1374

ifl-g-

-54, Co-57, Sr-85, Ru-103, Cs-134) ^ H-3

5Srf.

D/B s

-4- ^ 5~6 Sr-90

-5- -7- f:\-5L ^^^S.* ^^SV^- ^ ^^(compartment)

i=. 1950 Mn, Co, Sr, I, Ru, Cs ^^l tfl

EES. ^^8:

(interception factor, I)[1,5,11,19]S.

1 3.S.S. 4^3:711^7} ^-i*f^il ^l3L

14 4 CO2, HTO i

-9- Chamberlain[19]£ oil tf)sH 4^-4 ^

I = l-e"rYd (1)

r : retention coefficient (mVkg) Yd : dry vegetation density (kg-dry/m")

!-. yds}- ^1 ^# ^^-A]7H1 nj-sl- £Sl-7H ^4 i H t r &£• 2.3-3.3

weathering half-life)S. «fl#«l-jL $14.

Si 4.

(translocation factor)[5,27,28]i ^^11 Jg7>sluL 5£4.

TLF = (mVkg) (2) X

C : activity concentration in the edible parts at harvest

-10- (Bq/kg) X : activity retained on lm2 of foliage at the time of deposition (Bq/m2)

D TLF(a) = (unitless) (3) X

D : activity in edible parts of lm2 at harvest (Bq/m )

(2)4 (3)^

IAEA[15]*r

DAEC <+*> Riso ^11" 6l-§-*f^ ^5], le], ^, ^^^ ^)^^

^- Chernobyl

ECOSYS[1]<^1 ^^4^ 4

-11- S 3-1-31)* HTO ^ A] =§^ifl OBT(Organically-Bound Tritium) #

fe 1985Vi

. RESSAC

NIRS7> ^^§H ^[31-33]^ A]-=-^[23]^ ^*> iodine

A}JLA1 iodine^ ^ ^#^

^ Canada H-3

» 1950^1^

711 ^:^ls.s. ^fl^sl x>s.*

14* ^^r ^r ^4 €^^- oWH ^*S^ ^-fs. $1^4 tfl^-^ £^ilHH pot lysimeter ^ufl* 1-«H ^l^^^ ^14. °1

-12- RESSAC

Si4. 1980^^ ^ KAERIi^i ^5] Sr-90

^-4 ££ 71^71 4.

-13- ••"11 o :*

-15- chain)»

A}JL7}

-£-7}

-17- *}-#*Jj ^[5,6,39] Sfe Mn-54, Co-57, Sr-85, Ru-103, Cs-1341- aft- ^3-f1 ^r

spectrometry ^^.5. ^^1^-^°] 7>^§]-s.S tfM ^] ^^^^^

2.

z)-z]- 60 cm, 60 cm, 100 cm Si 1.3 m 3°1S. ^S^ Sl^i ^ 15 cm^l £°o^ 1-el-Sl-*^ ^-^^ a 14 ^ 1998^ 5^ 16^^ ^S-^^^l 2.1-

3 cm ^£ 3£J>H s>84. wfl^fe 1997V1 ^^. cup^l 4^ ^-^ 1999^ 8 (interception factor) AA 1 7T)*fl ^ 2 7pflS §V^JI ^^-Al i>f

•f ^^ ^^-^^ 3:A>£ Sf-)i^1^ £¥ ^>^ 4 fl r$ ^-^-«1S.(N : P: K = 21% : 17% : 17%) 14 g, £.q$ 36 g, £)«] 80 g^-

3

-18- 3. 1. *fl«fl#*H AoVJf 15cm S (Physical and chemical properties of top 15cm soil in the culture box)

pH O.M. T-N C.E.C E.C.(me/100g) (1:2.5) {%) (ppm) (me/lOOg) 1 (%) {%) (%) type Ca Mg K

I 5.1 1.56 904.7 3.3 1.38 0.36 0.67 73 23 4 Sandy I loam

O.M. : Organic matter, T-N : Total nitrogen, C.E.C. : Cation exchange capacity, E.C. : Exchangeable cation. P : K = 13% : 8% : 1%) 36 g, 30 g, £)*] 100 g 2-3

^ 2~3

Mn-54, Co-57, Sr-85, Ru-103, Cs-134^] 0.015 M HC1

5~70

90 cm, 90 cm, 130 cm^

[7,13,29] *- 50-80 ^ 31 9 3 aV^-^ 2 ^- 14 16 ml, 15-16 60 cm x 60 ^-^ petri dish* 34 . petri dish # zi 2}tfl ^£^}7> 1.6 a

Tj-f 6^ 22°^, 71 20°^, 8€ 11^, 81 2412, 91 91 25^(44

-20- (Scene of spraying crop plants with the solution of mixed y radioisotopes)

-21- 90cm

2.

^1 x =%• (Method of manipulating the spray for the exposure of plants to RI solution : 9 locations x 3 times+4 corners = 31 shots)

-22- : dps)

(Uniformity of RI concentration distribution on the bottom of the exposure box when the spray was manipulated as in Fig. 2)

-23- ^191 13U, 9€ 25U, 10€ 6

1.0-6.0 3-5 30 cm [ 3 4.

10^ 27°^

4.

12 6 ^t- 7 cm

^ 4 ^ 2 . 4 111

2~3

-24- 3.$= ^ ) lgH 4 16

w o>A>^ ^-^^ JL^H Ge ^# -spectrometry |AS ^A]§]-^4. A>-§-^ hardware^ software^ EG&G ORTECA} ^]^O1^JL TJl^A]^^ X\s-d\) ^ o.5~2 *]#

til interception factor)fe 4^-4 ^^ ^^-S

4#^1 ^^ (Bq) I = (4) ^ (Bq)

(R, %)£• 4^-4 ^-^ A-!«.

R = x 100 — (5) (Bq)

translocation factor)^ 4^-^- ^:^r *\°-

^ (Bq/plant) T = (6) (Bq/plant)

-25- 3.

7~9

0.86^1 ^^C-ll o] ft^o. A^ . Rauret ^

0.8°] 2}JL

47^ 2).

?§-f 25-28 Wm2[43], tifl 60 cm x 35 cm ~ 90 cm x 50 cm # 1 7fl^|, ^-^ ^-f 60

-26- o

c o "••—< Q.

•4—I c

Mn-54 --O- Sr-85 A-Ru-103 --V-- Co-57 Cs-134 0.4 120 100 80 60 40 20 Application time (days to harvest)

4. (Interception factors of the radionuclides by the rice plant at different growth stages)

-27- 1.0-

Chinese cabbage (10/27) 0.8-

0.6- C o a. 8 0.4-

—•— Mn-54 0.2- --O- Sr-85 (9/13) -A-Ru-103 -•V- Co-57 --X—Cs-134 0.0. 60 50 40 30 20 10 Application time (days to harvest)

5. (Interception factors of the radionuclides by the Chinese cabbage plant at different growth stages)

-28- 1.0

Radish (10/26) (11/3) 0.8-

0.6- c o s 0.4-

-•—Mn-54 0.2- (9/21) -O- Sr-85 •A-Ru-103 •V-- Co-57 -X--CS-134 0.0 60 50 40 30 20 10

Application time (days to harvest)

a (Interception factors of the radionuclides by the radish plant at different growth stages)

-29- JO i

LL

2-

0 160 140 120 100 80 60 40 0 Days to harvest

7. (Growth curves of the rice plant in the mixed 7 RIs experiment)

-30- 3000

Chinese Cabbage

0

Days to harvest

8. (Growth curve of the Chinese cabbage plant in the mixed y RIs experiment)

-31- 1200

1000-

15 800-

.S? 600 - CD

400-

200-

Days to harvest

9. (Growth curves of the radish plant in the mixed y RIs experiment)

-32- 3. 2. (Percent of the total plant interception that was contributed by the rice ear)

Application time Ear contribution to Plant interception3 (%) (days to harvest) Mn-54 Sr-85 Ru-103 Co-57 Cs-134

49 6.3 6.3 6.3 6.5 6.4

35 20.0 20.1 20.2 20.5 20.3

17 16.3 16.5 16.6 17.0 16.9

Activity deposited onto the ear x 100 Activity deposited onto the whole plant ~ 75 cm x 24 ~ 30 cm fe 33.3 Wm2, wfl^4 ^4 60 cm x 60 cm # 44 1 7fl*fl ^ 2

4-

§2)

4.

^- 4^ 4^ 2,7^0]}*]

5]

. Mn-54, Co-57, Sr-85, Ru-103, Cs-134^1 #^£: ^^l^i^ 44 19~47%, 17~43%, 19-42%, 23-62% ^ H-69%4 ^53:31 wfl^i^i^ ^sfla^ ^-f 44 12- 59%, 10-61%, 16-58%, 15-73% ^ 33-64%, ^°A^\ ^-f 44 1~ 36%, 3-37%, 2-35%, 0.4-46% ^ 14-40%^ ^^^^.^ ^^A^ Z|- 4 15-47%, 26-41%, 16-37%, 15-68% ^ 35-58%^

-34- 5. 3. (Biomass production of rice at harvest)

Application time Biomass production (g-dry/hill) (days to harvest) Total Straw a Hulled rice Chaff

112 82.3 46.7 29.1 6.5

84 72.5 42.3 24.6 5.6

62 58.1 36.2 17.8 4.1

49 57.5 35.1 18.3 4.2

35 62.2 36.3 21.4 4.5

17 58.6 33.2 21.1 4.3

including rachis. 3. 4. tifl^M ^^-A] (Biomass production of Chinese cabbage at harvest)

Biomass production (g-fresh/plant) Application time (days to harvest) WL IL IL/WL

51 2042 ±275 1736 ±249 0.85 ±0.007 1

1 39 1652 ±216 1393 ±218 0.84 ±0.022

28 1339 ±175 1100 ±170 0.82 ±0.019

17 1272 ±142 1040 ±137 0.82 ±0.017

7 1370 + 104 1103 ±101 0.80+0.013

WL : Whole leaves, IL : Inner leaves (without 6 outmost leaves) 5. 5. (Biomass production of radish at harvest)

Application time Biomass production (g-fresh/plant) Total Upper leaves Lower leavesa Upper rootb Lower root Whole root

55 1555 + 176 434 ±48 108 ±9 567 ±26 446 ±93 1013 + 120

42 1355 ±170 318 ±77 123 ±7 504+45 409 ±54 913 ±100

31 1165 ±136 298±67 114 + 17 431 ±56 321 ±30 752 ±86

20 919 ±152 283 ±84 104 ±7 279 ±55 254 + 7 533±62

12 952 + 140 265±5 118 + 14 264 + 86 305 ±36 569 + 122

6 downmost leaves b the above-ground part of the root g o Q. 0 TJ "(0

c

(D Mn-54 Q. — O- Sr-85 •Ru-103 -•V— Co-57 —X-Cs-134

120 100 80 60 40 20 Application time (days to harvest)

10.

(Percent of initial deposition that remained in the rice plant at harvest)

-38- 100

Chinese cabbage 80- c (Whole leaves) o

o a. 60-

co 40- x c Mn-54 CD O 20- --O- Sr-85 CD •-A-- Ru-103 Q. -V-- Co-57 yK C S-1 34

I 60 50 40 30 20 10 0 Application time (days to harvest)

li. n ••%*}

(Percent of initial deposition that remained in whole leaves of Chinese cabbage at harvest)

-39- 70

60- Chinese cabbage C .9 50- (Inner Leaves)

C0 o Q. 40- TJ "(0 ;- 30-

C 0) 20- (D Q_ Mn-54 -O- Sr-85 10- •V—Co-57 X—Cs-134

60 50 40 30 20 10 0 Application time (days to harvest)

12. w

(Percent of initial deposition that remained in inner leaves of Chinese cabbage at harvest)

-40- 100 —«— Mn-54 --O- Sr-85 -A- -Ru-103 --V-— Co-57 80- —X--CS-134 Radish c o

o 60- Q. 0 "O lo E 40- o •I—I c 20- a> Q_

60 50 40 30 20 10 Application time (days to harvest)

13.

(Percent of initial deposition that remained in the radish plant at harvest)

-41- 71171- ^14 15%

Cs-134^1 ^-^-^^l 7}% ^fXtoq- Bfl^fif 51 A] Cs-134^1

3

^11 ?} #^7l (weathering half life, Wt)^fe i7fl^S. ^7>§1-JI °JlaL n

[3,5,6,27]^-

Wt ^^ a 6-8*11 444 ^4. ol^^

6 Aarkrog[29]£ ^^-41 tfl^ ^4M 14 -^4^^ Sr-854 Wt7> Mn-54<>14 Cs-134

-42- 3. 6. } ] (Weathering half lives of the radionuclides applied to the rice plant at 6 different times during its growth)

Application time Weathering half life (d) (days to harvest) Mn-54 Sr-85 Ru-103 Co-57 Cs-134

112 47.2 46.9 52.7 43.2 35.6

84 44.5 40.2 49.7 33.7 44.1

62 42.3 39.6 40.9 40.5 42.1

49 32.8 31.8 46.4 31.5 49.4

35 27.9 27.1 35.0 27.3 39.2

17 15.8 13.7 24.4 14.1 32.1 7. (Weathering half lives of the radionuclides applied onto the aerial part of Chinese cabbage at 5 different times before harvest)

Weathering half life (d) Application time (days to harvest) Mn-54 Sr-85 Ru-103 Co-57 Cs-134

51 16.5+2.1 19.0 ±1.5 18.8 ±1.7 15.6 ±1.5 32.0 ±2.3

39 19.9 ±3.2 22.1 ±2.8 29.3 ±2.4 15.3 ±2.1 34.5 ±3.2

28 18.9+4.3 16.7 ±3.5 31.6 ±3.1 14.9 ±1.3 31.1 ±3.8

17 15.0+1.9 14.4 ±1.0 25.8 ±6.0 12.9 ±1.6 22.4 ±4.5

7 9.3 + 1.8 9.0±1.8 16.7 ±6.9 10.0 ±2.4 11.5±4.4 S. 8. (Weathering half lives of the radionuclides applied to the radish plant at 5 different times before harvest)

Weathering half life (d) Application time (days to harvest) Mn-54 Sr-85 Ru-103 Co-57 Cs-134

55 19.9 + 3.0 21.0±4.8 20.1 ±4.4 28.7+4.1 36.7 ±4.9

42 25.2 ±6.4 20.4 ±4.2 20.7 ±4.1 25.0 ±6.5 34.3 ±10.6

31 19.2 ±3.2 15.6 ±2.0 22.8 ±5.5 17.1 ±2.6 25.1+8.0

20 14.9 ±1.4 10.6 ±0.5 21.6 ±7.4 12.6 ±1.2 21.1 ±5.5

12 11.2 ±3.0 8.6 ±1.9 26.1 ±17.1 9.4 ±2.1 16.0 + 6.3 ISl Wt 3M: ^-§-*Br ^£ al^^H Wt S^ 14

Wt7> 25 H *]<$<$•£ l-[48-49]£. n ^°] Si4. ^^ ^^^l7li 44A^ ^^^0])^. Wt7>

4-

444 S Cs-134 > Co-57 > Mn-54 > Sr-85 ] ^ Ai^ t()s{|s. Co-57 > Cs-134 > Sr-85 > Mn-54 > Ru-1034 4. 45}Ai ^#^| ^i^i^ ^l^^^r Cs-134 t ^r &4. °^1 ^^-

44 ^^ 10-500 wfl

fe Cs-1347} ^ 6 f 45-55 til) ^4«]-fe ^^- 3511 . Aarkrog[8]£ ^4 S.e]i JSLaLt!: 4 $14. tt^, ^^^ Cs-134

$14[8,52].

-46- 1.0000

Rice

0.1000- o c o += 0.0100 o k.. .g ••••A c s "" / / 0

0.0010- —i^Mn-54 - --O- Sr-85 •A-Ru-103 A--... -•-V-- Co-57 ' A' --X--CS-134

0.0001 I I I I i 120 100 80 60 40 20 Application time (days to harvest)

14. (Translocation factors of the radionuclides in hulled rice seeds for different times of radionuclide application)

-47- 1x10° Radish V (Upper Root) v--... ••*— 1x10"1 -j O aO c o CD O 1x10- O U> c 2

1x10"3- Mn-54 --O- Sr-85 ...±...Ru-103 —-v— Co-57 Cs-134 1x10"' 60 50 40 30 20 10

Application time (days to harvest)

15. (Translocation factors of the radionuclides in the upper root of radish for different times of radionuclide application)

-48- 1x10° Radish (Lower Root)

x- o "6 c o += 1x10' O _o (/> c OB

1x10 - —•— Mn-54 --O- Sr-85 -A-Ru-103 --V-- Co-57 7K CS-134 1x10" 60 50 40 30 20 10

Application time (days to harvest)

16. (Translocation factors of the radionuclides in the lower root of radish for different times of radionuclide application)

-49- A] 71 ofl 45} ^~«J} Bfl

io

3 w 4

ECOSYS-87 44 2\2- 0.1 , SH4 ^ 2|j7 0.075 3:41" a^S-) ECOREA

^44 1- 44^3- SIA

2:A>tt 444 SI 4. Cs-134* 7-14 £^ ^4^

3.71)

RU-103 A] Sr Cs-134,

-50- (Distribution of the radionuclides in different parts of the rice plant at harvest)

Application time Plant % distribution (days to harvest) part Mn-54 Sr-85 Ru-103 Co-57 Cs-134

112 Straw 99.21 99.54 99.70 99.39 84.79 Chaff 0.52 0.34 0.28 0.25 4.46 Seed 0.27 0.12 0.02 0.36 10.75 84 Straw 99.61 99.74 99.93 98.44 82.29 Chaff 0.24 0.17 0.05 0.41 5.03 Seed 0.15 0.09 0.02 1.15 12.68 62 Straw 99.68 99.75 99.81 93.22 83.67 Chaff 0.25 0.19 0.13 2.02 4.50 Seed 0.07 0.06 0.06 4.76 11.83 49 Straw 91.30 91.14 96.45 83.43 77.10 Chaff 7.11 7.24 3.31 4.80 6.21 Seed 1.59 1.62 0.24 11.77 16.69 35 Straw 78.26 77.39 87.84 72.80 69.76 Chaff 17.91 19.37 11.40 11.22 10.04 Seed 3.83 3.24 0.76 15.98 20.20 17 Straw 83.18 79.54 92.20 85.84 84.17 Chaff 15.30 18.16 7.24 12.27 12.60 Seed 1.52 2.30 0.56 1.89 3.23 10 i=. tij-

2 ^

Sr-85, Ru-103 ^ Co-57°1

71 Mn-54 ^ 60%

Mn-547>

1.5-3.0 yfl, 1.3-2.7 12).

Cs7>

fe Co-574 Sr-857> 7H1" Cs-1347} 7}^- 4^4. Middleton[54]£ % #*}, ^«fl^i tfltb

13414 ^-^ 44 ^°1 7j-^-7>

-52- s. 10. ^7H ^ (Percent of initial plant deposition that remained at harvest after 2 different simulations of rain frequency)

T-V *. t TDT D • a Percent remaining at harvest (%) Date of RI Rain application Simulation A/TC>I OOC n ,m ^ cr, oio>i Mn-54 Sr-85 Ru-103 Co-57 Cs-134

July 20 Type A 27.1 23.5 31.0 17.8 26.7

Type B 31.0 30.2 38.6 23.1 29.2

Sep. 7 Type A 41.9 40.9 50.0 41.1 53.9

Type B 43.7 39.5 49.4 40.6 54.5

Type A denotes that the 6 hills of the plants were sprinkled with tap water at the rate of 4.5—6.0 i per 3—5 d and type B denotes that they were sprinkled in half the frequency. 11. (Translocation factors of the radionuclides after 2 different simulations of rain frequency)

Translocation factors Date of RI Rain a application Simulation Mn-54 Sr-85 Ru-103 Co-57 Cs-134

July 20 Type A 1.5 X1O~3 8.7 xlO"4 1.6 X1O~4 1.2 xlO"2 1.3 X10"1

Type B 2.4X10-3 9.0X10-4 1.3x10-4 1.5X10" 1.3x10"

Sep. 7 Type A 3.8 X10"2 3.2 xlO"2 7.6 xlO~3 1.6x10— 1 2.0X10-i

Type B 3.3 xlO"2 2.9 XHT2 6.1 x 10-3 1.5X10 1.8X10— 1

Type A denotes that the 6 hills of the plants were sprinkled with tap water at the rate of 4.5—6.0 i per 3~5 d and type B denotes that they were sprinkled in half the frequency. 3. 12. (Effects of a simulated rain on the radionuclide levels in mature Chinese cabbage)

Percent remaining at harvest {% Plant part Rain Mn-54 Sr-85 Ru-103 Co-57 Cs-134

Whole Simulated 35.3 ±8.6 31.1 ±7.8 54.0 ±3.9 27.1 ±3.4 53.4 ±4.9 leaves No 81.6 ±17.8 81.8 ±17.0 82.6 ±17.8 79.6+17.4 80.2 ±13.9

Inner Simulated 13.8 ±3.8 10.8 ±2.6 22.5 ±2.8 12.0 ±1.8 29.6 ±5.4 leaves No 29.5 ±7.1 29.4 ±7.8 30.2 ±7.8 32.3 ±7.6 41.4+11.9

Note : Foliar application of RIs was made 28 days before harvest. 13. y^ (Effects of a simulated rain on the radionuclide levels in mature radish)

Percent remaining at harvest {%) Rain Mn-54 Sr-85 Ru-103 Co-57 Cs-134

Simulated 31.0 ±9.7 23.7 + 7.4 24.3 ±7.2 30.7 ±9.8 41.8 ±11.7

No 58.4 ±8.0 58.1+7.5 55.3 ±7.0 60.5 ±7.6 60.9 ±7.9

Note '• Foliar application of RIs was made 42 days before harvest. 14

A] 71^1

4.

7^

42} 3~4 all 16 ^- 5.0}

-57- S. 14. (Effects of a simulated rain on the translocation factors of the radionuclides in mature radish root)

Translocation factor Rain - Mn-54 Sr-85 Ru-103 Co-57 Cs-134

Simulated 6.2 xlCf3 1.2 X10"2 5.3 xlO"3 3.8 xlO"1 3.1 x 1CT1

No 8.0 xlO"3 2.9 xlO"3 5.5 xlO"3 2.9 xKT1 2.3 xlO""1

Note : Foliar application of RIs was made 42 days before harvest. 15. Bfl^M} (Effects of tying the upper end of Chinese cabbage on the interception of the radionuclides by the plant)

Interception factors Tying Mn-54 Sr-85 Ru-103 Co-57 Cs-134

J, Yes 0.870 0.873 0.871 0.871 0.868 I

No 0.234 0.236 0.234 0.229 0.226

Note • Tying the upper end and foliar application of RIs were made 29 and 28 days, respectively, before harvest. S. 16. (Effects of tying the upper end of Chinese cabbage on the radionuclide levels in the mature plant)

Percent remaining at harvest (%) Plant part Tying Mn-54 Sr-85 Ru-103 Co-57 Cs-134

I 8 Whole Yes 66.7 ±11.8 70.4 + 12.8 84.6±16.8 70.7 + 12.7 74.2±14.0 leaves No 58.8+6.7 58.0+6.6 73.2 ±10.1 60.9 ±7.6 64.0 ±12.2

Inner Yes 9.4 ±2.4 9.1 ±2.6 12.6 ±4.5 11.9 + 2.5 13.6 ±3.0 leaves No 35.7 ±5.2 34.9 ±4.9 46.4 ±8.1 37.2 + 6.0 40.2 + 10.3

Note : Tying the upper end and foliar application of RIs were made 29 and 28 days, respectively, before harvest. H-3

H-3(T, tritium)^ f^S.3 ^*r3-, ^fl^e] ^ ^ ^ efl^

HT(tritiated hydrogen gas)4 HTO (tritiated water)^1 *§Efl5. *£•-#€ 4[60]. 6lir HTO^ #4 Qo) H'H HTOS.

tflA>3j-g-oifl 6)0% OBT(organically bound tritium, tritium)^. $*] 7}^]^^i ^Ms]JL[24,62J 4^^^ TFWT(tissue free-water tritium, y tritium)3. 4#^]^°1] ^^I«T7I1 €^[63]. t^sH H-3 o> OBT

TFWTfe- ^^-7l?>^ 5] 7] ^ OBT^r ^£7} 71^ «a^«»fl -B-^l^^ S1*H tfltb 0BT7> TFWT^-4 ^ wfl €- ^[64,65]^.^. ^A>S)^

•S. HTO ^7]^^- ^^^- 3f-g-^j AJ^-^^I^S. ^A"|§]-O} HTO TFWT sij^^lT1, OBT •*<§

-61- 2. *HM si

41 cm, ^|S. 33 cm, ^1 25 ^ «J}xFft- 33 30 cm"?]

-^-Sl-tT-^ 5. 174 a

1997^ 5^ 26^, 1998\i 5 1998^ 1999\1 6 ^r ^] 1

17% : 17%) 6.1 g, 4^3] 15 g, ^Mr^«l 50 gl- : P : K = 13% : 8% : 7%) 7.1 g, 5.9 g, 20 g^: 4.

HTO

4^-A] 44 ^^ ^44 ^yfl^>l- 58 cm (L) x 48 cm (W) x 120 cm (H)4 4^-^v4i ^^^#Ji 4^*1 ^^-4 afl^4 ^-4 ^-T- * 92 cm (L) x 92 cm (W) x 125 cm (H)4

21 «y, , 9 , 53

-62- 17. «j HTO (Physical and chemical properties of the soil used in the experiment of rice exposure to HTO)

pH O.M. T-N C.E.C E.C.(me/100g) (1:2.5) (%) (ppm) (me/lOOg) I (%) (%) (%) type Ca Mg K

Sandy 5.2 4.49 3233.2 7.9 1.37 1.06 0.20 46 50 4 J^f1^ Silty loam

O.M. : Organic matter, T-N : Total nitrogen C.E.C. : Cation exchange capacity, E.C. : Exchangeable cation. L 4612, 4312, 3912, 3512, 3012, 2112 3W&:n. °># s]4£ 81 25124 91 112(44 *r3- 4812, 4111 3)°1&-^ wfl^^) ^ 9^ 2312, 101 212, 101 1512 ^ 101 2712(44 ^r^- 5112, 4212, 2912, 1712 3), ijLSl ^-f 9^ 28°^, 101 712, 101 811, 101 1612, 101 2812, 111

fe- 81 14*13,

^"^-^ vfl.^ofl HTO . ^-^^ ^£ 7^)7]- HTO -g-^o]

•ir^l ipol ZL ^-z: $• 2 m^(m£^- ^^1 ^-f 9.25 MBq, ^fl^^-sl ^-f 12.3-18.5 MBq) Si HTO -§-^°l ^"?J -n-s]^^r 7>t^-^Hl ^:^ ¥31 60 £# 15~20 volt, 1-1.3 amp.^1 ^i^^l ^^^H 7>^4. 7}

^-7] 1.5 £1- ^^7} ^-^1 20 m^ scintillation viaH 1- 5 £ # l- ^1-g-

-64- 19971^ io-t 10 s. ^^^]A^ 1998^ io-t 1211 )*H 3 #7]*) Sfl^rSU afliMMl ^ ^ ^^ ^-f 1998^1

7 cm

TFWT ^£» #^ 5g-f 42 °C ff- TFWT^I- *l^r^ OBT»

^^^1^1 P205t- o]-%-^o\ ^r<£ # ^SAl^l Jf 0.1-0.5 g# ^l^ 711- ol-g.^^ ^^^.S- ^1-^4. 'i^ Al^^ ^St-^i^-^1 (Oxidizer 306, Canberra-Packard)* °l-g-^H ^^l?]3. ^^^ ^^^r* 20 ml scintillation viaH ^^4^4. ^^-^^^l^ H-3 z\^-& 92-95%

H-3 ^£^ 0^^l]^^^1^7](Winspectral 1414, Walac)S. ^-^*>^4. ^x\#g. 20-30 ^l&i tb ^S.» ^1 ^ 31#^H ^5^^- ^^5S4. OBT ^£^ TFWT s- AJ^-sfl ^# 1 g

3.

HTO

18-204

-65- Gas Desiccator Cooler Air 1 cooler -• - 15 °C inlet f sample

Washing with H2O (OBT exchange) (Ah• bubbling) Distilled water 1~2°C

(HTO trapping)

Air outlet in hood

I.I w.~ .re Pump (10 L/min)

17. #it TFWT ^ *1^ OBT (Schematic diagram of the system for removing residual TFWT and exchangeable OBT)

-66- a 18. «] HTO sl^H si^-^Hl 7}^. s^ ^ ^7] ^w.^ HT0 (Meteorological conditions and HTO concentration in the exposure box during each exposure of rice plants to HTO)

! Code of Date of TemperatureCC) Rel. humidity(%) Radiation(W/m ) HTO in air humidity(Bq/ml) Leaf TFWT exposure exposure Range Mean Range Mean Range Mean Range Mean at ho(Bq/ml)

Dl ll-Aug-97 32.2-34.1 33.1 81.3-88.1 85.1 116-606 371 134-8012 2979 47310 D2 18-Aug-97 29.7-41.9 34.8 79.9-89.6 86.7 619-682 655 2160-19985 14028 51132 D3 21-Aug-97 26.2-34.6 30.4 91.4-94.8 94.2 285-495 386 14798-146105 81310 56491 D4 25-Aug-97 27.6-34.7 30.7 76.5-90.9 89.5 248-549 441 10182-77690 55634 61661 D5 28-Aug-97 26.6-33.0 30.2 83.0-90.9 89.7 188-278 234 22093-152699 74173 44255

D6 Ol-Sep-97 27.7-32.6 30.2 88.3-92.5 91.7 267-384 326 21193-105764 63361 55534 D7 05-Sep-97 21.9-32.4 25.1 90.5-93.3 92.3 ND ND 1089-54553 32913 59239 D8 10-Sep-97 28.7-38.5 33.1 70.5-85.3 78.5 402-585 473 43056-89991 62972 65117 D9 19-Sep-97 22.9-42.5 34.5 49.7-74.1 61.4 ND ND 1414-98219 73213 60831

Nl 25-Aug-98 22.1-22.2 22.1 88.1-93.5 91.9 ND ND 2246-252194 142324 49421 N2 Ol-Sep-98 21.1-21.8 21.6 91.4-92.9 92.6 ND ND 13301-231110 136423 49787 3. 19. n^ HTO 3)4*1 ^4#*H) A$ 3^7d ^ ^7] ^£^ HTO (Meteorological conditions and HTO concentration in the exposure box during each exposure of Chinese cabbage plants to HTO)

„ , , „ . , Temperature(°C) Rel. humidity(%) Radiation(klux) HTO in air humidity(Bq/ml) T , ^T.^,™ Code of Date of Leaf TFWT exposure exposure „ A. „ .. „ .. „ A. at ho(Bq/ml) Range Mean Range Mean Range Mean Range Mean g Cl 23-Sep-98 23.6-31.9 26.8 76.1-88.6 85.9 27.6-71.1 42.4 5818-127931 86241 34035 I

C2 02-Oct-98 22.3-34.6 29.1 74.5-87.3 83.1 43.5-62.4 52.5 2672-55407 39332 18794

C3 15-Oct-98 24.1-34.5 30.4 51.3-87.2 77.4 52.8-70.4 60.5 6278-103266 62115 12269

C4 27-Oct-98 17.4-22.3 19.4 84.0-91.9 89.0 4.8-51.6 22.9 21415-289728 167081 13521 S. 20. Jf HTO s|^Al sl^-^l-ifl 7}# 2,?d ^ ^7] ^^ HTO (Meteorological conditions and HTO concentration in the exposure box during each exposure of radish plants to HTO)

r. , r r> 4. r TemperatureCC) Rel. humidity(%) Radiation(klux) HTO in air humidity(Bq/ml) T , ™^,™ Code of Date of _ Leaf TFWT exposure exposure _ .. _. „» n n^ r. AT at ho(Bq/ml) Range Mean Range Mean Range Mean Range Mean

Rl 28-Sep-99 28.2-39.8 34.5 70.1-77.0 73.8 39.2-63.2 54.4 2095-95036 58842 21341 cL R2 07-Oct-99 16.3-20.8 19.2 82.7-88.8 86.2 23.0-40.2 28.9 3013-141087 92498 28468 I

R3 08-Oct-99 22.4-33.7 28.5 72.9-83.3 78.0 25.3-68.6 48.2 9496-109353 77635 24863

R4 16-Oct-99 14.0-17.4 15.2 31.9-79.2 67.9 23.5-40.8 30.2 54328-772106 272353 39929

R5 28-Oct-99 22.6-31.0 26.9 65.2-71.5 69.8 33.3-47.0 40.1 14998-213151 167470 36739

R6 06-Nov-99 11.1-25.6 19.8 69.4-86.6 77.5 32.7-42.2 37.7 9280-187647 130368 42224 ^ 2-20 °C, 5~12 °C, ^ sj^Hl^H^ 3-15 °C ^5.

25.1-34.8 °C, tifl^^] ^-f 19.4-30.4 °C, ^^ 3-f 15.2-34.5 ^g^- 22 °C ^§3E.

0] ^-f 61.4-94.2%, wfl^ 3-f 77.4-89.0%, 67.9-86.2%^!

HTO ^S^Hfe- ^^^ HTO^I 6

44 «1, ^ 44

45

^ ^ 4 2 ^^> *H*J ^7>447l- ^r^ 4 40 7] Al^-^^JL ^^ 4 20 °a^^E-^ 7\^\ ^7f

-70- 10 —•— Fresh straw ••-•-•-•Dry straw Rice —o—Fresh ear 8- •Dry ear

6-

4-

2-

120 100 80 60 40 20 Days to harvest

18. HTO (Growth curves of the rice plant in the HTO experiment)

-71- 1200

Chinese cabbage 1000-

iS 800-

600- g

JZ 400-

200-

70 60 50 40 30 20 10 Days to harvest

19. HTO (Growth curve of the Chinese cabbage plant in the HTO experiment)

-72- 800

600-

Q.

D) *' 400 - 0

LL 200-

80 60 50 40 30 20 10 Days to harvest

20. HTO (Growth curves of the radish plant in the HTO experiment)

-73- 25

^^ ef 35 4 HB

4. 4#^l^fl TFWT

1) ^41-

HTO l ^ | TFWT 21-1-21-9 ^1^1 Jife 44 £4. TFWT^S

fe HTO ^^r^]^^] §1]^§>JI ho

^ 181D HTO

tfl^flS. 100% M]^^4. 61S.^] ^7]^ HTO vfl TFWT ^3E^r 1

ii|45. ^g. z)^. TFWT ^Efe tfl^ns. Sl^^i 7>^- fe&ai #7]^)^^ 7> . Diabate^ Strack[24]£ ^^ HTO ^713]^ . D3, D4, D5(^z]- 8€ 21 «y, TFWT

TFWT

-74- 1.0E+04

1.0E+03 c •2 1.0E+02 CO 1.OE+O1 o c o 1.0E+00

1.0E-01

DC 1 .OE-02

1.0E-03 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+04 i -leaves TFWT - D1 -stem 1.0E+03 = ear ( B : semi-log!

••£= 1.0E+02 i CO

1.0E+01

1.0E+00 i

I— 1.0E-01

CO 1.OE-02 =

1.0E-03 -200 0 200 400 600 800 1000 1200 1400 1600 1800 Time afterthe end of exposure (h)

21-1. «j HTO TFWT

(Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 11)

-75- 1.UC+U4 ; TFWT - D2 n leaves 1.0E+03 i A stem L cu^^^ (A : log- log) — •— ear j o 1.0E+02 |

2 1.0E+01 | •*-> 05 O 1 .OE+00 i C o o a 1.0E-01 i

1.0E-02 ] CD CC V 1.0E-03 i

H nr riA - 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+04 i — leaves TFWT - D2 •-stem 1.0E+03 i (B : semi-log) -• ear c o 1.0E+02 =

1.0E+01 o c: o 1.OE+00 o 1.0E-01

1.0E-02 cc 1.0E-03 i

1.0E-04 -200 0 200 400 600 800 1000 1200 140 Time after the end of exposure (h)

21-2. *} HTO TFWT ^

(Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 18)

-76- 1.0E+04 g

1 10 100 1000 1000C Time after the end of exposure (h)

1 .OE+04 a leaves TFWT - D3 A s te m d\ 1 .OE+03 ( B : semi-log) — «... ear C o 1 .OE+02

+-> 1.OE+01 c I o e 1.OE+00 ! f

1.OE-01 *0 ! Jp •A. 1.OE-02 • —-• -• 1.OE-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

21-3. *\ HTO TFWT

(Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 21)

-77- 1 .OE+04 leaves ! A s te m

1 .OE-03 1 10 100 1000 10000 Time after the end of exposure (h)

1.OE+04 i — leaves TFWT - D4 • — s te m ^ 1.0E+03 i - - ear c ~ 1 .OE+02 = CO

1.OE+O1 c o If. * 1.OE+OO =

1.OE-O1 03 -A 1 .OE-02

1.OE-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

21-4. ^ HTO TFWT 2511) (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 25)

-78- 1 .OE+04 ^ • leaves TFW T - D5 —A— s te m 1.0E+03 = (A : log-log) c •Ji 1.0E+02 =

g 1.OE+O1

1.OE+OO =

1.OE-O1 =

CO

1 10 100 1000 10000 Time after the end of exposure (h)

1 .OE+04 i

1.0E-03 -200 0 200 400 600 800 1000 1200 1400

Time after the end of exposure (h)

21-5. ^ HTO TFWT

(Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Aug. 28)

-79- 1.0E+04

1.0E+03 o\

1 .OE+02 tio n ( CO

1.0E+01

1.0E+00 Tconcen t

1.0E-01

DC 1.0E-02

1.0E-03 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+04

1.0E-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

21-6. *] HTO TFWT

• 9 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Sep. 1)

-80- 1.0E+04 a leaves TFWT - D7 A s te m o\ 1.0E+03 i ------ear

•B 1.0E+02 4 CO

1.OE+O1 ^A. c o 1.0E+00

1.0E-01 CD cc 1.0E-02 i

1 .OE-03 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+04 — leaves TFWT - D7 — stem 1.0E+03 i • - ear

C ~ 1.0E+02 = CO

1.0E+01 O c o 1.0E+00

1.0E-01 5

CC 1.0E-02 i

1.OE-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

21-7. *\ HTO TFWT ^ 51D (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Sep. 5)

-81- 1.0E+04 3 — leaves TFWT - D8 • — s te m 1.0E+03 ] - - ear

•S 1.0E+02 = CO

CD 1.0E+01 O c o ° 1.0E+00 =

1.0E-01 = CD 1.0E-02 =

1.0E-03 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1 .OE+04 i

5b 1.0E+03 = cz O 1.0E+02 -= a> 1.0E+01 O

1.0E+00 i

1.0E-01 CD 1.0E-02

1.0E-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

21-8. w] HTO TFWT

(Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Sep. 10)

-82- c •2 1.0E+02 CO

. 1.0E-01 i

1.0E-02 =

1.0E-03 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+04 • leaves ; TFWT - D9 £t s te m ^ 1.0E+03 — •• • • ear •2 1.0E+02 ] "c 1.0E+01 I c » o \ * I 1.0E+00 ° \ t i 1.0E-01 cr \ ^|s^ ^ 1.0E-02 : 1.0E-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

21-9. ^ HTO TFWT : 9 (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to atmospheric HTO on Sep. 19)

-83- 4 SH «l«fl 10 -100 all ^£44 ^^471-

10-20 TFWT

. TFWT ^ nfl 300-400

TFWT 45}

D2

7H1" 1998^ 2 ^l Ml TFWT 22-1 ^ 22-24 ^4.

TFWT

4^ 4^ §i, #4, TFWT ^ m 44 ^^tfl H-3 ^ 34.7%, 6.0%, 4 24 44 44 36.5%, 5.7%, 16.7%^ 7}^- 24 44ii4 alsi^ ELT\]

-84- S. 21. *\ HTO ^Q A4*17]^ 4€- ^Ht TFWT s (Dilution factors of TFWT in different parts of the rice plant exposed to HTO during the daytime at different growth stages)

TFWT dilution factor Date of exposure Leaf Stem Ear

Aug. 11 9.46 xiO4 1.62X10" Aug. 18 8.38 xio4 3.37 xiO3 1.07 xiO4 Aug. 21 1.94 xiO4 8.25 xiO2 4.13 xiO4 I 00 Aug. 25 1.19 xiO4 6.64 XIO2 2.30 xiO4 Aug. 28 1.79 xio4 1.25 xiO3 3.44 xiO4 Sep. 1 3.02 xiO4 2.10 XIO3 1.75 xiO4 Sep. 5 4.74 xiO4 2.84 xiO3 1.78 xiO4 Sep. 10 1.22 xiO4 7.96 xiO2 9.77 xiO3 Sep. 19 1.07 xiO4 5.83 XIO2 5.91 x 103

TFWT concentration at ho Leaf sheaths are included in stem. TFWT concentration at harvest 1.0E+03 a

1.0E-04 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+03 2 TFWT - N1 —•—Leaves I - -it- -Stem J_ 1.0E+02 = r ft --•••--Ear | q 1.0E+01 = I I

1.0E+00 ! • [ concentr a 1.0E-01 i l

IhW I 1.0E-02 : ^ T>T S

H e '"•-• • 1 .OE-03 i

1.0E-04 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

22-1. *] HTO TFWT 25°i) (Changes of TFWT concentrations in different parts of the rice plant with the lapse of time after its nighttime exposure to atmospheric HTO on Aug. 25)

-86- h- L

, TpWT H-3 ^5L$\ 0.0032%, 0.0039%, 0.0015%^JL, 2* 0.0067%, 0.011% ^ 0.0018%S. ol^^^fe i^sf 2*}

2~3

31^711 TFWT TFWT ^£ tfl

2~3 afl

2 till

2) *Q s

HTO H-3 TFWT ^. zj-z}- 23 ^ TFWT fe. 40-50%

12.0%, 12.4%, 5.4%i

TFWT ^£fe 23

TFWT ^£^ 3. 22. *\ HTO <>)?r3l4*l ^$1 TFWT 5^7)]^ (Dilution factors of TFWT in different parts of the rice plant exposed to HTO during the nighttime)

TFWT dilution factor a Date of exposure Leaf Stem b Ear

Aug. 25 1.10 xlO4 1.54 xlO3 3.02 xlO4 00

Sep. 1 5.47 xlO3 5.02 xlO2 9.11 x 103

TFWT concentration at ho TFWT concentration at harvest

Leaf sheaths are included in stem. 70

60- c o 50- ro Chinese cabbage ••-» c 40- CD O c o o 30-

20- a: 10-

i i 60 50 40 30 20 10 Exposure time (days to harvest)

y 23. HTO S)^A]7H 41- ^1^ ^l^- B^^ TFWT (TFWT concentrations in the Chinese cabbage plant at the end of its exposure to atmospheric HTO at different growth stages)

-90- 0.0030

0.0025 -|

o •^ 0.0020 -| Chinese cabbaqe c O c 0.0015- o o

LL 0.0010-

"0 0.0005-

0.0000 60 Exposure time (days to harvest)

24. HTO S^A^H 4€- ^^^l wfl^^fl TFWT (TFWT concentrations in the Chinese cabbage plant at harvest after its exposure to atmospheric HTO at different growth stages)

-91- 23. Hl)^ HTO sm-A)7]<% 4€- ^t TFWT 3 (Dilution factors of TFWT in different parts of the Chinese cabbage plant exposed to HTO at different growth stages)

TFWT dilution factor a uate oi exposuie Inner leaves Whole leaves Outer leaves b

Sep. 23 — 6.92 XlO5 1

1 Oct. 2 - 1.87 xlO5

Oct. 15 1.10 xlO5 1.73 XlO4 2.16 xlO4

Oct. 27 1.60xlO4 3.15 XlO3 3.99 XlO3

TFWT concentration at ho TFWT concentration at harvest b 6 outmost leaves 3)

44 ^S. TFWT ^^ 10-100 till ^S. fe&4Ui^ 25). TFWT 44 16 36%4 ^^s.

15^H TFWT ^H^- ^ Ml Si, 26).

4 TFWT TFWT ^ 44 40-120 TFWT Hfl 24

OBT

OBT 27-1-27-9^1 444 &4. OBT ^£^ 44

-93- 1x103 — Leaves Radish - Upper root 1x102- ••• Lower root

.O CO

0 1x1 OS o .*•—--* c o 1x10"1-

LL. 1x10"S (D 1x10'3-d

1x10"' 50 40 30 20 10 Exposure time (days to harvest)

25. HTO s|-s.Al 7H 4€- ^m- ^^ -¥• ^^It TFWT (TFWT concentrations in the radish plant at the end of its exposure to atmospheric HTO at different growth stages)

-94- 1.0x10" —&— Upper leaves --V- Lower leaves •A -Upper root —•— Lower root

1.0x10- Radish +

O 8 i- 1.0x10 -

5 1.0x10" i i i 50 40 30 20 10 0 Exposure time (days to harvest)

26. HTO S)4A]7H V^M. <^^X\ if- J^t TFWT (TFWT concentrations in the radish plant at harvest after its exposure to atmospheric HTO at different growth stages)

-95- 5. 24. ^ HTO sj^-A^H n}§ ^'t TFWT S)^31^r (Dilution factors of TFWT in different parts of the radish plant exposed to HTO at different growth stages)

TFWT dilution factor Date of exposure Upper leaves b Lower leaves b Upper root Lower root

Sep. 28 1.06 xlO6 1.06 xlOb 3.44 xlO4 3.66 xlO2 3.20 xlO5 5 7.27 xlO3 3.77 xlO1 ON Oct. 8 3.40 xlO I Oct. 16 1.45 xlO5 1.80 xlO5 1.00 xlO3 4.30X10° Oct. 28 5.11 xlO4 5.71 x 104 8.03 xlO2 4.80 X101 Nov. 5 8.75 xlO3 1.00 xlO4 1.03 xlO2 1.00X10°

TFWT concentration at ho TFWT concentration at harvest

1. based on the TFWT concentration in whole leaves at ho 2. Lower leaves are 6 downmost leaves. 1.0E+01 —D—Leaves OBT - D1 —&—Stem ------Ear c (A ;. log-log) --•--Seed o 1.0E+00 --o-- Chaff 03 "c CD O oc 1.0E-01 o

CD O _: 1.0E-02

1 .OE-03 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 —•—Leaves OBT - D1 - -*- -Stem •--•••- Ear (B : semi-log) --•--Seed --o-- Chaff

1.OE-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-1. «1 HTO OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 11)

-97- 1.E+01 D— Leaves —A— Stem \= OBT - D2 ---•--• Ear (A : log-log) --•--Seed O 1.E+00 : --O-- Chaff

CO c: o § 1.E-01 o

CD & A»_ O 5 DC

1.E-03 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

D—— Leaves OBT - D2 --A- -Stem - Ear (B : semi-log) — -• - -Seed c g O 1.0E+00 - —-O- - Chaff cd "c CD ..JO O 1.0E-01 i a I A* CD O i

1 0F-f)3 - -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-2. *\ HTO OBT ^

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 18)

-98- 1.0E+01 -•••--• Ear OBT - D3 --•--Seed c --O-- Chaff o (A : log-log) £ 1.OE+OO - -4-* CD o c o o . o 1.0E-01

CC

1.0E-02 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1 .OE+01 ---•--• Ear --•--Seed OBT - D3 c --o-- Chaff o (B '• semi-log)

£ 1 .OE+OO c CD o c o o o m o— .. — ..- o o o ~cB

-200 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-3. *\ HTO OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 21)

-99- 1.E+01 • •- - - Ear : oBT - D4 - -•-- Seed -o- • Chaff c o (A : log-log) 2 1.E+00 : C CD ; • • • O -••••- c o o o- - --O o 1.E-01 : -•

CD -

1.E-02 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 q ------Ear ; OBT - D4 — •• - -Seed d\ --o-- Chaff c (B : semi-log) o IS 1.0E+00 -

CD O c o o g::i_\ J—- o CO 1.0E-01 * "55 cc

1.0E-02 -200 200 400 600 800 1000 1200 1400 Time after exposure (h)

27-4. *\ HTO OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 25)

-100- 1.0E+01 q

...... Ear --•-- : oBT - D5 Seed — o- • Chaff (A : log-log) 1.0E+00 : --• *-••-• c : • • CD cO • • o o * -o I— CD 1.0E-01 : o ID •

1.0E-02 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

i.ut-HJl :

•--• -- Ear OBT - D5 --• - -Seed — • O--- Chaff o (B : semi-log) V-1 1.0E+00 : co "c CD o o- o o o 1.0E-01 : m oCD DC

1.0E-0? - -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-5. «J HTO OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Aug. 28)

-101- 1.0E+01 - Ear OBT - D6 -Seed (A : log-log) • Chaff

_g 1.0E+00 :

O O

§ 1.0E-01 i_

CC

1.0E-02 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 •--•--- Ear ; OBT - D6 --•--Seed --o-- Chaff (B : semi-log) o 1.0E+00 -

• • 0) o c o o >

CD 1.0E-01 o "55 az

1.0E-02 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-6. «l HTO ^r#^# ^ 4^1t OBT (9€ 111) (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 1)

-102- 1.0E+01 ------Ear : OBT - D7 --•--Seed --O-- Chaff o (A : log-log) "S 1.0E+00 •:

o c o o . _--o= • • •-— -a 1.0E-01

33 cc '. •"*

1.0E-02 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 r\ --••-•• Ear : --• --Seed o\ OBT - D7 -•o-- Chaff C (B : semi-log) O "2 1.0E+00 : "c CD o c o o £_ • *

CD 1.0E-01 : O : • "*-o 03 CC

1.0E-02 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-7. «J HTO $• OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 5)

•103- 1.0E+01 -••--Seed | : OBT - D8 --o-- Chaff I c .2 (A : log-log) '•4—1 _2 1.0E+00 : "c CD O c o : o _.• ( 1.0E-01 :

ID "o DC _- — -"•-"

1.0E-02 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 -••--Seed o\ OBT - D8 --o-- Chaff c O (B : semi-log) _g 1.0E+00 "c CD O O O

Q 1.0E-01 v

1.0E-02 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-8. ^ HTO -f OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 10)

•104- : --•--Seed 0 BT - D9 --o-- Chaff c o (A : log-log) 1.0E+00 :

CD O O O

CO 1.0E-01 : o •5

_. _ _*' 1 OF-0? - 0.1 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 --••-Seed ; OBT - D9 --0-- Chaff o (B : semi-log) 1.0E+00 :

CD O c o o I- Q 1.0E-01 cQc3

1.0E-02 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

27-9. HTO OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its daytime exposure to HTO on Sep. 19)

-105- TFWT ^£(Bq/mlH| tfltb 32:A]3.3 £4:^ H-3 (Bq/ml)3 ^^JL 44^&4[24]( <>]*}- sfl'MMI^S. 4^7H11 tf J£T3 2)4 ^s. 3^ ^3 OBT ^JE^ TFWT 1% ^3^47} 33 #4:SH ^SHife 0.04% 3 Diabate4 Strack[24]£ 1H tfl$ HTO ^7]31) OBT 4V^^£7} 1-1.2 % ^3ESS4JI iJl§l-^4. #713 OBT 10 Bfl

OBT ^tfl^JEfe- ^^ #4^71 3i)^](D3, D4, ^ 0.6-0.8%

TFWT ^£7> D3, D4, D5 ^^HH fl OBT ^£.TT

OBT ^H^

OBT o.Ol% ^1*1-^^-4 D6iAi ^ 0.4%3. ^iJl^JL ZL > i^ 0.03% ^£^4(^-^ 28 1 #^.o] 7H "

18 %vS)_ Diabate Strack[24]£ ^3 OBT ^l^^l^7> HTO s?#Al7H 44 €- r ^7))

3 ^-^€5. OBT3 ^-tfl^-Sl- 2:4^ ^^- ^-^ 29-1 U 29-2^1 44 4 ^4. OBT ^£^

-106- 0.5

0.4 -

0.3 - c g

2 0.2 Q.

CQ O Start of heading(8/14) 0.1 -

0.0 8/11 8/18 8/21 8/25 8/28 9/1 9/5 9/10 9/19 Date of exposure

28. HTO 2]4^7l^ €£<>) OBT ^ (OBT production factors in hulled seeds of the mature rice for different exposure times to HTO factors in % of leaf TFWT cone, at the end of exposure)

-107- 1.0E+01

1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 j Leaves OBT - N1 -Stem Ear B : semi-log) -•--Seed -O-- Chaff

1.0E-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

29-1. A HTO OBT

(Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its nighttime exposure to HTO on Aug. 25)

-108- 1.E+01 Leaves —&—Stem OBT - N2 Ear (A : log-log) c — - • --Seed o 1.E+00 --o-- Chaff 2 c CD O c 1.E-01 o o CO O

•CdD 1.E-02 : CC

1.E-03 1 10 100 1000 10000 Time after the end of exposure (h)

1.0E+01 Leaves S te m c\ OBT - N2 Ear (B : semi-log) -••--Seed O 1.0E+00 -•o-- Chaff CO

CD o o 1.0E-01 = o

CD O

CD 1.0E-02 -

1.0E-03 -200 0 200 400 600 800 1000 1200 1400 Time after the end of exposure (h)

29-2. *j HTO 6^^4 ^ Ml OBT (9€ 1^) (Changes of OBT concentrations in different parts of the rice plant with the lapse of time after its nighttime exposure to HTO on Sep. 1)

-109- #7] ^Hm is * r Sf 10 Hfl o]#6j j^ OBT ^£^r ojA}-^) ^4. N1«W N2J5L4 3 ^-f«^fe ^tfls. N2i^ Nli4 5 1) ^ OBT ^£^ ^ OBT ^5.^ N14 N2^14 £^ 2)s. ^^. ^ 2-3 ^717}X] >H^*1 ^^*>fe ^^6l$. §1^ OBT ^ 1 A]^ ^iZfAl 2 Hfl ^£3. ^7>§f^47l- ^%7]V\X] ^l^ ^l H ^H1 N2 ^>

OBT ^£fe N27> OBT ^£^ &A1 #^-^ OBT N2 Sl^-^^1 9^ 1^ ^^-Ei #^^1 ^^-^1 7}^-

^7li^ s.^ N14 N2 OBT ^S.^ ^^ ^S-

0BT7f OBT7> *jr

^ 018%

OBT #^ ^£7> 3.711 ^4^ ^r Sl^^- i^^Jl 5U

-110- 4.

2)

HTO 314*17113. OBT

OBT ^- HTO ri 44 0.13~0.35%5. 0.018-0.662%^ ^ 35

OBT ^£fe

3)

HTO OBT ^^ 31~34i OBT ^tfl^Sfe HTO 0.152-0.292%, 0.102~0.298%S.

OBT 0.122-0.394%, 0.103-0.302%^

OBT 45} 3 all

2 till

-111- 0.8. Outer leaves Inner leaves

CO 6 c 0.6- o o Chinese cabbage

CO 0.4- 0

o c o 0.2- o oCD

o.o. Sep. 23 Oct. 2 Oct. 15 Oct. 27 Date of exposure

30. HTO 2)^^]7l^ H|)^ ^^-A] OBT (Relative OBT concentrations in mature Chinese cabbage exposed to HTO at different growth stages)

-112- CO d c (Upper leaves) o o

CO

o c o o h- oGQ

Sep. 28 Oct. 8 Oct. 16 Oct. 28 Nov. 5 Date of exposure

31. HTO ii|^A}7ll ^ ^3-AI ^§1^ OBT (Relative OBT concentrations in the upper leaves of mature radish exposed to HTO at different growth stages)

•113- 03 d c (Lower leaves) o o

05 CD

O c o o h- oCQ

Sep. 28 Oct. 8 Oct. 16 Oct. 28 Nov. 5 Date of exposure

1 32. HTO s}^]?] ! -sp- *T^-A] o>g|Sls] OBT (Relative OBT concentrations in the lower leaves of mature radish exposed to HTO at different growth stages)

-114- « 03 d c o o

TO

O c o o

CO O

Sep. 28 Oct. 8 Oct. 16 Oct. 28 Nov. 5 Date of exposure

33. HTO 3)#A]7]t ^ ^r^l ^5-^-^1 OBT (Relative OBT concentrations in the upper root of mature radish exposed to HTO at different growth stages)

-115- Radish 0.4- d (Lower root) c o o

0.3-

03 ,i 1t k' t 0.2- ' 1^

O 1 c

r O 1 1 1 i n n_ 1 Sep. 28 Oct. 8 Oct. 16 Oct. 28 Nov. 5 Date of exposure

34. HTO s|^]7ll ^ ^^-A] §V^^-^| OBT (Relative OBT concentrations in the lower root of mature radish exposed to HTO at different growth stages)

-116- 17}^

^^- 1-1314 I- 8 ^61 Bfl-f ^d> grass-^cow-»milk

1.57

II-

2.

-117- 41 cm, 33 cm, 25 30 cm, &*\7\ 30

: P : K = 21% : 17% : 17%), 15 50 2 ^ #°11 7lwlS ^^Jl ^^1 5 : P : K = 13% : 8% : 7%) 7.1 g, 5.9 g, «] 20 g^ 7) ^$i4. °1^ ^ 41" H¥ 2~3 7}sL ^^

«:

E^ 6~7

I7>i

9 ifl

-fe- 37] 71- 118 cm (L) x 92 cm (W) x 150 cm (H)S.

I2 j^l-^: a)) fan^- I 7>i7> fan

I2 35-60 300mg) 80 ^ 4. ^-# t- 8 8

-118- Iodine crystal in a container : Air sampler

: Fan

: Air flow

35. (Schematic diagram showing the exposure of rice plants to I gas in an exposure box)

-119- 3-f 71 7°i, 71 21

91 l°i, 91 4^, 91 1513, 101 SIH&JL ^ 3-f 91 19oa, 91 22 °i, 91 24

# 12 7^1- 7 cm

101 14^^!)^ 2^3.2.5. II ^ 18 flfll

-^ ^-f 111 13 1H 2)^^^S ^ ^ II- ^-^ o.s ^-5l[71]^ 4£ ICP-mass spectrometry

^[73]AS. ^-^§1-^4. ^ *liM Sj-^j-^-e] A] i Sj^^^- 1-1251- tracer spectrometry^^LS. ^^S]-^ T1-^]-^1^. ICP-mass spectrometry^^1 0.1 ppb^H ^^HV4^- ^-^^^1 ^#«f^^r 0.1 ppm

) <£# ^ SH4. A>JIA} ^7l ^ I 7>i , absorption coefficient,

-120- (i/g) I 4^ ^

_ ^^A] ^1^ifl I #^ (g)

I , translocation factor)^

T _ r^i #J^fl 1^ t^^ (g) ^^A] ^#^)fl I #^ (ff)

^ R Sit4 T S^ ^^ ^ , retention factor, #^31^)1- £«g

4 ^-^^ I fr-fi-3 (g) no) I #^ (g)

3.

1) Hl^-^H 7]%&# ^ ^71^ I 7>^

5|:n 13.5 M ^s^cK^l 44^:^1 80 4^A] 71^1 44 18.2-37.8 °C4 ^31 $4.

-121- 25. ^ I 7}^ 3\3LX\ ^tf^lfl 7\-%2iQ ^ ^7]^ \2 (Meteorological condition and I2 concentration in the exposure box during each exposure of rice plants to I gas)

Code of Date of Temperature CO Rel. humidity Radition (klux) I2 cone. exposure exposure Range Mean Range M Range Mean in air(g/1)

5 El July 7 31.9-39.6 36.0 45.9-46.5 46.4 67.6-88.0 77.6 3.8 X10" I 5 f3 E2 July 21 35.3-41.0 37.8 46.4-49.7 47.2 58.9-84.3 72.7 3.5 xlO" E3 Aug. 11 33.6-38.2 36.5 46.1-57.2 49.8 35.6-69.3 53.4 4.8 xlO"5 E4 Aug. 18 28.6-29.8 29.3 61.2-64.8 62.6 11.2-24.6 18.1 2.6 xKT5 E5 Aug. 23 25.3-34.7 30.5 50.3-58.0 52.1 56.4-80.1 69.2 4.7 X1O~5 E6 Sep. 1 28.2-32.8 29.3 46.8-65.0 51.7 19.6-68.4 36.6 2.6 xlO"5 E7 Sep. 4 28.3-38.8 31.8 45.6-52.6 47.5 39.2-88.0 67.5 6.5 xlO"5 E8 Sep. 15 26.5-40.0 32.4 42.5-55.1 48.7 53.2-72.7 63.9 5.4 xlO"5 E9 Oct. 5 17.6-20.1 18.2 62.4-66.0 63.1 9.8-35.5 16.3 5.3X10"5

Average for the whole exposure time, 80 m. ^^l 44 fe 46.4%~63.1%4 $33. -f 3

4. ^£^ 31 77.6 klux, ^^1 18.1 kluxS.

2) 3|- ^^^-^l^- ^.^ 364

HTO

4 ^i^^4 ^-f >\$\ ^$14. HTO

3) I 7}± ^n^r Vi\S>\ ^^-A]7HS. I 7>>i 4#^f-i- ^^*>31 SA}f ^-^t I 7> ^rCafe ^331^, l/g)$= =L% 37^1 444 %A. I 7>>i ^^^1^^ SlS.A]7Hl 44 ^^1 5.1 XlO"2, 2)JL 2.1 X 1^ 4 till ^^4 £6lt- ^.5^31, °1#4 ^-^^s ^^i 2.4xio"1, ^3i 1^. 4 a]] ^£4 ^6]i- ^.^4. ^^4 °14- s.^ #^ 4^*1 8 181KE4) 44^4

-123- 10 Fresh straw Dry straw Fresh ear 8- Rice Dry ear

6-

0) 4-

CO 0) LL 2-

120 100 80 60 40 20 Days to harvest

36. I 7}+ (Growth curves of the rice plant in the iodine experiment)

-124- July 7 July 21 Aug. 11 Aug. 18Aug. 23 Sep. 1 Sep. 4 Sep. 15 Oct. 5 Date of exposure

37. I 7}^ S|^Al7]l *\2\ I 7}^ (Absorption coefficients of elemental iodine in rice straw and ear for different times of their exposure to atmospheric h gas)

-125- 44 2-7 wfl

4) I 7]-^

38^- ^^ I 7}+ 41-x-l] I 7}i I 7>i

, E2, E3)*Hfe 7.6-22.0%^

1- ^ I 7}>i ^ I 4

71

44 i 7}^ 714

-126- July 7 July 21 Aug. 11 Aug. 18 Aug. 23 Sep. 1 Sep. 4 Sep. 15 Oct. 5 Date of exposure

38.

(Percent of initial plant deposition of elemental iodine that remained in the rice plant at harvest)

-127- 5) I 7}+

39

, E2,

Sumiya ^

i s]

% 4(5. 26

I 7}^ Sj4A] SJS-^l-lfl 7l>g-2:?i3|. ^7^ I 7>>i ^H^ S ^l*l^°fl 4

54.3~81.1%s. ^^Aia4 4 ^ 20.0-54.7 kluxS. ^Sfl^ 6.S.

^ 7.4 X10"5 ~ 1.1 X10"4 g/S>S. 9^ 2212

I2 crystal ^el^o) 300 mg^S. 4€- «H 2i4

-128- 0.014

0.012-

0.010- c 0.008 - o '•+-» o 0.006-

(0 0.004 -

0.002 -

0.000 July 7 July 21 Aug. 11 Aug. 18 Aug. 23 Sep. 1 Sep. 4 Sep. 15 Oct. 5 Date of exposure

39. I 7}i (Translocation factors of elemental iodine in hulled rice seeds at harvest)

-129- Table 26. I 7}i (Distribution of I gas in different parts of the rice plant at harvest)

% distribution Date of exposure Seed Chaff Stem

July 7 0.234 - 99.77 July 21 0.318 0.077 99.61 * Aug.. 11 0.572 0.009 99.42 Aug. 18 0.973 - 99.03 Aug. 23 0.738 0.017 99.25 Sep. 1 0.401 0.024 99.58 Sep. 4 0.473 0.081 99.45 Sep. 15 0.076 0.121 99.80 Oct. 5 0.090 0.247 99.66 27. (Meteorological condition and h concentration in the exposure box during each exposure of radish to I gas)

Code of Date of Temperature CO Rel. humidity (%) Radition (klux) I2 cone. exposure exposure Range Mean Range Mean Range Mean in

VI Sep. 19 24.5-30.9 26.8 53.4-55.3 54.3 22.8-87.6 54.7

V2 Sep. 22 19.9-24.6 21.8 66.8-69.7 67.8 17.5-35.3 28.8 1.1 x 10,-4

V3 Sep. 24 20.2-23.8 22.0 63.7-74.4 67.3 16.2-70.1 37.9 7.4X10-5

V4 Oct. 7 21.6-29.4 24.3 57.3-63.4 60.5 17.4-84.9 45.1 7.6x10-5

V5 Oct. 16 15.8-18.5 17.0 80.5-81.3 81.1 17.8-22.0 20.0 9.0X10,-5

Average for the whole exposure time Plants were severely damaged by iodine toxicity. 2)

I 7 Uflig HTO HTO 30

3) I 7>>i

so, 37 ^ 28°^ i I 7>^-t 41"^ ^1 I 7}i^l Cfl fe S 28i 25.2~44.9%S.

^r 1.6 «/g 6] ^6. 1.0 0.03-0.04 10 -^1 vfl .1 ppm) 28^ 3)451 I 7^

o.l ppm^- ^ 6.5X1O""33^1

1 7}^ 4.4XIO""44A^

-132- • Whole --A-- Leaves -•-••- Root 800- Radish

600- 3 •'

400- / A • * -s.

0) LL 200- /f 0-

60 50 40 30 20 10 Days to harvest

40. I 7}^ (Growth curves of the radish plant in the iodine experiment)

-133- S. 28. I 7}^ (Absorption of I gas by radish and percent remaining at harvest)

Absorption coeff. ( Retention factor Code of Date of % i/g) exposure exposure Absorption Leaf Up. root Up. root Wh. root a

V2 Sep. 22 59.1 6.6 0.00044 0.00086

V3 Sep. 24 25.2 1.6 -

V4 Oct. 7 27.5 0.8 0.03

V5 Oct. 16 44.9 1.1 0.04 0.0038 0.0065

Assuming that I concentration in the lower root is the same as the detection limit 0.1 ppm. Plants were a little damaged by iodine toxicity. D/B

PC ^°1H 6l^-^^> &5.^- D/B H *!#€ *r&^ ^^-^ ^^(Mn, Co, Sr, Cs, Ru f-) ?fl-r[37],

^

tflojEj og^^. Visual Basics ACCESS1- 4

2.

D/B 5SJ^ RTRACKXRadionuclide TRAnsfer data for Crop plants of Korea)AS. ^^^]-^4. RTRACK^: 4^-4 ^

jL 5U4. 41-1-i- ^ «3:4.

-135- 41-1. (Title screen of RTRACK)

-136- 41-2. RTRACK^l ^ITT (Menu screen of RTRACK)

-137- it :L I i k L i i i e r i n "i '- i i 't J i "'• -i. -« • J . ri r . _H J.S-* ~I • ~» *•-• • -•!

^ *"4 - rf

•'*'•*- J

••J-T*&&-

ymmjt _•,_.__, ,-

,_ i » I'vV . L i J .i J .. d 1 i L jil i, ' im 8E~4 r i \ 4"-'r 4". \-ll/_ Hi.;" V" r -4- "H |V- r r. » * » r •.' * •• ; '' "> -• J ; i-'• _-•:-•• 1: ..-,

Li- T'J.T i -'": •:,_ ,• 4 .-?. • 1 v

I 4

41-3. RTRACKi^i (Data output screen of RTRACK)

-138- 10QE+G0 lil i

-z 5 . -'- ="-•

1 006-01

100E-02

,-« is***

: = : - : .

-' '- -_': -_— il l

120 100 ©5 60 W SO 0

r - -'.JL r ™=_i.i!_.JL 1 Li!™f r- •„ _% "i. S -T- j

41-4. RTRACK^^i

(Graph output screen of RTRACK)

-139- 1. S1? HH3 §1

^4[18,75,76]. ^ll- i#t ^ 5a

,9,16,171^4

44

A>J7 ^^A) ^Bi^Tl) oj-g-t ^ S14[79].

^7>A] ^^V^;] (generic valued [35,36] &A4 ^^ ^€ S^i tfltt ^M ^-^^lfe 24^ 47}

4. 5 km

-140- Sr-904 Cs-137[l,5,27]^:

(reference data)S ^ (background level)*

2.

el 5 km xflS. 30 cm, 43. 30 cm, fe^l 30 cm^l

37

30 cm

1- 2-3 cm

4.

1998^ 1999\i 5-t 3-4 Ri 20 2^ 3.5 g(N : P : K = 21% : 17% :

-141- 29. (Addresses of the sampling points for paddy-field soils around 2 NPP sites)

KA ^r^l 7l KB ¥-#*} 7}^ KC J KD J KE Jf'LM 71^-5- KF ^-tr^l 713K? ^^1-^- 7l^-e) YA ^ YB < YC ^ YD < YE ^ 5 km

42. 3151 NPP ^£ fe £<£ (Sampling points for paddy-field soils around Kori NPP)

-143- 43. ^ NPP ^r£ fe £°^ (Sampling points for paddy-field soils around Youngkwang NPP)

-144- 550

#^^11- 2-3 4.

. RI

3-f Sr-904

0.1 M HC1 -g-dj.$.S ^4 ^-o] s^]-&V yj-A}Aj ^.o^ 25 37 kBq, Cs-137^ 74 kBq)^- fe 25

7-8 cm 2 ^

-^ ^7111- #^t!: ^ ^#^-71^1 ^-6} r-spectrometry ^ ^.S Cs-137 ^£* #^§V^4. Sr-90 ^£^ 3LB\ £OJ= ^^4 ^^ Cs-137 ^£t #^tb 4^- ^IS-1- 500 °C£. S^^ ^7lS-iA^ 16 A]^

Sr-Spec(EIChroM, USA)^- 6l-§-*r<*l Sr-90# ^#[80-82]

-145- Sr-90 Sr-9(M-

^^^1 ^^t ^# ^£(Bq/kgdry) ^^^^^ «|^ ^Bi* (Bq/m2)

3.

5 km <>H 5~6 15 cmf^ifl fe £«9=^ #e|-5l-«H ^"^ ^ Cs-1374 Sr-90 30 ^ 314 £4. Jie)4 ^^- £^ fir pH^ 5~6 ^£^31 ^^r 2~3% ^ ^ > S

^-f Cs-137 ^£^ 4.5-13.4 Bq/kg-dry^] ^^S ^3"^ 9.5 Bq/kg-dry£U Sr-90 ^£fe 0.8-2.1 Bq/kg-dry£) Bq/kg"dry^4. W3 ^-f Cs-137 ^^^ 6.4-9.5 ^^^- 7.6 Bq/kg-dry^Jl Sr-90 ^£^ 0.7-2.5 Bq/kg-dry^ 5£ 1.5 Bq/kg-dry^4.

4- S^-^Sfl Cs-137 ^ Sr-90

Cs-1374 Sr-90

-146- 3. 30. (Physical and chemical properties and radionuclide concentrations of paddy-field soils around Kori NPP)

a b Cs-137 Sr-90 Soil pH O.M CEC EC(me/100g) T i. - (BqAg- code (1:2.5) (%) (me/lOOg) K Na Ca ton) e Mg

KA 5.0 1.82 8.4 0.19 0.49 2.62 1.42 386.7 27 18 SiL 9.4 1.05

9.2 0.05 2.80 2.63 1.66 1423.4 54 SL 6.8 0.76 14 7 I KB 5.2 2.02

1 KC 4.9 1.31 9.7 1.22 2.19 3.71 1.32 1043.9 47 15 L 4.5 1.21

KD 4.8 2.07 8.6 1.80 3.14 3.02 1.09 1762.3 47 8 12.8 0.82

KE 6.4 2.47 14.4 1.16 3.49 8.25 1.59 1677.2 49 SL 10.0 0.89

KF 5.1 4.70 11.2 1.70 0.82 4.20 1.26 3131.6 31 13 13.4 2.05

Organic matter, Cation exchange capacity, c Changeable cation, Total nitrogen a 31. (Physical and chemical properties and radionuclide concentrations of paddy-field soils around Youngkwang NPP)

a b c Soil pH 0.M CEC EC(me/100g) T_N d Sand Qay Textur Cs-137 SrH90

code (1:2.5) (%) (me/lOOg) K Na Ca Mg (ppm) (96) (%) e ^ Xf j. YA 4.9 3.88 14.5 0.43 0.37 4.45 1.91 2323.1 21 25 SiL 9.5 1.44 00 I

YB 5.1 3.32 11.1 0.43 0.41 4.39 1.58 1811.3 36 19 L 5.5 2.54

YC 6.1 3.12 13.7 0.35 0.40 8.77 3.08 2015.3 23 17 SiL 8.5 1.61

YD 5.8 2.45 10.7 0.75 3.86 5.12 4.02 1520.5 27 9 SiL 8.1 0.66

YE 5.9 2.84 11.4 0.79 1.47 2.51 2.57 1702.0 18 14 SiL 6.4 1.14

Organic matter, b Cation exchange capacity, c Changeable cation, d Total nitrogen n S 32 ^ 334 ZL$ 44 ^ 45^1 444 ie!4 ^g-f Cs-137 44 3.8xl0"5~2.0xl0"4-^ "^5. 4 5 Hfl<5] ^oii- ti^jL Sr-90 <$ 7 9.8xl(T5 ^ 3.4xlO"4AS. S Til t?} Cs-137^1 Hltfl sf 3.5 all 35. ^^4. yov4^ Sr^l Cs ^^lTfl^a.^ ^^ 3^ ^^^^1 ^*J=^1 ^AS ^.JL[2,16,35,

1.3xiO"4~4.5x Sr-90 Cs-137

]Tfl^7> Sr-90 ^

20-30 Him- ^^31 Sr-904 ^-f 2-3 tifl«Hl l 7H1"

1 ^-f Cs-137 l 2.4xl0'5~1.9xi0"44 ^^S.^8afl^^^l-^.sa3- Sr-90 ^ 1.7xl0"4~3.2xl0"44 *£%£- 4 2 ^1^*1 8€ 12^ ^HliA-]^ Cs-1374 ^-f 44 4 16 tiJHH 70 ufl4*1 fe&iL4 Sr-90^ ^^^^ 2 tifl 3121 £o^4 til^tl- ^^olSt4. w]^^7ll ^§^- S^^A^ O]A] # ^ej^A^ Sr-90 Cs-137^.4 feSi^-4 ^^r 4^i ^el^-Hfe Cs-137 5 ^ ^£4 ^^4. °$% £°l #t ^^1711 Cs-1374 ^-f 2.e] £#4 ^>6l7> IS. §i$t^-4 Sr-904 ^-f JL

-149- S. 32. Jie) fe- £o

Date of Transfer factor (m /kg-dry) Soil RI application Cs-137 Sr-90 May 2 KA 4.4X1O~5±1.1X1O~5 2.6X1O"4±7.5X1O"5 4 5 KB l.lxi0~4±1.8xi0~5 5.5xi0" ±9.5xi0" KC 3.8xi0"5±3.7xi0"6 l.lxi0"4±1.6xi0"5 KD 1.4X1O"4±3.5X1O"5 6.5X1O"4±7.OX1O"5 o 5 5 5 5 I KE 5.6xi0" ±l.lxi0" 9.5X1O" ±1.9X1O" KF 2.0xi0"4±3.lxi0"5 3.9X1O"•v-44± 7.5X10,-5 Mean 9.8 X1O~5 3.4X10,-4

4 5 4 5 June 1 KA 1.3xi0" ±2.7xi0" 2.5X1O" ±5.5X1O" KB 2.7xi0"4±5.3xi0"5 7.0xi0"4±2.8xi0"4 KD 4.5xi0"4±1.9xi0"4 7.1X1O"4±2.4X1O"4 Mean 2.8 X1O~4 5.5X10-4

Aug. 11 KA 1.0xi0"3±3.8xi0"4 5.5X1O"4±1.6X1O"4 KB 2.7xi0"3±9.0xi0"4 1.3X1O"3±4.8X1O"4 KD 4.2xi0"3±1.8xi0"3 1.8X1O"3±5.OX1O"4 Mean 2.6 xi(T3 1.2X10-3 33. H Cs-1374 S (Transfer factors of Cs-137 and Sr-90 for hulled rice seed varying with the times of the RI application to soils collected around Youngkwang NPP)

2 Date of Transfer factor (m /kg-dry) RI application Cs-137 Sr-90

May 4 YA 1.6xi0"4±5.lxl0"6 2.1X1O"4±4.6X1O"5 YB 1.5xi0"4±7.9xl0"5 2.5X1O"4±3.1X1O"5 YC 1.9xi0~4±5.lxl0~5 1.7X1O"4±5.1X1O"5 YD 6.OX1O~5±4.5X1O~6 3.2X1O~4±2.8X1O"5 YE 2.4X1O~5±2.2X1O~6 1.8X1O"4±3.3X1O"5 Mean 1.2 X10"4 2.3 X10"4

Aug. 12 YA 2.5X1O~3±1.2X1O~3 4.1xi0~4±2.4xi0"5 • YD 4.2xiCf3±1.4xi0~3 7.8X1O~4±4.7X1O~7 Mean 3.3 X1O~3 6.0 xiO"4 0.007 Cs-137 Sr-90 0.006 -

0.005 - May 2 June 1 Aug. 1

0.004 - a C 0.003 - (0 0.002 - I

0.001 - I I

0.000 Q KA KB KC KD KE KF KA KB KD KA KBKD Soil

44. a!2]

(Transfer factors of Cs-137 and Sr-90 for hulled rice seeds in Kori paddy soils)

-152- 7x10

6x1 O^H

5x10 - o 4x10- CO 3 c 3x10-

2x10-

1x10'3H

YA YB YC YD YE YA YD Soil

45. Cs-1374 Sr-

(Transfer factors of Cs-137 and Sr-90 for hulled rice seeds in Younkwang paddy soils)

-153- 2)

34, 35 iJ 3.^ 46, 47)fe- 44 tfl^fls. 2~3 ti|] 35= 20-50 all

7H1" ^°> ^ej^]7lofl tcfe}- q= 20 f € €^7} §i^4 ^^^°11^ Sr-9051 ^o)711^7} Cs-13751 30-70 tifl 35= fe^4. ^ ^1^

SI 4.

1.

}] Cs-137

4 Sr-90^ ##7)7} AA 30 ^ ^ 28 ^1S a)) ^ji £oj: ^efl^

Si4[87-89].

7>

-154- CO CO CO CO CO CO CO CO CO CO CO CO b b b b b © b b '© b b '© X X X X X x X X X X X X ™ CN1 © CO CD r—| C*3 V) in LQ m p Oi ? r-i CM' r—i 00 © in r-H ,—i +1 +1 +1 +1 +1 X +1 +1 x +1 +1 +1 x CO +! CO CO CO CO __ CO CO CO CO CO CO 00 o O '© O b T"*H b b ^ b b b b b 1 1 X X X X X X X X X X X X in CO in Oi CM in CD in 00 CO i—i CM CM CM" r-H C\j CM r-A oo CO o

u 3

i3 p_ IN in in CO CO CO •'© b b b b^^ b b '© b b b b,—( r—( X X T—XH X X X ^, r—X j X r-XH r-XH r-XH X 00 r—i CD CM r—1 CO 1 00 00 CO CM' t> 00 CO i—i i—; CO O in CM T~H i—( 1 +1 +1 +i +1 +1 +1 X +1 +1 +1 V -H +1 +1 X | CO CO CO CO U b b b b b b b 5 ,—( ,—( S N ,—t b 6.0 : ,—i b b T) o r—( r—( ,-H r-H X T—X( X X X X X X X X X X CO in o p CO CO [-— o 00 O5 I 1—i CO , J CM in , \ in CO co O I

CQ O CO ^ 2 •§ o

jr? • »-*

55 Q

-155- 35. °$% fe £°

2 Date of Transfer factor (m Ag-dry) QUJ.1 RI application Cs-137 Sr-90

4 5 2 5 1 May 4 YA 3.8xl0~ ±3.0xi0~ I.lxl0" + 8.2xl0" 156 - YB 3.5xl0~4±1.7xi0~4 1.5xl0~2±2.0xKT3 YC 4.3xl0~4±1.2xi0~4 9.5xl0"3±2.0xl0-3 YD 1.3xl(T4±4.1xl0~6 1.4xl0"2±3.4xl0'4 YE 5.9xl0""5±1.2xi0"6 1.0xl0"2±9.2xl0"4 Mean 2.7 X10"4 1.2 XKT2

Aug. 12 YA 4.3xi0"3±1.3xl0"3 1.4xl0"2±2.2xl0"3 YD 6.3xKr3±1.9xl0~3 1.6xl0"2±6.9xl0"4 Mean 5.3 xlO"3 1.5 X10"2 0.06

0.05- June 1 Aug. 11 0.04- o ts CO 55 0.03- c CD 0.02-

0.01-

0.00 KA KB KC KD KE KF KA KB KD KAKB KD Soil

46. JLE] fe £°

(Transfer factors of Cs-137 and Sr-90 for rice straw in Kori paddy soils)

-157- 0.03

0.02- o

£ OS 0.01 -

0.00 YA YB YC YD YE YA YD Soil

47. Cs-1374 Sr-90^1

(Transfer factors of Cs-137 and Sr-90 for rice straw in Younkwang paddy soils)

-158- Cs-1374 Sr-90

2.

1998V1 °1^] ^i RI1- ^el§b jie| fe s*3=^ ifl 7>x] s«g=(KB, KC, KE, KF)^- 3)*H ^7Htl RI ^elt « 2^> ids. RI

3.

315] 2Vi^} 36i

35-60% Sr-90^ -t-y- ^^1^1^^ Cs-137^.4 4-8 tifl ^£ ^4 l*} Tdii Hi^fl ^.q- e *Ht- Noordijk ^[92]£ Afl f^4 £0^^ o^ ^^]^7} Cs-1374 3-f 1-2 \i^:i 1.5 4 $i4. °}*W Cs-1374

-159- S. 36. Jie] fe £°

Transfer factor (m /kg-dry) % of the 1st year

Cs-137 Sr-90 Cs-137 Sr-90 i 53 82 S KB 5.8xl0'5±7.5xl0"6 4.5xi0"4±1.2xl0"4 65 88 KC 2.5xl0"5±2.6xl0"5 9.7xl0"5±1.3xi0"5 58 126 KE 3.2xl0"5±6.4xl0"6 1.2xl0"4±3.1xi0"5 41 95 KF 8.3xl0~5±2.4xl0"5 3.7 x Kf4 ± 4.2 x 10"5 54 98 Mean 5.0 xHT5 2.6 xlO"4 vfl 7>^1 £°^i tfl^H Cs-1374 Sr 3H31^(m2/kg-dry)# ^4t> ^^ a 374

45-61% ^S.^6.q- Sr-90^1 ^-f 4.6xlO"3~2.4x

50-150

lysimeterl- 7|^. 7nu^. sc^-i IPSN^I RESSAC

-161- 5. 37. Jiel fe £ocHH ^E) 2>d^> Cs-1374 S (Transfer factors of Cs-137 and Sr-90 for rice straw in Kori soils in the 2nd year after the RI application)

Transfer factor (m2/kg-dry) % of the 1st year

Cs-137 Sr-90 Cs-137 Sr-90

KB 1.6X1O"4±4.5X1O5 2.4xl0~2±1.0x 10~2 45 94

KC 5.lxl0~5±2.1xl0~5 4.6xl0"3±4.5xl0"4 50 103

KE 9.8xl0"5±2.3xl0"5 4.9xl0~3±1.6xl0~3 61 99

KF 2.3xi0"4±3.8xi0^5 1.8xKT2±2.7xl0~3 53 84

Mean 1.3 X104 1.3 x io"2 52 95 4.

2.

7>.

lysimeter

^°loL *)-#£• lysimeter

2 2 <§^1 150 m , «r^ol 170 m S. E.^- 320 ^ ^^ 4^-4

1) 41- ^

• Lysimeter ^«11^(L1~L4) : 1.5m (L) X 1.5 m (W) x 1.2 m lysimeterl- *>^4 ^4: W

nfl7lfe HEPA €3 ^ charcoal €47}

: ££(-15-45 °C), 80 mm/hr), 5S(~ 120,000 lux), ^^( -20 m/s) Lysimeter 4^-^(L4) : ^flwM^i A>^-€ lysimeter

-163- 3 2m 5.2m „ - , 3.2m 3.2m 3.2m 4 ». >* •« 1 L i 1 i 1 # u L2 ! L3 ! L4 i I ! 1 i 1 3.5m pot 5.5ri J ^n On ^J P1 n 7 • 1.2m" c

} r • (A) ~> ^ ^ •_ Mr • 4.0m 4.5m 1.5m 3.7m

" 7)1 H • 3.0m" * 5.4IT1 |~! lysimeter ^^H «^>^ aerosol

5.2m 12.8m

5.5m

9.: m (B)

13.6m

48. (A : $%, B : §r#) (Conceptual structure of the automatized experimental greenhouse / A : the 2nd story, B : the 1st story)

-164- aerosol ^MR^]* 6l-§-SH ^l^Hfi $• aerosol *tH}#*| : €*}3. ifli*^ 4

4^ tt'S-SUM- iW^3€4i* S-^-sH UO2 3000 °C o]

aerosol • pot zflBfl-g : i:^^ pot

fe lysimeter

computer system }^

2)

pot ^^ ^*\ pot

lysimeter

-165- -167- , HTO £

HTO H-3 HTO

H-3 «LS. 6]-g-7T-x]7]-

I-13H ^ 1-12941

±; D/B H

7>

-169- RI f-^H A]

-170- 171- H-3, Mn-54, Co-57, Sr-85, Ru-103, Cs-134

=^.S Cs-137

^lej

-173- (normal caseHl

7}

oj-g-f-A

7>ofl

-174- -175- 1. H. Mliller and G. Prohl, ECOSYS-87 : A dynamic model for assessing radiological consequences of nuclear accidents, Health Physics 64, 232-252 (1993).

2. J. E. Till and H. R. Meyer (Eds.), Radiological Assessment, A Textbook on Environmental Dose Analysis, NUREG/CR-3332, ORNL-5968 (1983). 3. IAEA, Generic Models and Parameters for Assessing the Environmental Transfer of Routine Release, Safety Series No. 57, Vienna (1982). 4. J. R. Simmonds, G. S. Linsley and J. A. Jones, A General Model for Transfer of Radioactive Materials in Terrestrial Food Chains, NRPB -R 89, Harwell, Didcot, Oxon (1979). 5. oRM-, 3 n

, 15-22 (1992). 6. M. L. Abbott and A. S. Rood, COMIDA : A radionuclide food chain model for acute fallout deposition, Health Physics 66, 17-29 (1994). 7. G. M. Milbourn and R. Taylor, The contamination of grassland with radioactive strontium - I, initial retention and loss, Radiation Botany 5, 337-347 (1965). 8. A. Aarkrog, Radionuclide levels in mature grain related to radiostrontium content and time of direct contamination, Health Physics 28, 557-562 (1975). 9. P. J. Coughtrey and M. C. Thorne, Radionuclide Distribution and Transport in Terrestrial Ecosystem - A Critical Review of Data, A. A. Balkema, Rotterdam (1983).

-Ill- 10. J. Ertel, G. Voigt and H. G. Paretzke, Weathering of 134/137Cs following leaf contamination of grass cultures in an outdoor experiment, Radia. Environ. Biophys. 28, 319-326 (1989).

11. G. Rauret, V. R. Vallejo, D. Cancio and J. Real, Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release : design and first results, J. Environ. Radioactivity 29, 163-184 (1995).

12. I. A. Scotti, Effect of treatment time on the I34Cs and 85Sr concentrations in green bean plants, J. Environ. Radioactivity 33, 183-191 (1996).

13. R. P. Kinnersley, A. J. H. Goddard, M. J. Minski and G. Shaw, Interception of caesium-contamianted rain by vegetation, Atmospheric Environment 31, 1137-1145 (1997).

14. F. Carini, I. A. Scotti and P. G. D'Alessandro, 134Cs and ^Sr in fruit plants following wet aerial deposition, Health Physics 77, 520-529 (1999).

15. IAEA, Handbook of parameter values for the prediction of radionuclide transfer in temperate environments, Technical Report Series No. 364 (1994).

16. Y. C. Ng, C. S. Colsher and S. E. Thompson, Soil-to-Plant Concentration Factors for Radiological Assessments, Report NUREG /CR-2975, UCED-19463, Lawrence Livermore Lab., USNRC (1982).

17. R. Zach, Transfer Coefficients to Terrestrial Food Products in Equilibrium Assessment Models for Nuclear Installations, AECL Report, AECL-6449, WNRE (1980).

1 18. ^-g-J:, <$%^, o]^ 2)^? ^fl-3, tH-iq ^4 i|HH , 164-168 (1999).

-178- 19. A. C. Chamberlain, Interception and retention of radioactive aerosol by vegetation, Atmospheric Environment 4, 57-78 (1970). 20. C. W. Miller, The retention by foliage of silicate particles ejected from the volcano Irazu in Costa Rica, in : Radioecological Concentration Processes, Proc. of an International Symp., Stockholm, Pergamon Press (1967).

21. P. J. Barry and A. C. Chamberlain, Deposition of iodine onto plant leaves from air, Health Physics 9, 1149-1157 (1963). 22. F. P. Hungate, J. E. Cline, R. L. Uhler and A. A. Selders, Foliar sorption of 131I by plants, Health Physics 9, 1159-1166 (1963).

23. Y. Nakamura and Y. Ohmomo, Factors used for the estimation of gaseous radioactive iodine intake through vegetation- n. Uptake of elemental iodine by spinach leaves, Health Physics 38, 315-320 (1980). 24. S. Diabate and S. Strack, Organically bound tritium in wheat after short-term exposure to atmospheric tritium under laboratory conditions, J. environ. Radioactivity 36, 157-175 (1997). 25. C. W. Miller, Validation of a model to predict aerosol interception by vegetation, in: International Symposium on the Biological Implications of Radionuclides Released from Nuclear Industries, IAEA, Vienna, IAEA-SM-237/53, 351-361 (1979). 26. C. W. Miller, An analysis of measured values for the fraction of a radioactive aerosol intercepted by vegetation, Health Phys. 38, 705- 712 (1980). 27. Y. H. Choi, C. W. Lee, J. K. Kim, M. H. Lee and J. H. Lee, Improvement on the KFOOD code for more realistic assessment of the annual food chain radiation dose due to operating nuclear facilities, J. Korean Nuclear Society 25, 437-46 (1993).

-179- 28. R. Zach, FOOD II : An Interactive Code for Calculating Concentrations of Radionuclides in Food Products, AECL Report, AECL-6305, WNRE (1978).

29. A. Aarkrog, On the direct contamination of rye, barley, wheat and oats with ^Sr, 134Cs, MMn and 141Ce, Radiation Botany 9, 357-366 (1969).

30. L. Foulquier et. al., Studies of methods for rehabilitation of soils and surfaces after a nucliar accident (RESSAC), Contract : F13PCT920013a, Final report 1992-1994 (1995).

31. Y. Nakamura, M. Sumiya, S. Uchida and Y. Ohmomo, Transfer of gaseous iodine to rice plants, J. Radiat. Res. 27, 171-182 (1986).

32. S. Uchida, M. Sumiya, Y. Muramatsu, Y. Ohmomo, S. Yamaguchi, H. Obata and M. Umebayashi, Deposition velocity of gaseous I to rice grains, Health Physics 55, 779-782 (1988).

33. S. Uchida, Y. Muramatsu, M. Sumiya and Y. Ohmomo, Biological half-life of gaseous elemental iodine deposited onto rice grains, Health Physics 60, 675-679 (1991).

34. H. Amano, M. Atarashi, H. Noguchi and S. Yokoyama, Formation of organically bound tritium in plants during the 1994 chronic HT release experiment at Chalk River, Fusion Tech. 28, 803-808 (1995).

y v 35. °HJL *§•,%% ^ $.$<$ ^Itb o KAERI/RR-998/90, 4^71

36. sl-g-3:, 65Zn, , 55-65 (1991). 37, aj^JL ^, ^4^^^^^^^-^^ wov4^1 ^r^^^l n^W 7m, KAERl/RR-1741/96, ^^^^V^^T1^, 4^1^ (1997).

180- 38. ^^iJLAi, KAER1/RR-282/81 (1982).

39. IPSN, The Tchernobyl Accident, Rapport IPSN 2/86, Revision 3 (1986).

40. 3$-f -f-, tfq qx\£ ^# 7]%%& ^ nM, KAERI/RR-1291 /93, ^R^r^T2-^ (1993). 41. %•&$: *§•, tfl^ €^^^1^ ir# 7]#%!L f^ «(]^, KAERI/RR- 1443/94, ^•€*]-^^^H ¥^ 71-S-^iL ^f- *M, KAERI/RR- 270/95, ^^^^l-^^^dt (1995).

43. E. W. Lee, T. S. Kwak, M. S. Lee, K. H. Kim, K. J. Kim, S. B. Lee, Y. D. Rho, R. K. Park, C. H. Cho, H. O. Choi, S. B. Ahn and B. H. Hong, Rice Culture, Hyangmun Press (1996).

44. J. E. Pinder III, T. G. Ciravolo and J. W. Bowling, The interrelationships among plant biomass, plant surface area and the interception of particulate deposition by grasses, Health Physics 55, 51-58 (1988).

45. £.^7- ^, *1)iMHz^, ^4 (1996).

46. W. E. Martin, Losses of ^Sr, ^Sr and 131I from fallout-contaminated plants, Radia. Bot. 4, 275-284 (1964).

47. J. P. Witherspoon and F. G. Jr. Taylor, Interception and retention of a simulated fallout by agricultural plants, Health Physics 19, 493-499 (1970).

48. R. Kirchmann, E. Fagniart and S. Van Puymbroeck, Studies on foliar contamination by radiocaesium and radiostrontium, in : Radiological Concentration Processes, Proc. of an Intern. Symp., Stockholm, 25-29 April, 1966, pp. 475-483, Pergamon Press (1967).

-181- 49. R. C. Chadwick and A. C. Chamberlain, Field loss of radionuclides from grass, Atmos. Environ. 4, 51-56 (1969). 50. G. Shaw, M. J. Minski and J. N. B. Bell, Retention, loss and translocation of radionuclides applied to foliar surfaces of wheat, Environ. Exp. Bot. 32, 391-404 (1992). 51. F. Carini, Radionuclides in plants bearing fruit : an overview, J. Environ. Radioactivity 46, 77-97 (1999). 52. L. J. Middleton, Absorption and translocation of strontium and caesium by plants from foliar sprays, Nature 181, 1300-1303 (1958). 53. J. Moorby and H. M. Squire, The loss of radioactive isotopes from the leaves of plants in dry conditions, Radia. Bot. 3, 163-167 (1963). 54. L. J. Middleton, Radioactive strontium and caesium in the edible parts of crop plants after foliar contamination, Int. J. Rad. Biol. 4, 387-402 (1959). 55. NCRP, Tritium in the environment. NCRP Report No. 62, Washington, D. C. (1979). 56. S. Okada and N. Momoshima, Overview of tritium: characteristics, sources, and problems. Health Physics 65, 595-609 (1993). 57. C. E. Murphy Jr., Tritium transport and cycling in the environment, Health Physics 65(6), 683-697 (1993). 58. W. Raskob and P. Barry, Importance and variability in processes relevant to environmental tritium ingestion dose models, J. Environ. Radioactivity 36, 237-251 (1997). 59. S-R. Peterson and P. A. Davis, Modelling Tritium and 14C in Rice from Chronic Atmospheric Releases, RC-2098, AECL (1998). 60. J. A. Garland and L. C. Cox, The absorption of tritium gas by English soils, plants and the sea, Water, Air and Soil Pollution 14, 103-114 (1980).

-182- 61. M. Murata and H. Noguchi, Dose delivered by unit amount of tritium released into the environment, J. Nuc. Sci. Tech., 34, 176- 184 (1997).

62. S. Diabate and S. Strack, Organically bound tritium. Health Physics 65, 698-712 (1993).

63. S. Diabate and S. Strack, Doses due to Tritium Releases by NET- Data Base and Relevant Parameters on Biological Tritium Behaviour. KfK 4713, Kernforschungszentrum Karlsruhe (1990).

64. ICRP, Age-Dependent Doses to Members of the Public from Intake of Radionuclides. ICRP Publication 56, Part 1, Oxford, Pergamon Press (1990).

65. A. W. Phippes, G. M. Kendall, J. W. Stather and T. P. Fell, Committed Equivalent Organ Doses from Intakes of Radionuclides. Chilton, NRPB-R245. HMSO, London (1991).

66. N. A. Higgins, TRIF-An intermediate approach to environmental tritium modelling. J. Environ. Radioactivity, 36, 253-267 (1997).

67. V. Moses and M. Calvin, Photosynthesis studies with tritiated water. Biochim. Biophys. Acta, 33, 297-312 (1959).

68. R. G. Thompson and C. D. Nelson, Photosynthetic assimilation and translocation of H- and l C-organic compounds after 3HHo and 14CO2 were simultaneously offered to a primary leaf of soybean. Can. J. Bot, 49, 757-766 (1971).

69. Y. Nakamura and Y. Ohmomo, Transfer of gaseous iodine to tradescantia, J. Radiat. Res. 25, 251-259 (1984).

70. J. V. Ramsdell et. al., Atmospheric dispersion and deposition of 131I released from the Hanford Site, Health Physics, 71, 568-577 (1996).

183- 71. R. J. Cox and C. J. Pickford, Determination of iodine-129 in vegetable samples by inductively coupled plasma mass spectrometry, J. of Analatical Atomic Spectrometry, 7, 635-640 (1992). 72. J. W. Olesik, Anal. Chem. Plasma Atomic Emission Spectroscopy, Boca ration, CRC press (1990). 73. W. T. Binnerts and H. A. Das, Determination of iodine in biological materrial, Methods of Biochemical Analysis 22 (1974). 74. M. Sumiya, S. Uchida, Y. Muramatsu, Y. Ohmomo and H. Obata, Transfer of gaseous iodine from atmosphere to rough rice, brown rice and polished rice, Hoken Butsuri 22, 265-268 (1987).

75. %-%•$., 2^, 6RM « 4# MMn, ^Co, 85Sr, 1 255-263 (1995). 76. 3-g-£, 3~*Vl ^RMS , X 51^ ^Mn, '"Co, ^Sr, 137Cs^ -g-t, ^^«r^^tq-S|^ ^15^, 198- 206 (1996). 77. J. Sandalls and L. Bennett, Radiocaesium in upland herbage in Cumbria, UK : a three year field study, J. Environ. Radioactivity 16, 147-165 (1992). 78. N. A. Beresford, B. J. Howard and C. L. Barnett, The uptake by vegetation of Chernobyl and aged radiocaesium in upland West Cumbria, J. Environ. Radioactivity 16, 181-195 (1992). 79. Y. H. Choi, C. W. Lee, S. R. Kim, J. H. Lee and J. S. Jo, Effect of application time of radionuclides on their root uptake by Chinese cabbage and radish, J. Environ. Radioactivity 39, 183-198 (1998). 80. E. P. Horwitz, M. L. Dietz, Method for Liquid Chromatographic Extraction of Strontium from Acid Solutions, U.S. Patent Application, (1990).

-184- 81. E. P. Horwitz, M. L. Dietz, D. E. Fisher, Correlation of the extraction of strontium nitrate by a crown ether with the water content of the organic phase, Solv. Extr. Exch. 8, 199-208 (1990).

82. E. P. Horwitz, M. L. Dietz, D. E. Fisher, Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-6 and its derivatives, Solv. Extr. Ion Exch. 8, 557-572 (1990).

83. 2-8*! ^, £<#*}-, •#£*}, X\^r (1997).

84. °l^Jl *§•, tfl#*13 £6

85. £#3 ^, Crown ether/chloroform -g-^^#^^r *}-%•% £C< 3 89Sr, ^Sr &q, tfltb^l^^H^Sl^ ^121^, 9-16 (1996). 86. 3-g-£ ^, -f^M-s} ^^1 £%^ 137Cs , 55-63 (1999).

87. ^-g-^ ^, ^A 3H-51 ^^- #i ^^^: MMn, 60Co, 85Sr, ., 51-68 (1996).

88. H. M. Squire, Long-term studies of strontium-90 in soils and pastures, Radiat. Bot. 6, 49-67 (1966).

89. J. F. Cline and W. H. Rickard, Radioactive strontium and cesium in cultivated and abandoned field plots, Health Physics 23, 317-324 (1972).

90. U. Boikat, A. Fink and J. Bleck-Neuhaus, Caesium and cobalt transfer from soil to vegetation on permanent pastures. Radiation and Environmental Biophysics 24, 287-301 (1985).

91. A. Cremers, A. Elsen, P. De Preter and A. Maas, Quantitative analysis of caesium retention in soils, Nature 335, 247-249 (1988).

-185- 92. H. Noordijk, K. E. van Bergeijk, J. Lembrechts and M. J. Frissel, Impact of aging and weather conditions on soil-to-plant transfer of radiocaesium and radiostrontium, J. Environ. Radioactivity 15, 277-286 (1992).

-186- fcdl A : RTRACK^I

-187- VERSION 5.00 Begin VB.Menu mnu_subl Begin VB.Form Forml Caption = "«fl^ Caption = "RTRACK" (CH.CABBAGE)" ClientHeight = 5535 Index = 4 ClientLeft = 165 End ClientTop = 735 Begin VB.Menu mnu_subl ClientWidth = 8835 Caption = "3L^r LinkTopic = "Forml" (RED PEPPER)" Picture = "project.frx":0000 Index = 5 ScaleHeight = 5535 End ScaleWidth = 8835 Begin VB.Menu mnu_subl StartUpPosition = 3 'Windows Caption = "5.°1 Begin VB.CommandButton Commandl (CUCUMBER)" Height = 5775 Index = 6 Left = 0 End Mouselcon = "project.frx":A5C42 Begin VB.Menu mnu_subl MousePointer = 99 '4-§-*> ^ Caption = "#*} Picture = (POTATO)" "project.frx":A5F4C Index = 7 Style = 1 '3.^ End Tablndex = 0 End Top = 0 Begin VB.Menu mnu_TF Width = 8895 Caption = "A^AW End Index = 2 Begin VB.Menu mnu_FILE Begin VB.Menu mnu_sub2 Caption = "^°i" Caption = "Bj (RICE)" Begin VB.Menu mnu_TF Index = 1 Caption = "2H?l)*r End Index = 1 Begin VB.Menu mnu_sub2 Begin VB.Menu mnu_subl Caption = "«fl^ Caption = (CH.CABBAGE)" Index = 1 Index = 2 End End Begin VB.Menu mnu_subl Begin VB.Menu mnu_sub2 Caption = "^(SOYBEAN)" Caption = '/Jf Index = 2 (RADISH)" End Index = 3 Begin VB.Menu mnu_subl End Caption = "f-(RADISH)" End Index = 3 Begin VB.Menu mnu_TF End Caption = "#W 189- Index = 3 Attribute VB_Name = "Forml" WindowList = -1 'True Attribute VB_GlobalNameSpace = False Begin VB.Menu mnu_sub3 Attribute VB_Creatable = False Caption = "Bj(RICE)" Attribute VB_PredeclaredId = True Index = 1 Attribute VB_Exposed = False End Private Sub Commandl_Click() Begin VB.Menu mnu_sub3 mnu_FILE. Visible = True Caption = "«fl^ Commandl.Visible = False (CH.CABBAGE)" End Sub Index = 2 End Private Sub FormJLoadO Begin VB.Menu mnu_sub3 mnu_FILE. Visible = False Caption = "•¥- (RADISH)" End Sub Index = 3 Private Sub mnu_exit_Click() End End exityes = MsgBox

Begin VB.Menu mnu_TF ("3}.<^^. v}x\X\$i<§--L]y}'?"i 4 + 32) Caption = "^.^-^l^r" If exityes = 6 Then Index = 4 DBCur.Close Begin VB.Menu mnu_sub4 End Caption = "^(RICE)" Index = 1 End If End Begin VB.Menu mnu_sub4 End Sub Caption = "•¥• (RADISH)" Private Sub mnu_PRINT_Click() Index = 2 Forml .PrintForm End End Sub End Private Sub mnu_subl_Click (Index As Begin VB.Menu HYPEN Integer) Caption = "-" End Select Case Index Begin VB.Menu mnu_PRINT Case 1 Caption = "tlifl" Sublindex = Rice End Case 2 Begin VB.Menu mnu.EXIT Sublindex = soybean Caption = "#i=L" Case 3 End Sublindex = RADISH End Case 4 End Sublindex = CABBAGE

-190- Case 5 End Select Sublindex = REDPEPPER Case 6 Unload Me Sublindex = CUCUMBER Form2.Show Case 7 End Sub Sublindex = POTATO End Select Private Sub mnu_sub4_Click(Index As Integer) Select Case Index Unload Me Form2.Show Case 1 Sub4index = TraRice End Sub Case 2 Sub4index = TraRadish Private Sub mnu_sub2_Click(Index As End Select Integer) Select Case Index Unload Me Form2.Show Case 1 End Sub Sub2index = ShilRice Case 2 Private Sub mnu_TF_Click(Index As Sub2index = ShilCabbage Integer) Case 3 Sub2index = ShilRadish TFIndex = Index End Select End Sub Unload Me Form2.Show End Sub

Private Sub mnu_sub3_Click(Index As Integer) Select Case Index

Case 1 Sub3index = ResRice Case 2 Sub3index = ResCabbage Case 3 Sub3index = ResRadish

-191- VERSION 5.00 Object NumButtons = 3 "{831FDD16-0C5C-11D2-A9FC-0000F8754D BeginProperty Buttonl Al}#2.0#0"; "MSCOMCTL.OCX" {66833FEA-8583-11D1-B16A-00C0F0283628 Begin VB.Form Form2 ClientHeight = 6000 Caption = "Print" ClientLeft = 165 ObjectTooITipText ClientTop = 735 ClientWidth = 8055 Imagelndex = 1 LinkTopic = "Form2" EndProperty ScaleHeight = 6000 BeginProperty Button2 ScaleWidth = 8055 {66833FEA-8583-11D1-B16A-00C0F0283628 StartUpPosition = 3 'Windows ?1£- Caption = "Main" Begin VB.TextBox Textl3 ObjectToolTipText Height = 270 Left = 360 Imagelndex = 2 Tablndex = 26 EndProperty Text = "Interception" BeginProperty Button3 Top = 4320 {66833FEA-8583-11D1-B16A-00C0F0283628 Visible = 0 'False } Width = 180 Caption = "Help" End ObjeetToolTipText Begin MSComctlLib.Toolbar Toolbarl Align = 1 '$1 3k W Imagelndex = 3 Height = 360 EndProperty Left = 0 EndProperty Tablndex = 23 BorderStyle = 1 Top = 0 Begin MSComctlLib.ImageList Width = 8055 ImageListl _ExtentX = 14208 Left = 960 _ExtentY = 635 Top = 600 ButtonWidth = 1455 JBxtentX = 1005 ButtonHeight = 582 _ExtentY = 1005 Appearance = 1 BackColor = -2147483643 Style = 1 ImageWidth = 16 TextAlignment = 1 ImageHeight = 16 ImageList = "ImageListl" MaskColor = 12632256 JVersion = 393216 JVersion = 393216 BeginProperty Buttons BeginProperty Images {66833FE8-8583-11D1-B16A-00C0F0283628 {2C247F25-8591-11D1-B16A-00C0F0283628

-192- } Visible = 0 'False NumListlmages = 3 Width = 180 BeginProperty Listlmagel End {2C247F27-8591-11D1-B16A-00C0F0283628 Begin VB.TextBox TextlO } Height = 270 Picture = Left = 600 "Form2_.frx":0000 Tablndex = 20 Key = "" Text = "Greenpepperl" EndProperty Top = 3840 BeginProperty Listlmage2 Visible = 0 'False {2C247F27-8591 -11D1-B16A-00C0F028362S Width = 180 } End Picture = Begin VB.TextBox Text9 "Form2_.frx":0114 Height = 270 Key Left = 360 EndProperty Tablndex = 19 BeginProperty Listlmage3 Text = "Redpepper2" {2C247F27-8591-11D1-B16A-00C0F0283628 Top = 3840 } Visible = 0 'False Picture = Width - 180 "Form2_.frx":0228 End Key = "" Begin VB.TextBox Text8 EndProperty Height = 270 EndProperty Left = 600 End Tablndex = 18 End Text = "Redpepperl" Begin VB.TextBox Textl2 Top = 3600 Height = 270 Visible = 0 'False Left = 600 Width = 180 Tablndex = 22 End Text = "potato" Begin VB.TextBox Text7 Top = 4080 Height = 270 Visible = 0 'False Left = 360 Width = 180 Tablndex = 17 End Text = "CABBAGE" Begin VB.TextBox Textll Top = 3600 Height = 270 Visible = 0 'False Left = 360 Width = 180 Tablndex = 21 End Text = "Greenpepper2" Begin VB.TextBox Text6 Top = 4080 Height = 270

-193- Left = 600 Top 1200 Tablndex = 16 Width 1935 Text = "CABBAGE1" End Top = 3360 Begin VB.CommandButton Command2 Visible = 0 'False Caption = "Graph" Width = 180 Height = 735 End Left = 5280 Begin VB.TextBox; Text5 Mouselcon = Height = 270 "Form2_.frx":033C Left = 360 MousePointer = Tablndex = 15 99 '4-§-*l- ^e) Text = "soybean" Tablndex = 7 Top = 3360 Top = 4800 Visible = 0 'False Width = 1575 Width = 180 End End Begin VB.TextBox Text4 Begin VB.ComboBox Combo4 Height = 270 Height = 300 Left = 600 Left = 3240 Tablndex = 6 Tablndex - 11 Text = "Ricestraw" Top = 600 Top = 3120 Width = 1935 Visible = 0 'False End Width = 180 Begin VB.ComboBox Combo3 End Height = 300 Begin VB.TextBox Text3 Left = 3240 Height - 270 Tablndex = 10 Left = 360 Top = 2400 Tablndex = 5 Width = 1935 Text = "Riceseed" End Top = 3120 Begin VB.ComboBox Combo2 Visible = 0 'False Height = 300 Width = 180 Left = 3240 End Tablndex = 9 Begin VB.TextBox Text2 Top = 1800 Height = 270 Width = 1935 Left = 600 End Tablndex = 4 Begin VB.ComboBox Combo 1 Text = "RicestrawH" Height = 300 Top = 2880 Left = 3240 Visible = 0 'False Tablndex = 8 Width = 180

194- End Mouselcon : Begin VB.TextBox Textl "Form2_.frx":0646 Height = 270 MousePointer = Left = 360 99 •*}•%•*} =8fi] Tablndex = 3 Tablndex 2 Text = "RiceseedH" Top 2880 Top = 2880 Width 1575 Visible = 0 'False End Width = 180 Begin VB.Label Label5 End Caption Begin VB.TextBox Textl7 BeginProperty Font Alignment = 2 '7r£c"11 \ Name =: »^» Size = 12 BeginProperty Font Charset = 129 Name = "~zk^" Weight 400 Size = 18 Underline = 0 'False Charset = 129 Italic 0 'False Weight = 700 Strikethrough = 0 'False Underline = 0 'False EndProperty Italic = 0 'False Height 255 Strikethrough = 0 'False Left 5400 EndProperty Tablndex 25 Height = 480 Top 1800 Left = 3240 Width 255 Tablndex = 0 End Top = 3840 Begin VB.Label Label6 Width = 1935 Caption = End BeginProperty Font Begin VB.CommandButton Commandl Name = Caption = "Q t!" Size = 12 BeginProperty Font Charset = 129 Name = "#^" Weight 400 Size = 12 Underline = 0 'False Charset = 129 Italic 0 'False Weight = 400 Strikethrough = 0 'False Underline = 0 'False EndProperty Italic = 0 'False Height 255 Strikethrough = 0 'False Left 2160 EndProperty Tablndex 24 Height = 735 Top 600 Left = 5280 Width 735

-195- End Charset = 129 Begin VB.Label Label3 Weight = 400 Caption = »«. Underline = 0 'False BeginProperty Font Italic = 0 'False Name = "•g-< Strikethrough = 0 'False Size = 12 EndProperty Charset = 129 Height = 255 Weight 400 Left = 2160 Underline = 0 'False Tablndex = 12 Italic 0 'False Top = 1200 Strikethrough = 0 'False Width = 735 EndProperty End Height 255 Begin VB.Label Label4 Left 2160 Alignment = 2 '7}&$,

Tablndex = 14 %• Top 2400 AutoSize = -1 'True Width 735 Caption = "3 <>131^' End BeginProperty Font Begin VB.Label Label2 Name = "#^" Caption = Size = 12 Charset = 129 BeginProperty Font Weight = 400 Name = "#' Underline = 0 'False Size = 12 Italic = 0 'False Charset 129 Strikethrough = 0 'False Weight 400 EndProperty Underline = 0 'False Height = 240 Italic = 0 'False Left = 1920 Strikethrough = 0 'False Tablndex = 1 EndProperty Top - 3960 Height 495 Width = 975 Left 2040 End Tablndex 13 Begin VB.Menu mnu_menu Top 1680 Caption = "MENU" Width 975 Begin VB.Menu mnu_Print End Caption = "Print" Begin VB.Label Labell End Caption = ««q Begin VB.Menu mnu_Exit BeginProperty Font Caption = "Exit" Name = "#^ End Size 12 Begin VB.Menu HYPEN

-196- Caption = "-" Select Case Combo3.ListIndex End Begin VB.Menu mnuJHelp Case 0 Caption = "Help" Form9.OLE9. Visible = True End End Case 1 End Form9.OLE10. Visible = True Attribute VB_Name = "Form2" Attribute VB_GlobalNameSpace = False End Select Attribute VB_Creatable = False Attribute VB_PredeclaredId = True Case 1 Attribute VB_Exposed = False Select Case Combo3.ListIndex Private Sub Combo2_Change() Case 0 End Sub Form9.OLEl.Visible = True

Private Sub Combo3_Change() Case 1 Form9.OLE5. Visible = True End Sub End Select Private Sub Combo3_Click() Case 2 End Sub Select Case Combo3.Listlndex

Private Sub Combo4_Change() Case 0 Form9.OLE2. Visible = True End Sub Case 1 Private Sub Command2_Click() Form9.OLE6. Visible = True

Form9.Show End Select

Select Case Sublindex Case 3 Select Case Combo3.ListIndex

Case Rice Case 0 Form9.OLE3. Visible = True Select Case CombolXistlndex Case 1 Case 0 Form9.OLE7.Visible = True

-197- End Select Case 0 Form9.OLE15. Visible = True Case 4 Select Case Combo3.ListIndex Case 1 Form9.OLE19. Visible = True Case 0 Form9.OLE4. Visible = True End Select

Case 1 Case 1 Form9.OLE8. Visible = True Select Case Combo3.ListIndex

End Select Case 0 Form9.OLE16. Visible = True End Select Case 1 Case soybean Form9.OLE20. Visible = True

Select Case ComboLListlndex End Select

Case 0 Case 2 Form9.OLEll.VisibIe = True Select Case Combo3.ListIndex

Case 1 Case 0 Form9.OLE12.Visible = True Form9.OLE17. Visible = True

Case 2 Case 1 Form9.OLE13. Visible = True Form9.OLE21. Visible = True

Case 3 End Select Form9.OLE14. Visible = True Case 3 End Select Select Case Combo3.ListIndex

Case 0 Case RADISH Form9.OLE18. Visible = True Select Case Combol.Listlndex Case 1 Case 0 Form9.OLE22. Visible = True

Select Case Combo3.ListIndex End Select

-198- End Select Case 0

Select Case Combol.Listlndex Case CABBAGE Select Case Combo LListlndex Case 0

Case 0 Select Case Combo3.ListIndex

Select Case Combo3.ListIndex Case 0 Form9.OLE38. Visible = True Case 0 Form9.OLE27. Visible = True Case 1 Form9.0LE42. Visible = True Case 1 Form9.OLE28. Visible = True End Select

End Select Case 1

Case 1 Select Case Combo3.ListIndex Form9.OLE23.Visible = True Case 0 Case 2 Form9.OLE39. Visible = True Form9.OLE24 Visible = True Case 1 Form9.OLE43. Visible = True Case 3 Form9.OLE25. Visible = True End Select

Case 4 Case 2 Form9.OLE29. Visible = True Select Case Combo3.ListIndex Case 5 Form9.OLE26. Visible = True Case 0 Form9.OLE40. Visible = True End Select Case 1 Form9.OLE44. Visible = True Case REDPEPPER End Select Select Case Combo4.ListIndex

-199- Case 3 End Select Case 2

Select Case Combo3.ListIndex Select Case Combo3.ListIndex Case 0 Form9.OLE41. Visible = True Case 0 Form9.OLE32. Visible = True Case 1 Case 1 Form9.OLE45. Visible = True Form9.OLE36. Visible = True End Select End Select Case 3 End Select

Case 1 Select Case Combo3.ListIndex

Select Case Combol.Listlndex Case 0 Form9.OLE33. Visible = True Case 0 Case 1 Select Case Combo3.ListIndex Form9.OLE37.Visible = True

Case 0 End Select Form9.OLE30. Visible = True Case 1 End Select

Form9.OLE34. Visible = True End Select

End Select Case CUCUMBER Case 1 Select Case ComboLListlndex

Select Case Combo3.ListIndex Case 0 Case 0 Form9.OLE31.Visible = True Select Case Combo3.ListIndex

Case 1 Case 0 Form9.OLE35.Visible = True Form9.OLE46. Visible = True

-200- Case 1 Form9.OLE50. Visible = True Case 1 Form9.OLE53. Visible = True Case 2 Form9.OLE54. Visible = True Case 2

End Select Form9.OLE57. Visible = True

Case 1 End Select Select Case Combo3.ListIndex End Select Case 0 Form9.OLE47. Visible = True Case POTATO Select Case ComboLListlndex Case 1 Form9.OLE51.Visible = True Case 0 Form9.OLE58. Visible = True Case 2 Form9.OLE55. Visible = True Case 1 Form9.OLE59. Visible = True End Select Case 2 Case 2 Form9.OLE60. Visible = True Select Case Combo3.ListIndex Case 3 Case 0 Form9.OLE61.Visible = True Form9.OLE48. Visible = True End Select Case 1 Form9.OLE52. Visible = True End Select

Case 2 Form9.OLE56. Visible = True End Sub

End Select Private Sub mnu_exit_Click() Unload Me Case 3 Forml.Show Select Case Combo3.ListIndex Forml.Commandl. Visible = False Forml.mnuJPILE. Visible = True Case 0 Unload Form9 Form9.OLE49. Visible = True End Sub

-201- Private Sub mnu_Help_Click() Case 1, 2, 3, 4 Form3.Show End Sub SqlCmd = Private Sub mnu_PRINT_Click() "SELECT * FROM TableO;" Form2.PrintForm Set Rs = End Sub DBCur.OpenRecordset(SqlCmd) With Rs Private Sub Combol_Clkk() If .RecordCount > 0 Then Do While Not .EOF Select Case TFIndex If Not IsNull(.Fields("Combo2")) Then Combo2.AddItem .Fields("combo2") Case 1 .MoveNext Loop Select Case Sublindex End If End With Case Rice Rs.Close

Combo2.Clear End Select

Select Case Combol.Listlndex Case CABBAGE

Case 0 Combo2.Clear Combo3.Clear

SqlCmd = "SELECT * FROM Table8;" Select Case Combol.Listlndex Set Rs = DBCur.OpenRecordset(SqlCmd) Case 0 With Rs If .RecordCount > 0 Then Combo2.Visible = True Do While Not .EOF Combo3. Visible = True If Not IsNull(.Fields("Combo2")) Label2. Visible = True Then Combo2.AddItem .Fields("combo2") Label3. Visible = True .MoveNext Label5. Visible = True Loop End If SqlCmd = End With "SELECT * FROM Table5;" Rs.Close Set Rs = DBCur.OpenRecordset(SqlCmd)

-202- With Rs Label3.Visible = False If .RecordCount > 0 Then Label5.Visible = True Do While Not .EOF If Not IsNull(.Fields("Combo2")) SqlCmd = Then Combo2.AddItem .Fields("combo2") "SELECT * FROM Table4;" If Not IsNull(.Fields("Combo3")) Set Rs = • • Then Combo3.AddItem .Fields("combo3") DBCur.OpenRecordsetCSqlCmd) .MoveNext With Rs Loop If .RecordCount > 0 Then End If Do While Not .EOF End With If Not IsNull(.Fields("Combo2")) Rs.Close Then Combo2.AddItem .Fields("combo2") .MoveNext Case 1, .2, 3, 5 Loop End If End With Combo2. Visible = True Rs.Close LabelZ Visible = True Combo3.Visible = False End Select Label3.Visible = False End Select Label5.Visible = True End Select

SqlCmd = End Sub "SELECT * FROM Tabled" Private Sub Commandl_Click() Set Rs = DBCur.OpenRecordset(SqlCmd) With Rs Select Case TFIndex If .RecordCount > 0 Then Do While Not .EOF Case 1 If Not IsNull(.Fields("Combo2")) Then Combo2.AddItem .Fields("combo2") Select Case Sublindex .MoveNext Loop End If Case Rice End With Rs.Close If Len(Combol) = 0 Then MsgBox " Case 4 *}." & vbCrLf _ Combo2.Visible = True & " Label2.Visible = True vbExdamation, _ Combo3. Visible = False

-203- End With Exit Sub Rs.Close End If Case 1 SqlCmd = "SELECT * FROM " & If Len(Combo2) = 0 Then TextZText & " WHERE Nuclide="' & MsgBox "A|#°1 •&§!£]*] &5iNri~l Combol.Text & "';" 4." & vbCrLf _ Set Rs = & »Al#-g- ymw ^AlJj..", DBCur.OpenRecordset(SqlCmd) vbExclamation, _ With Rs If .RecordCount > 0 Then Textl7.Text = .FieldsC'day" & Exit Sub ComboZListlndex + 1) End If Else Textl7.Text = "No Data" End If If Len(Combo3) = 0 Then End With MsgBox " *?•$)?} tim^x] &SHri~| Rs.Close 4." & vbCrLf _ End Select & WJM)t- U^aM f^l.2..", Case 1, 2, 3, 4 vbExclamation, _ Select Case Combo3.ListIndex Case 0 Exit Sub SqlCmd = "SELECT * FROM " & End If Text3.Text & " WHERE Nuclide="' & Combol.Text & "';" Set Rs = Select Case Combol.Listlndex DBCur.OpenRecordset(SqlCmd) Case 0 With Rs Select Case Combo3.ListIndex If .RecordCount > 0 Then Case 0 Textl7.Text = .FieldsC'day" & SqlCmd = "SELECT * FROM " & Combo2.ListIndex + 1) Textl.Text & " WHERE Nuclide='" & Else Combol.Text & "';" Textl7.Text = "No Data" Set Rs = End If DBCur.OpenRecordset(SqlCmd) End With With Rs Rs.Close If .RecordCount > 0 Then Case 1 Textl7.Text = .FieldsC'day" & SqlCmd = "SELECT * FROM " & Combo2.ListIndex + 1) Text4.Text & " WHERE Nuclide='" & Else Combol.Text & "';" Textl7.Text = "No Data" Set Rs = • End If DBCur.OpenRecordset(SqlCmd)

-204- With Rs Textl7.Text = .FieldsC'day" & If .RecordCount > 0 Then Combo2.ListIndex + 1) Textl7.Text = .FieldsC'day" & Else Combo2.ListIndex + 1) Textl7.Text = "No Data" Else End If Textl7.Text = "No Data" End With End If Rs.Close End With Rs.Close End Select End Select Case RADISH If Len(Combol) = 0 Then MsgBox " 4." & vbCrLf _ & " Case soybean vbExclamation, _ If Len(Combol) = 0 Then MsgBox "«?*«>1 Exit Sub 4." & vbCrLf _ End If & "«!*& « vbExclamation, _ If Len(Combo2) = 0 Then MsgBox " Exit Sub 4." & vbCrLf _ End If & " vbExclamation, _ If Len(Combo2) = 0 Then MsgBox " Exit Sub 4." & vbCrLf _ End If & " vbExclamation, If Len(Combo3) = 0 Then Exit Sub MsgBox H End If 4." & vbCrLf _ & BJ SqlCmd = "SELECT * FROM " & vbExclamation, _ Text5.Text & " WHERE Nuclide='" & Combol.Text & "';" Exit Sub Set Rs = End If DBCur.OpenRecordset(SqlCmd) With Rs If .RecordCount > 0 Then SqlCmd = "SELECT * FROM " &

-205- Combo3.Text & " WHERE Nuclide='" & If Len(Combo3) = 0 Then Combol.Text & "';" MsgBox " Set Rs = ." & vbCrLf _ DBCur.OpenRecordset(SqlCmd) & "^3* With Rs vbExclamation, _ If .RecordCount > 0 Then Textl7.Text = .FieldsC'day" & Exit Sub Combo2.ListIndex + 1) End If Else Textl7.Text = "No Data" SqlCmd = "SELECT * FROM " & End If Combo3.Text & " WHERE Nuclide='" & End With Combol.Text & "';" Rs.Close Set Rs = DBCur.OpenRecordset(SqlCmd) With Rs If .RecordCount > 0 Then Case CABBAGE Textl7.Text = .FieldsC'day" & Combo2.ListIndex + 1) If Len(Combol) = 0 Then Else MsgBox "*li

Exit Sub End If Case 1, 2, 3, 5

If Len(Combo2) = 0 Then Select Case Combol.Listlndex MsgBox "^l#0] "y^s]*] &&# Case 0 ^14." & vbCrLf _ If Len(Combo2) = 0 Then MsgBox "^1^°] ^^£1*1 Q%[*w vbExclamation, _ M4." & vbCrLf _ & "^l^-ir ^^j^f^ ^^A]-SI.", Exit Sub vbExclamation, _ End If

Exit Sub SqlCmd = "SELECT * FROM " & End If Text7.Text & " WHERE Nuclide='" & Combol.Text & "';" Set Rs =

-206- DBCur.OpenRecordset(SqlCmd) With Rs If .RecordCount > 0 Then Case REDPEPPER Textl7.Text = .FieldsC'day" & Combo2.ListIndex + 1) • If Len(Combo4) = 0 Then Else MsgBox "^#<>i Textl7.Text = "No Data" A!' & vbCrLf _ End If & "•£#£ 3 End With vbExclamation, _ Rs.Close Exit Sub End If

If Len(Combol) = 0 Then Case 4 MsgBox "«?^°1 $33*1 A." & vbCrLf _ If Len(Combo2) = 0 Then & "«^# $ MsgBox "^l^V^l '333 vbExclamation, _ ^ A." & vbCrLf _ & " Exit Sub vbExclamation, _ End If

Exit Sub If Len(Combo2) = 0 Then End If MsgBox "*]# 4." & vbCrLf _ SqlCmd = "SELECT * FROM " & & "<*.]#-§• Text6.Text & " WHERE Nuclide='" & vbExclamation, _ Combol.Text & "';" Set Rs = Exit Sub DBCur.OpenRecordset(SqlCmd) End If With Rs If .RecordCount > 0 Then Textl7.Text = .FieldsC'day" & If Len(Combo3) = 0 Then Combo2.ListIndex + 1) MsgBox W Else 4." & vbCrLf _ Textl7.Text = "No Data" & '/ End If vbExclamation, _ End With Rs.Close Exit Sub End If End Select

-207 Select Case Combo4.ListIndex DBCur.OpenRecordset(SqlCmd) Case 0 With Rs Select Case Combo3.ListJndex If .RecordCount > 0 Then Case 0 Textl7.Text = .FieldsC'day" & SqlCmd = "SELECT * FROM " Combo2.ListIndex + 1) & Text8.Text & " WHERE Nuclide="' & Else Combol.Text & "';" Textl7.Text = "No Data" Set Rs = End If DBCur.OpenRecordset(SqlCmd) End With With Rs Rs.Close If .RecordCount > 0 Then Case 1 Textl7.Text = .FieldsC'day" & SqlCmd = "SELECT * FROM " Combo2.ListIndex + 1) & Textll.Text & " WHERE Nuclide='" & Else Combol.Text & "';" Textl7.Text = "No Data" Set Rs = End If DBCur.OpenRecordset(SqlCmd) End With With Rs Rs.Close If .RecordCount > 0 Then Case 1 Textl7.Text = .FieldsC'day" & SqlCmd = "SELECT * FROM " Combo2.ListIndex + 1) & Text9.Text & " WHERE Nuclide="' & Else Combol.Text & "';" Textl7.Text = "No Data" Set Rs = End If DBCur.OpenRecordset(SqlCmd) End With With Rs Rs.Close If .RecordCount > 0 Then End Select Textl7.Text = .FieldsC'day" & End Select Combo2.ListIndex + 1) Else Textl7.Text = "No Data" End If Case CUCUMBER End With Rs.Close If Len(Combol) = 0 Then End Select MsgBox "^#6)

-208- If Len(Combo2) = 0 Then vbExclamation, _ MsgBox "*1#°1 <3^s}*l &$Nri-} "

If Len(Combo3) = 0 Then vbExclamation, _ MsgBox "•¥•$! 7|- S3 ^3*] &SHrM cj-." & vbCrLf _ Exit Sub End If vbExclamation, _ SqlCmd = "SELECT * FROM " & Exit Sub Textl2.Text & " WHERE Nuclide='" & End If ComboLText & "';" Set Rs = SqlCmd = "SELECT * FROM " & DBCur.OpenRecordset(SqlCmd) Combo3.Text & " WHERE Nuclide='" & With Rs Combol.Text & "';" If .RecordCount > 0 Then Set Rs = Textl7.Text = .FieldsC'day" & DBCur.OpenRecordset(SqlCmd) Combo2.ListIndex + 1) With Rs Else If .RecordCount > 0 Then Textl7.Text = "No Data" Textl7.Text = .FieldsC'day" & End If Combo2.ListIndex + 1) End With Else Rs.Close Textl7.Text = "No Data" End If End Select End With Rs.Close Case 2

Select Case Sub2index Case POTATO

If Len(Combol) = 0 Then Case ShilRice MsgBox " If Len(Combol) = 0 Then 4." & vbCrLf _ MsgBox "^#<>1 & " ." & vbCrLf _

-209- & "« DBCur.OpenRecordset(SqlCmd) vbExclamation, _ With Rs If .RecordCount > 0 Then Exit Sub Textl7.Text = .FieldsC'day" & End If Combo2.ListIndex + 1) Else If Len(Combo2) = 0 Then Textl7.Text = "No Data" MsgBox "Mil End If cf." & vbCrLf _ End With & "A)^V^ Rs.Close vbExclamation, _

Exit Sub Case ShilRadish End If If Len(Combol) = 0 Then MsgBox " 4." & vbCrLf _ & " Case ShilCabbage vbExclamation,

If Len(Combol) = 0 Then Exit Sub MsgBox " End If 4." & vbCrLf _ & " If Len(Combo2) = 0 Then vbExclamation, _ MsgBox "A]^:6] ^^5) 4." & vbCrLf _ Exit Sub & "^]^^r 'S End If vbExclamation, _

If Len(Combo2) = 0 Then Exit Sub MsgBox "*1?M 333 End If 4." & vbCrLf _ End Select & "^m# a vbExclamation, _ Case 3

Exit Sub End If Select Case Sub3index

SqlCmd = "SELECT * FROM " & 'a} Textl3.Text & " WHERE Nuclide='" & Case ResRice Combol.Text & "';" If Len(Combol) = 0 Then Set Rs = MsgBox "

-210- ." & vbCrLf vbExclamation, _ vbExclamation, _ Exit Sub End If Exit Sub End If If Len(Combo3) = 0 Then If Len(Combo2) = 0 Then MsgBox "^3)?} $33*1 MsgBox "A];T_H $33*1 4." & vbCrLf _ 4." & vbCrLf _ & "Jf^t- &'•*)#•& $3*H vbExclamation,. vbExclamation, _ "$ 3 £•??•" Exit Sub Exit Sub End If End If

SqlCmd = "SELECT * FROM " & If Len(Combo3) = 0 Then Combo3.Text & " WHERE Nuclide='" & MsgBox " Combol.Text & "';" 4." & vbCrLf _ Set Rs = & "^ DBCur.OpenRecordset(SqlCmd) vbExclamation, _ With Rs If .RecordCount > 0 Then Exit Sub Textl7.Text = .FieldsC'day" & Combo2.ListIndex + 1) Else Case ResCabbage Textl7.Text = "No Data" End If If Len(Combol) = 0 Then End With MsgBox "«^<>1 -9^3 Rs.Close 4." & vbCrLf _

& "«(*•& vbExclamation, _ Case ResRadish If Len(Combol) = 0 Then Exit Sub MsgBox "^#*1 $3= End If 4." & vbCrLf _

If Len(Combo2) = 0 Then vbExclamation, _ MsgBox " 4." & vbCrLf _ Exit Sub & " End If -211- Top = Screen.Height / 2 - Height / 2 If Len(Combo2) = 0 Then Left = Screen.Width / 2 MsgBox "*)#°1 *a^s|*l &S *4." & vbCrLf _ Select Case TFIndex & "Al?Hi- <3^'S1-0^ ^Qs;15..", Case 1 vbExclamation, _ GoSub TF1 Case 2 Exit Sub GoSub TF2 End If Case 3 GoSub TF3 Case 4 If Len(Combo3) = 0 Then GoSub TF4 MsgBox '/Jf37> ^3*] &$*].£..", Exit Sub vbExclamation, _ TFl: Exit Sub Select Case Sublindex End Select Case Rice 'wj ^l0]^!]^ Form2.Caption = "^[o] Case 4 Combo4. Visible = False Label6. Visible = False Select Case Sub4index Combol .Clear Combo3.Clear Case TraRice Combol.Addltem "H-3" ComboLAddltem "Mn-54" Case TraRaddish ComboLAddltem "Co-60" ComboLAddltem "Sr-85" Combol.Addltem "Cs-137" End Select Combo3.AddItem "Seed" End Select Combo3.AddItem "Straw" Case soybean '•§• ^^I^IT1 End Sub Combol.Clear Private Sub Form_Load() Combo2.Clear

Set DBCur = OpenDatabaseCApp.Path & Form2.Caption = " "\db2.mdb") Combo3. Visible = False Combo4. Visible = False

-212- Label6. Visible = False Loop Label3. Visible = False End If End With SqlCmd = "SELECT * FROM TablelJ" Rs.Close Set Rs = DBCur.OpenRecordset(SqlCmd) With Rs If .RecordCount > 0 Then Do While Not .EOF Case CABBAGE If Not IsNull(.Fields("Combol")) Then Combol.Addltem .FieldsC'combol") Form2.Caption If Not IsNull(.Fields("Combo2")) Combol.Clear Then Combo2.AddItem .Fields("combo2") .MoveNext Combol.Addltem "H-3" Loop ComboLAddltem "Mn-54" End If ComboLAddltem "Co-60" End With Combol.Addltem "Sr-85" Rs.Close Combol.Addltem "1-131" Case RADISH '•¥• #°]7))^ ComboLAddltem "Cs-137"

Form2.Caption = " Combo2. Visible == False Combo3.Visible == False Combol.Clear Label2. Visible = False Combo2.Clear Label3. Visible = False Combo3.Clear Combo4.Visible := False Combo4. Visible = False Label6. Visible = False Label6. Visible = False Label5. Visible = False

SqlCmd = "SELECT * FROM Tabled" Set Rs = Case REDPEPPER DBCur.OpenRecordset(SqlCmd) Form2.Caption = '**]* With Rs If .RecordCount > 0 Then Combol.Clear Do While Not .EOF Combo2.Clear If Not IsNuIl(.Fields("Combol")) Combo3.Clear Then Combol.Addltem .FieldsC'combol") Combo4.Clear If Not IsNull(.Fields("Combo2")) Then Combo2.AddItem .Fields("combo2") Combo4.AddItem "Red" If Not IsNull(.Fields("Combo3")) Combo4.AddItem "Green" Then Combo3.AddItem .Fields("combo3") Combo3.AddItem "1st" .MoveNext Combo3.AddItem "2nd"

-213- If Not IsNull(.Fields("Combo2")) Then Combo2.AddItem .Fields ("combo2") SqlCmd = "SELECT * FROM Table6;" If Not IsNull(.Fields("Combo3")) Set Rs = Then Combo3.AddItem .Fields("combo3") DBCur.OpenRecordset(SqlCmd) .MoveNext With Rs Loop If .RecordCount > 0 Then End If Do While Not .EOF End With If Not IsNulK.FieldsC'Combol")) Rs.Close Then Combol.Addltem .FieldsC'combol") If Not IsNull(.Fields("Combo2")) Then Combo2.AddItem .Fields("combo2") .MoveNext Loop Case POTATO End If End With Form2.Caption Rs.Close Combol.Clear Combo2.Clear

Combo4. Visible = False Combo3. Visible = False Label6. Visible = False Case CUCUMBER Label3.Visible = False SqlCmd = "SELECT * FROM Tabled" Form2.Caption = "3 Set Rs = DBCur.OpenRecordset(SqlCmd) Combol.Clear With Rs Combo2.Clear If .RecordCount > 0 Then Combo3.Clear Do While Not .EOF If Not IsNulK.FieldsC'Combol")) Combo4. Visible = False Then Combol.Addltem .FieldsC'combol") Label6. Visible = False If Not IsNull(.Fields("Combo2")) Then Combo2.AddItem .Fields("combo2") SqlCmd = "SELECT * FROM Table7;" .MoveNext Set Rs = Loop DBCur.OpenRecordset(SqlCmd) End If With Rs End With If .RecordCount > 0 Then Rs.Close Do While Not .EOF End Select If Not IsNulK.FieldsC'Combol")) Return Then Combol.Addltem .FieldsC'combol")

-214- TF2: Label6. Visible = False Select Case Sub2index Label2.Caption = " Label4.Caption = " SqlCmd = "SELECT * FROM Case ShilRice Tableinterception;" Form2.Caption = " Set Rs = DBCur.OpenRecordset(SqlCmd) Combol.Clear With Rs Combo2.Clear If .RecordCount > 0 Then Combo3. Visible = False Do While Not .EOF Label3. Visible = False If Not IsNull(.Fields("Combol")) Combo4.Visible = False Then Combol.Addltem .FieldsC'combol") Label6. Visible = False If Not IsNull(.Fields("Combo2")) Label2.Caption = " Then Combo2.AddItem .Fields("combo2") Label4.Caption = " .MoveNext SqlCmd = "SELECT * FROM Loop Tableinterceptrice;" End If Set Rs = End With DBCur.OpenRecordset( SqlCmd) Rs.Close With Rs If .RecordCount > 0 Then Do While Not .EOF Case ShilRadish If Not IsNulK.FieldsC'Combol")) Form2.Caption = Then Combol.Addltem .FieldsC'combol") If Not IsNull(.Fields("Combo2")) Combo3. Visible = False Then Combo2.AddItem .Fields("combo2") Label3. Visible = False .MoveNext Combo4. Visible = False Loop Label6. Visible = False End If Label2.Caption = " End With LabeRCaption = " Rs.Close SqlCmd = "SELECT * FROM Tableinterceptradish;" Set Rs = Case ShilCabbage DBCur.OpenRecordset(SqlCmd) Form2.Caption = " With Rs If .RecordCount > 0 Then Combol.Clear Do While Not .EOF Combo2.Clear If Not IsNullCFieldsC'Combol")) Combo3. Visible = False Then Combol.Addltem .FieldsC'combol") Label3.Visible = False If Not IsNull(.Fields("Combo2")) Combo4. Visible = False Then Combo2.AddItem .Fields("combo2")

-215- .MoveNext End If Loop End With End If Rs.Close End With Rs.Close Case ResCabbage End Select Form2.Caption = Return Label2.Caption = Label4.Caption = TF3: Combol.Clear Combo2.Clear Select Case Sub3index Combo3.Clear

Combo4. Visible = False Case ResRice Label6. Visible = False

Form2.Caption = " SqlCmd = "SELECT * FROM Label2.Caption = " Tableremaining;" Label4.Caption = "#•?!••£•" Set Rs = Combol.Clear DBCur.OpenRecordset(SqlCmd) Combo2.Clear With Rs Combo3.Clear If .RecordCount > 0 Then Do While Not .EOF Combo4. Visible = False If Not IsNullCFieldsC'Combol")) Label6. Visible = False Then Combol.Addltem .FieldsC'combol") If Not IsNull(.Fields("Combo2")) SqlCmd = "SELECT * FROM Then Combo2.AddItem .Fields("combo2") Tableremainricel" If Not IsNull(.Fields("Combo3")) Set Rs = Then Combo3.AddItem .Fields("combo3") DBCur.OpenRecordset(SqlCmd) .MoveNext With Rs Loop If .RecordCount > 0 Then End If Do While Not .EOF End With If Not IsNulK.FieldsC'Combol")) Rs.Close Then Combol.Addltem .FieldsC'combol") If Not IsNull(.Fields("Combo2")) Then Combo2.AddItem .Fields("combo2") Case ResRadish If Not IsNull(.Fields("Combo3")) Then Combo3.AddItem .Fields("combo3") Form2.Caption = " .MoveNext Label2.Caption = " Loop LabeW.Caption = "

-216- Combol.Clear Combo4. Visible = False Combo2.Clear Label6. Visible = False Combo3.Clear SqlCmd = "SELECT * FROM Combo4. Visible = False Tabletransrice;" Label6. Visible = False Set Rs = DBCur.OpenRecordset(SqlCmd) SqlCmd = "SELECT * FROM With Rs Tableremainradish;" If .RecordCount > 0 Then Set Rs = Do While Not .EOF DBCur.OpenRecordset(SqlCmd) If Not IsNulK.FieldsC'Combol")) With Rs Then Combol.Addltem .FieldsC'combol") If .RecordCount > 0 Then If Not IsNull(.Fields("Combo2")) Do While Not .EOF Then Combo2.AddItem .Fields("combo2") If Not IsNulK.FieldsCCombol")) If Not IsNull(.Fields("Combo3")) Then Combol.Addltem .FieldsO'combol") Then Combo3.AddItem .Fields("combo3") If Not IsNull(.Fields("Combo2")) .MoveNext Then Combo2.AddItem .Fields("combo2") Loop If Not IsNull(.Fields("Combo3")) End If Then Combo3.AddItem .Fields("combo3") End With .MoveNext Rs.Close Loop End If End With Case TraRadish Rs.Close Form2.Caption = End Select Label2.Caption = Return Label4.Caption = Combol .Clear TF4: Combo2.Clear Combo3.Clear Select Case Sub4index Combo4. Visible = False Label6. Visible = False Case TraRice Form2.Caption = SqlCmd = "SELECT * FROM Label2.Caption = Tabletransradish;" Label4.Caption = Set Rs = Combol.Clear DBCur.OpenRecordset(SqlCmd) Combo2.Clear With Rs Combo3.Clear If .RecordCount > 0 Then Do While Not .EOF

-217- If Not IsNulK.FieldsC'Combol")) End Then Combol.Addltem .FieldsC'combol") Attribute VB_Name = "Form3" If Not IsNull(.Fields("Combo2")) Attribute VB_GlobalNameSpace = False Then Combo2.AddItem .Fields("combo2") Attribute VB.Creatable = False If Not IsNull(.Fields("Combo3")) Attribute VB_PredeclaredId = True Then Combo3.AddItem ,Fields("combo3") Attribute VBJExposed = False .MoveNext Private Sub VScrolll_Change() Loop End If End Sub End With Rs.Close Private Sub Filel_Click() End Select End Sub Return Private Sub Timerl_Timer() End Sub Private Sub Toolbarl_ButtonClick(ByVal End Sub Button As MSComctlLib.Button) Select Case ButtonJndex

Case 1 mnu_PRINT_Click Case 2 mnu_exit_Click Case 3 mnu_Help_Click End Select

End Sub VERSION 5.00 Begin VB.Form Form3 Caption = "Form3" ClientHeight 5625 ClientLeft 60 ClientTop 345 ClientWidth 8130 LinkTopic = "Form3" ScaleHeight = 5625 ScaleWidth 8130 StartUpPosition = 3 'Windows 7]-g-

-218- VERSION 5.00 End Begin VB.Form Form£) Begin VB.OLE OLE58 Caption = "Graph" Class = "Excel.Chart.8" ClientHeight 6345 Height 5055 ClientLeft 60 Left 360 ClientTop 345 OleObjectBlob = ClientWidth 8010 "Form9.frx":8A48 LinkTopic = "Form9" Tablndex 57 ScaleHeight = 6345 Top 600 ScaleWidth 8010 Width 7335 StartUpPosition = 3 'Windows ?1£- End Begin VB.OLE OLE57 Begin VB.OLE OLE61 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height 5055 Height = 5055 Left 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":B860 "Form9.frx":0000 Tablndex 56 Tablndex = 60 Top 600 Top = 600 Width 7335 Width = 7335 End End Begin VB.OLE OLE56 Begin VB.OLE OLE60 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height 5055 Height = 5055 Left 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":E678 "Form9.frx":2E18 Tablndex 55 Tablndex = 59 Top 600 Top = 600 Width 7335 Width = 7335 End End Begin VB.OLE OLE55 Begin VB.OLE OLE59 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height 5055 Height = 5055 Left 360 Left = 360 OleObjectBlob = OleObjectBlob = Form9.frx":ll490 "Form9.frx":5C30 Tablndex 54 Tablndex - 58 Top 600 Top = 600 Width 7335 Width = 7335 End

-219- Begin VB.OLE OLE54 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":lFB08 "Form9.frx":142A8 Tablndex = 49 Tablndex = 53 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE49 Begin VB.OLE OLE53 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":22920 "Form9.frx":170C0 Tablndex = 48 Tablndex = 52 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE48 Begin VB.OLE OLE52 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = Form9.frx":25738 "Form9.frx":19ED8 Tablndex = 47 Tablndex = 51 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE47 Begin VB.OLE OLE51 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 4935 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":2S550 "Form9.frx":lCCF0 Tablndex = 46 Tablndex = 50 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE46 Begin VB.OLE OLE50 Class = "Excel.Chart.8"

-220- Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":36BC8 "Form9.frx":2B368 Tablndex = 41 Tablndex = 45 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE41 Begin VB.OLE OLE45 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":399E0 "Form9.frx":2E180 Tablndex = 40 Tablndex = 44 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE40 Begin VB.OLE OLE44 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":3C7F8 "Form9.frx":30F98 Tablndex = 39 Tablndex = 43 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE39 Begin VB.OLE OLE43 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":3F610 "Form9.frx":33DB0 Tablndex = 38 Tablndex = 42 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE38 Begin VB.OLE OLE42 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360

-221- OleObjectBlob = "Form9.frx":4DC88 "Form9.frx":42428 Tablndex = 33 Tablndex = 37 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE33 Begin VB.OLE OLE37 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":510A0 "Form9.frx":45240 Tablndex = 32 Tablndex = 36 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE32 Begin VB.OLE OLE36 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":53EB8 "Form9.frx":48058 Tablndex = 31 Tablndex = 35 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE31 Begin VB.OLE OLE35 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":56CD0 "Form9.frx":4AE70 Tablndex = 30 Tablndex = 34 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE30 Begin VB.OLE OLE34 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":59AE8

-222- Tablndex = 29 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE25 Begin VB.OLE OLE29 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":68360 "Form9.frx":5CB00 Tablndex = 24 Tablndex = 28 Top = 600 Top = 600 Width = 7335 Width = 7335 End : End Begin VB.OLE OLE24 Begin VB.OLE OLE28 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":6BB78 "Form9.frx":5F918 Tablndex = 23 Tablndex = 27 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE23 Begin VB.OLE OLE27 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":6E990 "Form9.frx":62730 Tablndex = 22 Tablndex = 26 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE22 Begin VB.OLE OLE26 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":717A8 "Form9.frx":65548 Tablndex = 21 Tablndex = 25 Top = 600

-223- Width = 7335 End End Begin VB.OLE OLE17 Begin VB.OLE OLE21 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":80620 "Form9.frx":745C0 Tablndex = 16 Tablndex = 20 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE16 Begin VB.OLE OLE20 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":83438 "Form9.frx":77BD8 Tablndex = 15 Tablndex = 19 Top = 600 Top =600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE15 Begin VB.OLE OLE19 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":86250 "Form9.frx":7A9F0 Tablndex = 14 Tablndex = 18 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE14 Begin VB.OLE OLE18 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":89068 "Form9.frx":7D808 Tablndex = 13 Tablndex = 17 Top = 600 Top = 600 Width = 7335 Width = 7335 End

-224- Begin VB.OLE OLE13 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":978E0 "Form9.frx":8BE80 Tablndex = 8 Tablndex = 12 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE8 Begin VB.OLE OLE12 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":9A6F8 "Form9.frx":8EC98 Tablndex = 7 Tablndex = 11 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE7 Begin VB.OLE OLEll Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":9D510 "Form9.frx":91AB0 Tablndex = 6 Tablndex = 10 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE6 Begin VB.OLE OLE10 Class = "Excel.Chart.8" Class = "Excel.Chart.8" Height = 5055 Height = 5055 Left = 360 Left = 360 OleObjectBlob = OleObjectBlob = "Form9.frx":A0528 "Form9.frx":94AC8 Tablndex = 5 Tablndex = 9 Top = 600 Top = 600 Width = 7335 Width = 7335 End End Begin VB.OLE OLE5 Begin VB.OLE OLE9 Class = "Excel.Chart.8"

-225- Height •• 5055 Left = 360 Left • 360 OleObjectBlob = OleObjectBlob = "Form9.frx":AEFA0 "Form9.frx":A3340 Tablndex = 0 Tablndex = 4 Top = 600 Top - 600 Width = 7335 Width = 7335 End End End Begin VB.OLE OLE4 Attribute VB_Name = "Form9" Class "Excel.Chart.8" Attribute VB_GlobalNameSpace = False Height 5055 Attribute VB_Creatable = False Left 360 Attribute VB_PredeclaredId = True OleObjectBlob = Attribute VB_Exposed = False "Form9.frx":A6158 Private Sub FormJLoadO Tablndex = 3 Top = 600 Form9.OLEl.Visible = False Width = 7335 Form9.OLE2. Visible = False End Form9.OLE3. Visible = False Begin VB.OLE OLE3 Form9.OLE4.Visible = False Class = "Excel.Chart.8" Form9.0LE5. Visible = False Height 5055 Form9.OLE6. Visible = False Left = 360 Form9.OLE7. Visible = False OleObjectBlob = Form9.OLE8. Visible = False "Form9.frx":A8F70 Form9.OLE9. Visible = False Tablndex = 2 Form9.OLE10. Visible = False Top = 600 Form9.OLEll.Visible = False Width = 7335 Form9.OLE12. Visible = False End Form9.OLE13. Visible = False Begin VB.OLE OLE2 Form9.OLE14. Visible = False Class = "Excel.Chart.8" Form9.OLE15. Visible = False Height = 5055 Form9.OLE16.Visible = False Left = 360 Form9.OLE17. Visible = False OleObjectBlob = Form9.OLE18. Visible = False "Form9.frx":ABF88 Form9.OLE19. Visible = False Tablndex = 1 Form9.OLE20. Visible = False Top = 600 Form9.OLE21 .Visible = False Width = 7335 Form9.OLE22. Visible = False End Form9.OLE23. Visible = False Begin VB.OLE OLE1 Form9.OLE24. Visible = False Class = "Excel.Chart.8" Form9.OLE25. Visible = False Height = 5055 Form9.OLE26. Visible = False

-226- Form9.OLE27. Visible = False Form9.OLE28. Visible = False Form9.OLE29. Visible = False Form9.OLE30. Visible = False Form9.OLE31.Visible = False Form9.OLE32. Visible = False Form9.OLE33.Visible = False Form9.OLE34. Visible = False Form9.OLE35. Visible = False Form9.OLE36. Visible = False Form9.OLE37. Visible = False Form9.OLE38. Visible = False Form9.OLE39. Visible = False Form9.OLE40. Visible = False Form9.0LE41. Visible = False Form9.OLE42. Visible = False Form9.OLE43. Visible = False Form9.OLE44. Visible = False Form9.OLE45. Visible = False Form9.OLE46. Visible = False Form9.OLE47. Visible = False Form9.OLE48. Visible = False Form9.OLE49. Visible = False Form9.OLE50. Visible = False Form9.OLE51.Visible = False Form9.OLE52.Visible = False Form9.0LE53. Visible = False Form9.OLE54. Visible = False Form9.OLE55. Visible = False Form9.OLE56. Visible = False Form9.OLE57. Visible = False Form9.OLE58. Visible = False Form9.OLE59. Visible = False Form9.OLE60. Visible = False Form9.OLE61.Visible = False 'Form9.OLE62.Visible = False 'Form9.OLE63. Visible = False End Sub

-227- o —i

^^71 INIS

KAERI/RR-2035/99 A*/ *A §7>7l# 7fll

^ •§•

6 <3 7 4 3 * ^ * 1, 1$ 1 )

71^ ^^ 2000

5)1 Ol Xl 227 p. 0 ) a*( ) 71 26 Cm.

*?H(O), LHl^ J2 ^^

71 -54, Co-57, Sr-85, Ru-108, Cs-134) ^ H-3 BIBLIOGRAPHIC INFORMATION SHEET Performing Org. Sponsoring Org. Standard Report No. IMS Subject Code Report No. Report No. KAERI/RR-2035/99

Title / Subtitle Radioecologoical Studies on Terrestrial Food Chain Analysis for Accidental Release Project Manager and Department Choi, Yong Ho (Environmental Radiation Assessment Div.) Researcher and Lee, Jeong Ho et. al. ( Department Publication Publication Taejon Publisher KAERI 2000. 3 Place Date Page 227 p. 111. & Tab. Yes( O ), No ( ) Size 26 Cm.

Note Open( O ), Restricted( Classified Report Type Research Report Class Document Sponsoring Org. Contract No.

Abstract (15-20 Lines) por investigating the contamination pathways of major radionuclides in staple food crops, greenhouse experiments in which rice, Chinese cabbage and radish were exposed to mixed y radionuclides of Mn-54, Co-60, Sr-85, Ru-103 and Cs-134 and H-3 at different growth stages, were conducted I to generate data on parameters concerning the direct contamination of those j crops. Experiments of the exposure to iodine gas were also performed for rice j and radish at their various growth stages to obtain contamination parameters of elemental iodine. Based on data obtained from the experiments mentioned above, a database program was constructed to make it possible to search parameter values for different radionuclides, crops and deposition times in an easy way and have an graphic output of the variation in the contamination parameter with deposition times. Paddy-field soils were collected from 5 or 6 places around Kori and Youngkwang NPPs and physicochemical properties and background radioactivity levels of the soils were investigated. Soil-to-rice transfer factors of Sr-90 and Cs-137 in the collected soils were determined for different RI application times. For Kori soils, transfer factors were also measured in the second year to investigate the yearly variation. In addition, the conceptual design of an automatized experimental greenhouse was performed to be used as a basic material for a detailed design for the construction in the future. Subject Keywords Radionuclide, HTO, I gas, Rice, Chinese cabbage, radish, (About 10 words) Contamination pathway, Contamination parameter, Transfer factor, Paddy-field soil, Experimental greenhouse