A Four-Arm Circularly Polarized High-Gain High-Tilt Beam Curl Antenna for Beam Steering Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
H0 STET LER LQPCKET File Copy ORIGINAL
BAKER & H 0 S T E T LER LQPCKET FilE copy ORIGINAL COUNSELLORS AT LAW WASHINGTON SQUARE, SUITE 1100 • 1050 CONNECTICUT AVENUE, N.W. • WASHINGTON, D.C. 20036-5304 • (202) 861-1500 FAX (202) 861-1783 WRITER'S DIRECT DIAL NUMBER (202) 861-1624 December 17, 1997 VIA HAND DELIVERY Ms. Magalie Roman Salas Secretary Federal Communications Commission 1919 M Street, N.W. Room 222 Washington, D.C. 20554 Re: Advanced Television Systems and Their Impact upon the Existing Television Broadcast Service MM Docket No. 87-268 Comments Dear Ms .. Salas: We are transmitting herewith the original and five copies of the comments of Scripps Howard Broadcasting Company in the above captioned proceeding. The comments are filed pursuant to the Commission's Public Notice of December 2, 1997. Please contact the undersigned if you have any questions. Donald Enclosures (JJ-~ No. of Copies rec'd_. _ List ABCDE ORLANDO, FLORIDA CLEVELAND. OHIO COLUMBUS, OHIO DENVER. COLORADO HOUSTON. TEXAS LONG BEACH, CALIFORNIA Los ANGELES. CALIFORNIA (216) 621-0200 (614) 228-1541 (303) 861-0600 (713) 751-1600 (562) 432-2827 (213) 624-2400 (407) 649-4000 Before the DOCKET ALE CQPY ORlGlNAL FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 In the matter of ) ) FCC SEEKS COMMENTS ON FILINGS ) ADDRESSING DIGITAL ) TV ALLOTMENTS, PUBLIC NOTICE ) dated December 2, 1997 ) TO: The Commission COMMENTS SUBMITTED BY SCRIPPS HOWARD BROADCASTING COMPANY These comments by Scripps Howard Broadcasting Company (SHBC) are in response to the PUBLIC NOTICE from the Federal Communications Commission (FCC) dated December 2, 1997 and signed by Richard M. Smith, Chief, Office ofEngineering and Technology. -
Experimental Results of Network-Assisted Interference Suppression Scheme Using Adaptive Beam-Tilt Switching
Hindawi International Journal of Antennas and Propagation Volume 2017, Article ID 2164038, 10 pages https://doi.org/10.1155/2017/2164038 Research Article Experimental Results of Network-Assisted Interference Suppression Scheme Using Adaptive Beam-Tilt Switching Tomoki Murakami,1 Riichi Kudo,1 Koichi Ishihara,1 Masato Mizoguchi,1 and Naoki Honma2 1 NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Yokosuka, Japan 2Faculty of Engineering, Iwate University, Morioka, Japan Correspondence should be addressed to Tomoki Murakami; [email protected] Received 4 October 2016; Accepted 18 April 2017; Published 14 May 2017 Academic Editor: Ahmed Toaha Mobashsher Copyright © 2017 Tomoki Murakami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper introduces a network-assisted interference suppression scheme using beam-tilt switching per frame for wireless local area network systems and its effectiveness in an actual indoor environment. In the proposed scheme, two access points simultaneously transmit to their own desired station by adjusting angle of beam-tilt including transmit power assisted from network server for the improvement of system throughput. In the conventional researches, it is widely known that beam-tilt is effective for ICI suppression in the outdoor scenario. However, the indoor effectiveness of beam-tilt for ICI suppression has not yet been indicated from the experimental evaluation. Thus, this paper indicates the effectiveness of the proposed scheme by analyzing multiple-input multiple- output channel matrices from experimental measurements in an office environment. -
Uhf Slot Antenna
UHF SLOT ANTENNA PROSTAR SERIES Proven performance, quality and reliability Rugged construction Directional patterns standard & custom High power rating to achieve 5 megawatts Custom electrical & mechanical beam tilt Horizontal, circular & elliptical polarization ELECTRICAL SPECIFICATIONS Polarization Horizontal, Elliptical, Circular Power Rating 1 kW to 90 kW Beam Tilt As specified by customer Null Fill As specified by customer Input Impedance 50 or 75 ohm VSWR 1.1:1 or better across band 6340 Sky Creek Dr, Sacramento, CA 95828 | T: 916.383.1177 | F: 916.383.1182 JAMPRO.com UHF SLOT ANTENNA SELECTING YOUR SLOT ANTENNA Compatible with DTV, NTSC and PAL Broadcasts JA-LS: 1 kW JAMPRO’s LOW POWER slot antenna is designed with the needs of low power UHF broadcasters in mind. Aluminum construction ensures excellent weather resistance while residing windload and weight on the tower. The unique design of the low power UHF slot antenna can be configured to provide varying levels of vertically polarized signal. The versatility of the slots allows them to be top, leg or face mounted. JA-MS: 1 to 30 kW JAMPRO’s JA/MS is the harsh environment version of the JA/LS antenna. The JA/MS is also enclosed by white UV resistant radomes for added protection from the environment. The JA/MS is an excellent choice for low power UHF broadcasters located in areas with heavy air pollution or high salt content in the air. JSL-SERIES: 5 to 40 kW JAMPRO’s Premium LOW POWER slot antenna, using marine brass, copper and virgin Teflon in construc- tion, is the finest antenna of its type. -
R&D Report 1965-08
-- --------~ ---~------------'"-~~~~-----~ -----..:.-....-~---------"'--'---~--:~~---~-- RESEARCH DEPARTMENT SPECIFICATION OF THE IMPEDANCE OF TRANSMITTING AERIALS FOR MONOCHROME AND COLOUR TELEVISION SIGNALS Technological Report No. E-ll5 (1965/8) D.J. Why the , B.Sc.(Eng.), A.M.LE.E. for Head of Research Department --~-~ ------~:..~-~-~- ---- --------------- -- --------~-------- This Report Is the property ot the British Broadcasting Corporation and may not be reproduced in any form .ithout the written permission o~ the Corporation. - --". - - ~ ---------~------------- ~---~--.----------~~ -.:-'-. Technological Report No. E-115 SPECIFICATION OF mE IMPEDANCE OF TRANSMITTING AERIALS FOR MONOCHROME AND COLOUR TELEVISION SIGNALS Section Title Page SUMMARY ... 1 1. INTRODUCTION 1 2. 405-LINE MONOaIROME SYSTEM 2 2.1. Short-delay Reflexions. 2 2.2. Long-delay Reflexions . 2 3. 625-LINE MONOaIROME SYSTEM 3 3.1. Application of 405-line Results 3 3.2. Short-delay Reflexions 3 3.3. Long-delay Reflexions 4 4. 625-LINE COLOUR SYSTEM 4 4.1. General . 4 4.2. Short-delay Reflexions 5 4.3. Long-delay Reflexions 5 4.3.1. General 5 4.3.2. Subj ecti ve Tests 5 4.3.3. Results of Subjective Tests. 8 4.3.4. Resulting Specification 10 5. REFLEXIONS DUE TO FEEDER IRREGULARITIES 11 6. APPLICATION TO PRACTICAL INSTALLATIONS 12 6.1. The Aerial Impedance Specification . 12 6.1.1. The Effect of Loss in the Feeder and Combining Filters. 12 6.1.2. The Effect of Loss in Re-reflexion at the Transmitter. 12 C~~~~_~~_~ ________: ______ ~ ________ ~~~ ___ ~~ _______ ~ __ ~~ _______ ~ __ ~ _______ ~~ __ _ Section Title Page 6.2. Specification of Reflexions due to Feeder Irregulari ties,. 14 6.2.1. -
Performance Analysis of MIMO Spatial Multiplexing Using Different Antenna Configurations and Modulation Technique in Rician Channel Hardeep Singh, Lavish Kansal
International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 34 ISSN 2229-5518 Performance Analysis of MIMO Spatial Multiplexing using different Antenna Configurations and Modulation Technique in Rician Channel Hardeep Singh, Lavish Kansal Abstract— MIMO systems which employs multiple antennas at the transmitter as well as at the receiver side is the key technique to be employed in next generation wireless communication systems. MIMO systems provide various benefits such as Spatial Diversity, Spatial Multiplexing to improve the system performance. In this paper the MIMO SM system is analysed for different antenna configurations (2×2, 3×3, 4×4) in Rician channel. The performance of the MIMO SM system is investigated for higher order modulation schemes (M-PSK, M-QAM) and Zero Forcing equalizer is employed at the receiving side. The simulation results points that if antenna configurations are shifted from 2×2 to 3×3 configuration, an improvement of 0 to 2.9 db in SNR is being noted and an improvement of 0 to 2.9 db is visualized if antenna configurations are changed from 3×3 to 4×4 configuration. Index Terms— Multiple Input Multiple Output (MIMO), Zero Forcing (ZF), Spatial Multiplexing (SM), M-ary Phase Shift Keying (M-PSK) M-ary Quadrature Amplitude Modulation (M-QAM), Bit Error Rate (BER), Signal to Noise Ratio (SNR). —————————— —————————— 1 INTRODUCTION IMO (Multiple Input Multiple Output) systems employ higher extend, but the benefits of beamforming technique are multiple antennas at both the ends of a communication limited in such environments. Mlink. The MIMO systems provide various applications In order to obtain channel state information at receiving side, such as beamforming (increasing the average SNR at receiver the pilot bits are sent along with the transmitted sequence to side), Spatial Diversity (to achieve good BER at low SNR), Spa- estimate the channel state. -
Analysis of Dual-Channel Broadcast Antennas
Analysis of Dual-Channel Broadcast Antennas Myron D. Fanton, PE Electronics Research, Inc. Abstract—The design concept is discussed for slotted UHF antennas to be located on the side of the tower, then the coverage needs of that allows the combining of a high power NTSC channel with an the station must be reviewed prior to making a decision on the adjacent DTV channel assignment using a single transmission line antenna type. Slotted antenna designs have been used and antenna. extensively for directional side mounted antennas and for extremely high power (200 kW NTSC) side mounted omni- Index Terms—Antenna Array, Slot Antennas, Antenna Bandwidth. directional antennas. I. INTRODUCTION 1.10 or UHF channels in the United States, slotted antenna 1.09 designs are typically used [1]. A primary factor in their use F 1.08 has been the ability to make the support structure of the antenna an integral part of the transmitting components. Because the 1.07 frequencies assigned to UHF allow the use of relatively small 1.06 antenna elements, the removal of part of the pipe wall to create 1.05 slots was possible with only a minimal impact an its structural VSWR integrity. This resulted in an antenna with low wind-load 1.04 characteristics and was relatively economical to fabricate. 1.03 As television markets expanded, demographics changed 1.02 and competitive pressures fostered the need for UHF stations to increase their coverage. This required higher effective radiated 1.01 1.00 powers (ERP). And as higher power transmitters came to 572 574 576 578 580 582 584 market, other benefits unique to the slotted antenna design Frequency (MHz) became evident: exceptional reliability even at extremely high Figure 1: Dual Channel Antenna VSWR input power levels and more precise control over the shaping of the elevation pattern. -
Importance of Microwave Antenna in Communication System
ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (A High Impact Factor, Monthly, Peer Reviewed Journal) Website: www.ijareeie.com Vol. 7, Issue 2, February 2018 Importance of Microwave Antenna in Communication System Shailesh Patwa1, Shubham Yadav2, Mohammad Saqib3 UG Student [BE], Dept. of ECE, Medicaps Institute of Technology and Management College, Indore, Madhya Pradesh, India1 UG Student [BE], Dept. of ECE, Medicaps Institute of Technology and Management College, Indore, Madhya Pradesh, India2 UG Student [BE], Dept. of ECE, Medicaps Institute of Technology and Management College, Indore, Madhya Pradesh, India3 ABSTRACT: This paper provide various types of information about microwave antenna in communication system. Antenna plays a crucial role in this communication system, which is used to transmit and receive the data. The classification of the antenna is based on the specifications like frequency, polarization, radiation, etc. In this we will observe some important point about microwave antenna in communication network, relay stations, transmission system, interconnection cable and inter-operations performing as an integrated whole. KEYWORDS: Microwave Antenna, Types of Antenna, Properties of Antenna, Applications of Antenna. I. INTRODUCTION The main purpose of this research to help people know many things about microwave antenna use in communication system. Microwaves are widely used for point-to-point communications because their small wavelength allows conveniently-sized antennas to direct them in narrow beams, which can be pointed directly at the receiving antenna. This allows nearby microwave equipment to use the same frequencies without interfering with each other, as lower frequency radio waves do. -
Antenna Design for Future Broadcast Technology
BROADCAST ANTENNA DESIGN TO SUPPORT FUTURE TRANSMISSION TECHNOLOGIES John L. Schadler Director of Antenna Development Dielectric L.L.C. Raymond, ME. Summary done by increasing the beam tilt at one site in order to reduce the amount of coverage area and thus the amount It doesn’t matter what future television transmission of traffic within that cell and avoid inter-cell interference technology is being discussed for the new ATSC3.0, they with neighboring cells. New groups of sites are then all have one thing in common, the need for higher data installed to fill in the gaps. The smaller cells allow for a rates and more channel capacity. Broadcasters will greater level of frequency re-use providing more channels become “Bit Managers” knowing that more power per unit coverage area. equates to higher quality of service (QoS). With broad industry consensus, assumptions can be made about next Although the method will be different, the idea of future generation systems. In general they will be based on proofing a high power broadcast antenna in anticipation orthogonal frequency division multiplexing (OFDM) of next generation broadcast requirements should be synchronous single frequency networks (SFN) limited considered. In any of the proposed next generation within the current coverage footprint as defined by the systems, the digital bandwidth is not limited by the FCC and will have the flexibility to support capacity number of users, but by the data rate supported within a growth. As a result of post-auction repack there is likely given carrier to noise ratio (C/N). Increasing the capacity to be more co-located channel sharing requiring is not done by reducing the traffic, but by increasing the broadband antenna systems with the central high power amount of throughput that can be delivered. -
Download PDF (476K)
IEICE Communications Express, Vol.6, No.6, 405–410 Performance enhancement by beam tilting in SD transmission utilizing two-ray fading Tomohiro Seki1a), Ken Hiraga2, Kazumitsu Sakamoto2, and Maki Arai2 1 College of Industrial Technology, Department of Electrical and Electronic Engineering, Nihon University, 1–2–1 Izumicho, Narashino 275–8575, Japan 2 NTT Network Innovation Laboratories, NTT Corporation, 1–1 Hikarinooka, Yokosuka 239–0847, Japan a) [email protected] Abstract: A method is proposed for enhancing the transmission perform- ance in a spatial division transmission system that utilizes the fading characteristics of two-ray ground reflection propagation. The method is tilting the elevation angle of antenna beams purposely towards out of the communicating peer. Using ray-tracing simulation, it is shown that the performance of the system is significantly improved when high-gain anten- nas with narrow beamwidth are used. Keywords: two-ray fading, parallel transmission Classification: Antennas and Propagation References [1] K. Hiraga, K. Sakamoto, M. Arai, T. Seki, T. Nakagawa, and K. Uehara, “Spatial division transmission without signal processing for MIMO detection utilizing two-ray fading,” IEICE Trans. Commun., vol. E97.B, no. 11, pp. 2491–2501, 2014. DOI:10.1587/transcom.E97.B.2491 [2] C. Cordeiro, “IEEE doc.:802.11-09/1153r2,” p. 4, 2009. [3] Wilocity: Wil6200 Chipset Datasheet. [Online]. http://wilocity.com/resources/ Wil6200-Brief.pdf. [4] W. L. Stutzman, “Estimating directivity and gain of antennas,” IEEE Antennas Propag. Mag., vol. 40, no. 4, pp. 7–11, Aug. 1998. DOI:10.1109/74.730532 [5] D. Parsons, The Mobile Radio Propagation Channel, ch. -
Dielectric • 22 Tower Rd., Raymond, ME 04071 USA • +1 207-655-8100
DIE 18331 - TV Planner:9998_DTV Brochure_2003 12/21/16 12:44 PM Page 1 Dielectric • 22 Tower Rd., Raymond, ME 04071 USA • +1 207-655-8100 • www.dielectric.com • TVPlanner07/2013 1 DIE18331 TV Planner_12-30-2013:9998_DTV Brochure_2003 12/30/13 12:14 PM Page 1 Dielectric Communications: Advancing Full System Solutions the frontier Since our inception in 1942, we have considered ourselves a solutions oriented engineering company, priding ourselves on our depth of scientific in broadcast experience and knowledge. Clients approach us with broadcast needs and we communications deliver full system solutions, jointly tasking with client engineering staff design technologically advanced systems. We design and manufacture full broadcast for over seven systems from the transmitter output to the tower top. decades. A Culture of innovation spanning over seven decades. Dielectric’s leadership in passive RF technologies is reflected in the expertise we offer and the recognition we’ve received: over 100 patents, 2 emmys for technical innovation, 4 NAB Pick hits, to name a few. Dielectric offers the customized support services and planning tools you need to build your television antenna from configuring a new antenna system, to acquiring knowledgeable insights into specific technical issues, Dielectric resources provide easy access to the assistance you needed. This includes customized support services, as well as planning tools to guide in the design. Call Us This fifth edition of our television planning guide details the systems and components we produce. Call us about your requirements or any of our broad- cast products at 1-800-341-9678. Products contained in this catalog may be covered by one or more of the following patents: 6,917,264; 6,903,624; 6,887,093; 6,882,224; 6,870,443; 6,867,743; 6,816,040; 6,703,984; 6,703,911; 6,677,916; 6,650,300; 6,650,209; 6,617,940; 6,538,529; 6,373,444; 6,320,555; 5,999,145; 5,861,858; 5,455,548; 5,418,545; 5,401,173; 5,167,510; 4,988,961; 4,951,013; 4,899,165; 4,723,307; 4,654,962; 4,602,227. -
Analysis of Antenna Beam-Tilt and Broadcast Coverage
Analysis of Antenna Beam-tilt and Broadcast Coverage Myron D. Fanton, PE Electronics Research, Inc. Abstract—Antenna beam tilt affects areas covered by strong signals. The energy density, S, at a distance, R, from the antenna is given Improvements greater than 10dB are realized using greater beam- by the following equation [2], tilts offered in end-fed arrays. P Index Terms—Antenna Arrays, Antenna Beam Tilt, Coverage, S = (1), Propagation 4πR 2 I. INTRODUCTION where P is the ERP of the antenna at the elevation angle of interest. overage is the key parameter in broadcast system engineering. A great deal of effort is exerted to position the C 0.00 antenna and select antenna patterns to enhance the signal at the 1.5 Deg. Beam Tilt receiver. Many analyses of propagation to date have not 0.5 Deg. Beam Tilt accounted for antenna beam-tilt, though now technology, 0 Deg. Beam Tilt products, and analytical techniques [1] can optimize the coverage with increased beam-tilt. -5.00 II. SMOOTH EARTH PROPAGATION Amplitude on Ground (dB) Associating the elevation pattern of an antenna with the -10.00 distance from the transmitter site provides an understanding of the key areas of the pattern. A mapping of elevation angle and distance from the transmitter is shown in Figure 1. The Standard (4/3) Radio Horizon is also noted on the plot. -15.00 For typical tower heights, the radio horizon occurs at 90 80 70 60 50 40 30 20 10 0 Elevation Angle (Degrees) elevation angles between 0.1 and 1 degrees and distances of 10 to 100 miles. -
Inexpensive Microwave Antenna Demonstrations Based on the IEEE Presentation by John Kraus – Jon Wallace
Inexpensive Microwave Antenna Demonstrations Based on the IEEE Presentation by John Kraus – Jon Wallace Abstract: After seeing a video of John Kraus giving a demonstration on radio antennas to the IEEE many years ago, the author was so inspired that he researched the concepts and sought to reproduce as much of the demonstration as he could. It is hoped that these demonstrations will educate and inspire others to explore as well. They cover topics which include: beam width, inverse square law, polarization, reflection, refraction, interference, absorption, gain, wave guides, diffraction, and more. The equipment used consists of a Gunn diode source with horn antenna and a WR-90 horn antenna with crystal detector, instrumentation amplifier, and voltage controlled oscillator (VCO) so that changes in intensity will be heard as pitch changes. Safety Although these microwave frequencies are not the ones used for cooking, they can still cause damage to eyes and sensitive areas of the body. When I started this project I searched for the most stringent safety recommendations I could find for a 10 mW transmitter at about 10 GHz. This recommendation was to keep a minimum distance of 60 cm. (2 ft.). I also designed an aluminum-screened mask that can be worn when presenting the demonstrations. It completely blocks all radiation from the transmitter. Close-up pictures and hints on making one are included at the end of this document. Stay safe! The Equipment The various demonstration devices will be described in each section and building tips are included at the end of the paper. The basic equipment consists of a transmitter (a Gunn diode device) with a larger horn and regulated 8V power supply powered by a 9V battery, a receiver with a small horn antenna, crystal detector, instrumentation amplifier, voltage controlled oscillator, and powerful speaker.