JMVC Simulation Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lec16, 3D Technologies, V1.00 Printfriendly.Pdf
Course Presentation Multimedia Systems 3D Technologies Mahdi Amiri May 2012 Sharif University of Technology Binocular Vision (Two Eyes) Advantages A spare eye in case one is damaged. A wider field of view (FOV). Maximum horizontal FOV of humans: ~200º (with two eyes) One binocular FOV (seen by both eyes): ~120º Two uniocular FOV (seen by only one eye): ~40º Binocular summation: The ability to detect faint objects is enhanced (neural summation). Perception of depth. Page 1 Multimedia Systems, Mahdi Amiri, 3D Technologies Depth Perception Cyclopean Image Cyclopean image is a single mental image of a scene created by the brain by combining two images received from the two eyes. The mythical Cyclops with a single eye Page 2 Multimedia Systems, Mahdi Amiri, 3D Technologies Depth Perception Cues (Cont.) Accommodation of the eyeball (eyeball focus) Focus by changing the curvature of the lens. Interposition Occlusion of one object by another Occlusion Page 3 Multimedia Systems, Mahdi Amiri, 3D Technologies Depth Perception Cues (Cont.) Linear perspective (convergence of parallel edges) Parallel lines such as railway lines converge with increasing distance. Page 4 Multimedia Systems, Mahdi Amiri, 3D Technologies Depth Perception Cues (Cont.) Familiar size and Relative size subtended visual angle of an object of known size A retinal image of a small car is also interpreted as a distant car. Page 5 Multimedia Systems, Mahdi Amiri, 3D Technologies Depth Perception Cues (Cont.) Aerial Perspective Vertical position (objects higher in the scene generally tend to be perceived as further away) Haze, desaturation, and a shift to bluishness Hight Shift to bluishness Haze Page 6 Multimedia Systems, Mahdi Amiri, 3D Technologies Depth Perception Cues (Cont.) Light and Shade Shadow Page 7 Multimedia Systems, Mahdi Amiri, 3D Technologies Depth Perception Cues (Cont.) Change in size of textured pattern detail. -
Dolby 3D Brochure
Dolby 3D Makes Good Business Sense Premium Quality Dolby 3D provides a thrilling audience experience and a powerful box-office attraction. It’s also more cost-effective and better Widely recognized as producing the best 3D image, Dolby for the environment than systems that use disposable glasses. Another key feature: Dolby 3D is part of an integrated suite of 3D provides an amazingly sharp picture with brighter, more Dolby Digital Cinema products from a company with over 40 years of cinematic innovation. natural colors—giving your audiences an unparalleled 3D experience they’ll want to return for again and again. Keep More 3D Profit Dolby 3D Return on Investment Dolby 3D is a one-time investment—no annual licensing fees ROI or revenue sharing. In fact, a complete Dolby 3D system generally pays for itself after only a few 3D releases. You $80K keep more of the additional revenues generated with Dolby $60K Flexible 3D and your ROI continues to improve over time. $40K Dolby 3D wows audiences on any screen—either on $20K traditional white screens or on silver screens, allowing Durable and Eco-Friendly for greater scheduling flexibility. Easily switch between Engineered to resist damage and hold their shape, Dolby 3D $0 2D and 3D, and move films from one auditorium to glasses deliver a comfortable fit and the highest quality 3D ($20K) another without screen restrictions. experience for hundreds of uses, without ending up in landfills like disposables. Reduce, reuse, recycle—it's good ($40K) for business. 1 5 10 15 Number of Dolby 3D Releases* World-Class Support Dolby provides comprehensive support for our 3D solution, *Based on 7,500 admissions per title. -
Dolby 3D Installation Manual
Dolby® 3D Installation Manual Issue 2 Part Number 9110260 Dolby Laboratories, Inc. Corporate Headquarters Dolby Laboratories, Inc. 100 Potrero Avenue San Francisco, CA 94103‐4813 USA Telephone 415‐558‐0200 Fax 415‐863‐1373 www.dolby.com European Headquarters Dolby Laboratories, Inc. Wootton Bassett Wiltshire SN4 8QJ England Telephone 44‐1793‐842100 Fax 44‐1793‐842101 DISCLAIMER OF WARRANTIES: EQUIPMENT MANUFACTURED BY DOLBY LABORATORIES IS WARRANTED AGAINST DEFECTS IN MATERIALS AND WORKMANSHIP FOR A PERIOD OF ONE YEAR FROM THE DATE OF PURCHASE. THERE ARE NO OTHER EXPRESS OR IMPLIED WARRANTIES AND NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR OF NONINFRINGEMENT OF THIRD‐PARTY RIGHTS (INCLUDING, BUT NOT LIMITED TO, COPYRIGHT AND PATENT RIGHTS). LIMITATION OF LIABILITY: IT IS UNDERSTOOD AND AGREED THAT DOLBY LABORATORIES’ LIABILITY, WHETHER IN CONTRACT, IN TORT, UNDER ANY WARRANTY, IN NEGLIGENCE, OR OTHERWISE, SHALL NOT EXCEED THE COST OF REPAIR OR REPLACEMENT OF THE DEFECTIVE COMPONENTS OR ACCUSED INFRINGING DEVICES, AND UNDER NO CIRCUMSTANCES SHALL DOLBY LABORATORIES BE LIABLE FOR INCIDENTAL, SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, DAMAGE TO SOFTWARE OR RECORDED AUDIO OR VISUAL MATERIAL), COST OF DEFENSE, OR LOSS OF USE, REVENUE, OR PROFIT, EVEN IF DOLBY LABORATORIES OR ITS AGENTS HAVE BEEN ADVISED, ORALLY OR IN WRITING, OF THE POSSIBILITY OF SUCH DAMAGES. Dolby and the double‐D symbol are registered trademarks of Dolby Laboratories. All other trademarks Part Number 9110260 remain the property of their respective owners. Issue 2 © 2008 Dolby Laboratories. All rights reserved. S08/18712/19863 ii Dolby® 3D Installation Manual Regulatory Notices FCC NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. -
Audiovisual Spatial Congruence, and Applications to 3D Sound and Stereoscopic Video
Audiovisual spatial congruence, and applications to 3D sound and stereoscopic video. C´edricR. Andr´e Department of Electrical Engineering and Computer Science Faculty of Applied Sciences University of Li`ege,Belgium Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Engineering Sciences December 2013 This page intentionally left blank. ©University of Li`ege,Belgium This page intentionally left blank. Abstract While 3D cinema is becoming increasingly established, little effort has fo- cused on the general problem of producing a 3D sound scene spatially coher- ent with the visual content of a stereoscopic-3D (s-3D) movie. The percep- tual relevance of such spatial audiovisual coherence is of significant interest. In this thesis, we investigate the possibility of adding spatially accurate sound rendering to regular s-3D cinema. Our goal is to provide a perceptually matched sound source at the position of every object producing sound in the visual scene. We examine and contribute to the understanding of the usefulness and the feasibility of this combination. By usefulness, we mean that the technology should positively contribute to the experience, and in particular to the storytelling. In order to carry out experiments proving the usefulness, it is necessary to have an appropriate s-3D movie and its corresponding 3D audio soundtrack. We first present the procedure followed to obtain this joint 3D video and audio content from an existing animated s-3D movie, problems encountered, and some of the solutions employed. Second, as s-3D cinema aims at providing the spectator with a strong impression of being part of the movie (sense of presence), we investigate the impact of the spatial rendering quality of the soundtrack on the reported sense of presence. -
International CES Final Report
2013 International CES January 6-11, 2013 Final Report presented by THE MEDIA PROFESSIONAL’S INSIDE PERSPECTIVE 2 2013 International Consumer Electronics Show This Report is Made Possible With the Support of our Executive Sponsors www.ETCentric.org © 2013 etc@usc 2013 International Consumer Electronics Show 3 INTRODUCTION The following report is the Entertainment Technology Center’s post show analy- sis of the 2013 International CES. To access the videos and written reports that were posted live during the show, please visit: http://www.etcentric.org/. Over the course of one week, January 6-11, 2013, the Entertainment Technology Center tracked the most interesting and breaking entertainment technology news coming out of this year’s event. The ETC team reported on new product announcements, evolving industry trends and whisper suite demonstrations. Reports were made available via ETC’s collaborative online destination for enter- tainment media news and commentary, ETCentric: The Media Professional’s Inside Exchange; its accompanying email newsletter, The Daily Bullet; and social networks Facebook and Twitter. The result was nearly 100 postings over a 7-day period (in addition to dozens of pre-show posts). Those stories from the site, rounded out with after-show research and observations, formed the basis for this report. We hope you find the reports useful in putting your finger on the pulse of consumer entertainment technology. As always, we are looking for feedback from you on ETCentric and this report. Please send your comments to [email protected]. -
A GPU Based Particle System for Rain and Snow
ABSTRACT HUSSAIN, SYED ASIF. Stereoscopic, Real-time, and Photorealistic Rendering of Natural Phenomena – A GPU based Particle System for Rain and Snow. (Under the direction of Dr. David F.McAllister and Dr. Edgar Lobaton.) Natural phenomena exhibit a variety of forms such as rain, snow, fire, smoke, fog, and clouds. Realistic stereoscopic rendering of such phenomena have implications for scientific visualization, entertainment, and the video game industry. However, among all natural phenomena, creating a convincing stereoscopic view of a computer generated rain or snow, in real-time, is particularly difficult. Moreover, the literature in rendering of precipitation in stereo is non-existent and research in stereo rendering of other natural phenomenon is sparse. A survey of recent work in stereo rendering of natural phenomenon, such as vegetation, fire, and clouds, is done to analyze how stereoscopic rendering is implemented. Similarly, a literature review of monoscopic rendering of rain and snow is completed to learn about the behavior and distribution of particles in precipitation phenomena. From these reviews, it is hypothesized that the monoscopic rendering of rain or snow can be extended to stereo with real-time and photorealistic results. The goal of this study is to validate this hypothesis and demonstrate it by implementing a particle system using a graphics processing unit (GPU). The challenges include modeling realistic particle distributions, use of illumination models, and the impact of scene dynamics due to environmental changes. The modern open graphics library shading language (GLSL) and single instruction multiple threads (SIMT) architecture is used to take advantage of data-parallelism in a graphics processor. -
Dolby 3D for Glasses-Free TV and Devices — Preliminary Table of Contents
WHITE PAPER — PRELIMINARY Dolby® 3D for Glasses-Free TV and Devices Overview Three-dimensional television (3D TV) offers tremendous market potential, but up to now, the annoyance of the required glasses has limited consumer viewing and slowed adoption. The real future of consumer 3D as an everyday experience that can truly tap into the market lies with glasses-free viewing. While the industry as a whole acknowledges this, glasses-free technology to date has had its own problems, generally suffering from restricted viewing positions and distracting visual artifacts. Dolby® 3D changes that. It is a collection of processing and coding techniques brought to market through a collaboration between Dolby and Philips. The companies recently presented the Dolby 3D suite of innovative technologies to the public, garnering industry awards and accolades. 3D content is consumed from a variety of sources such as packaged media, broadcasts, and over the top (OTT) streaming. It is viewed on a variety of devices, increasingly including display devices equipped with advanced optical lenses that enable glasses-free viewing. When the Dolby 3D suite of technologies is implemented in devices along the path that 3D content takes to glasses-free 3D displays, Dolby ensures that the viewer’s experience will surpass any previous 3D TV experience. The underlying architectures of these devices must accommodate the complexities of Dolby 3D processing specifications, which are key to ensuring that 3D perception consistently meets the expectations of sophisticated consumers. But what is this underlying technology? How is it feasible in architectures prevalent today? When will all the pieces of the ecosystem come together? This white paper answers these questions in depth. -
1 Stereographics
1 Stereographics Mike Bailey [email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License Computer Graphics Stereographics.pptx mjb – August 5, 2021 1 2 Stereovision is not new – It’s been in common use in the movies since the 1950s Computer Graphics Life Magazine mjb – August 5, 2021 2 1 And, even longer than that in stills 3 Newport Maritime Museum Portland Art Museum Computer Graphics mjb – August 5, 2021 3 4 Binocular Vision In everyday living, part of our perception of depth comes from the slight difference in how our two eyes see the world around us. This is known as binocular vision. We care about this, and are discussing it, because stereo computer graphics can be a great help in de-cluttering a complex 3D scene. It can also enhance the feeling of being immersed in a movie. OSU President Dr. Becky Johnson Computer Graphics mjb – August 5, 2021 4 2 5 The Cyclops Model In the world of computer graphics, the two eye views can be reconstructed using standard projection mathematics. The simplest approach is the Cyclops Model. In this model, the left and right eye views are obtained by rotating the scene plus and minus what a Cyclops at the origin would see Y ψ ψ X L C R Z The left eye view is obtained by rotating the scene an angle +ψ about the Y axis. The right eye view is obtained by rotating the scene an angle -ψ about the Y axis. In practice, if you wanted to do this (and you don’t), a good value of ψ would be 1-4˚. -
Stereoscopic 3D Videos and Panoramas Stereoscopic 3D Videos and Panoramas
Christian Richardt Stereoscopic 3D Videos and Panoramas Stereoscopic 3D videos and panoramas 1. Capturing and displaying stereo 3D videos 2. Viewing comfort considerations 3. Editing stereo 3D videos (research papers) 4. Creating stereo 3D panoramas 2017-08-03 Christian Richardt – Stereoscopic 3D Videos and Panoramas 2 Stereo camera rigs Parallel Converged (‘toed-in’) 2017-08-03 Christian Richardt – Stereoscopic 3D Videos and Panoramas 3 Stereo camera rigs Parallel Converged (‘toed-in’) Kreylos Kreylos Oliver Oliver 2012 2012 © ©2012 Oliver 2017-08-03 Christian Richardt – Stereoscopic 3D Videos and Panoramas 4 Computational stereo 3D camera system et al./ACM et Computational stereo camera system with programmable control loop S. Heinzle, P. Greisen, D. Gallup, C. Chen, D. Saner, A. Smolic, A. Burg, W. Matusik & M. Gross Heinzle ACM Transactions on Graphics (SIGGRAPH), 2011, 30(4), 94:1–10 2011 © 2017-08-03 Christian Richardt – Stereoscopic 3D Videos and Panoramas 5 Commercial stereo 3D projection Polarised projection Wavelength multiplexing e.g. RealD 3D, MasterImage 3D e.g. Dolby 3D 3.0 - SA - BY - Commons/CC Wilkinson/Sound and Vision and Wilkinson/Sound NK, 3dnatureguy/Wikimedia Raoul Raoul ©2011 ©2011 Scott © 2017-08-03 Christian Richardt – Stereoscopic 3D Videos and Panoramas 6 Medium-scale stereo 3D displays Active shutter glasses Autostereoscopy e.g. NVIDIA 3D Vision, 3D TVs 3.0 - SA - BY - ©2011 ©2011 MTBS3D/NVIDIA /Wikimedia Commons/CC /Wikimedia Cmglee © 2017-08-03 Christian Richardt – Stereoscopic 3D Videos and Panoramas 7 Other stereo 3D displays Head-mounted displays (HMDs) Anaglyph stereo e.g. HTC Vive, Oculus Rift, Google Cardboard e.g. red cyan glasses, ColorCode 3-D, Inficolor 3D ©2016 HTC Corporation ©2016 HTC Taringa 2016 2016 © 2017-08-03 Christian Richardt – Stereoscopic 3D Videos and Panoramas 8 Cinema 3D Narrow angular range that spans a single seat et al. -
3D Television - Wikipedia
3D television - Wikipedia https://en.wikipedia.org/wiki/3D_television From Wikipedia, the free encyclopedia 3D television (3DTV) is television that conveys depth perception to the viewer by employing techniques such as stereoscopic display, multi-view display, 2D-plus-depth, or any other form of 3D display. Most modern 3D television sets use an active shutter 3D system or a polarized 3D system, and some are autostereoscopic without the need of glasses. According to DisplaySearch, 3D televisions shipments totaled 41.45 million units in 2012, compared with 24.14 in 2011 and 2.26 in 2010.[1] As of late 2013, the number of 3D TV viewers An example of three-dimensional television. started to decline.[2][3][4][5][6] 1 History 2 Technologies 2.1 Displaying technologies 2.2 Producing technologies 2.3 3D production 3TV sets 3.1 3D-ready TV sets 3.2 Full 3D TV sets 4 Standardization efforts 4.1 DVB 3D-TV standard 5 Broadcasts 5.1 3D Channels 5.2 List of 3D Channels 5.3 3D episodes and shows 5.3.1 1980s 5.3.2 1990s 5.3.3 2000s 5.3.4 2010s 6 World record 7 Health effects 8See also 9 References 10 Further reading The stereoscope was first invented by Sir Charles Wheatstone in 1838.[7][8] It showed that when two pictures 1 z 17 21. 11. 2016 22:13 3D television - Wikipedia https://en.wikipedia.org/wiki/3D_television are viewed stereoscopically, they are combined by the brain to produce 3D depth perception. The stereoscope was improved by Louis Jules Duboscq, and a famous picture of Queen Victoria was displayed at The Great Exhibition in 1851. -
Stereoscopic Media
Stereoscopic media Digital Visual Effects Yung-Yu Chuang 3D is hot today 3D has a long history • 1830s, stereoscope • 1920s, first 3D film, The Power of Love projected dual-strip in the red/green anaglyph format • 1920s, teleview system Teleview was the earliest alternate-frame seqqguencing form of film ppjrojection. Through the use of two interlocked projectors, alternating left/right frames were projected one after another in rapid succession. Synchronized viewers attached to the arm-rests of the seats in the theater open and closed at the same time, and took advantage of the viewer's persistence of vision, thereby creating a true stereoscopic image. 3D has a long history • 1950s, the "golden era" of 3-D • The attempts filfaile d because immature technology results in viewer discomfort. • 1980s, rebirth of 3D, IMAX Why could 3D be successful today? • It finally takes off until digital processing makes 3D films both easier to shoot and watch. • New technology for more comfortable viewing experiences – Accurately-adjustable 3D camera rigs – Digital processing and post-shooting rectification – Digital projectors for accurate positioning – Polarized screen to reduce cross-talk 3D TVs Computers Notebooks Game consoles Nintendo 3DS HTC EVO 3D 3D contents (()games) 3D contents (()films) 3D contents (()broadcasting) 3D cameras Fu ji R eal3D W1 and W3 ($600) Sony HDR-TD10E Outline • Human depth perception • 3D disp lays • 3D cinematography • Stereoscopic media postprocessing Human depth perception Space perception • The ability to perceive and interact with the structure of space is one of the fundamental goals of the visual system. • Our visual system reconstructs the world from two non- Euclidean inputs, the two distinct retinal images. -
Digital Images and Video
CHAPTER 2 Digital Images and Video Advances in ultra-high-definition and 3D-video technologies as well as high-speed Internet and mobile computing have led to the introduction of new video services. Digital images and video refer to 2D or 3D still and moving (time-varying) visual information, respectively. A still image is a 2D/3D spatial distribution of intensity that is constant with respect to time. A video is a 3D/4D spatio-temporal inten- sity pattern, i.e., a spatial-intensity pattern that varies with time. Another term commonly used for video is image sequence, since a video is represented by a time sequence of still images (pictures). The spatio-temporal intensity pattern of this time sequence of images is ordered into a 1D analog or digital video signal as a function of time only according to a progressive or interlaced scanning convention. We begin with a short introduction to human visual perception and color models in Section 2.1. Next, we present 2D digital video repre-sentations and a brief sum- mary of current standards in Section 2.2. We introduce 3D digital video display, representations, and standards in Section 2.3. Section 2.4 provides an overview of popular digital video applications, including digital TV, digital cinema, and video streaming. Finally, Section 2.5 discusses factors afecting video quality and quanti- tative and subjective video-quality assessment. 53 Tekalp_book_COLOR.indb 53 5/21/15 7:47 PM 54 Chapter 2. Digital Images and Video 2.1 Human Visual System and Color Video is mainly consumed by the human eye.