The Basics of Geneticsdna to Genotype & Phenotype
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mehandi Henna for Hair Tapdancing Lizard
1 Mehandi Henna for Hair Tapdancing Lizard http://www.mehandi.com 339 Tallmadge Ave, Kent, Ohio, 442240 330-673-0600 Copyright © 2006 Catherine Cartwright-Jones Email: [email protected] Dye your hair black with natural henna and indigo Figure 1: Dye your hair as black as your cat with henna and indigo You can dye your hair beautiful black, and cover your gray hair to black with pure henna and indigo, without para- phenylenediamine or any other chemicals! This is white hair dyed with henna, a combination of henna and indigo together, and indigo over henna. Gwyn (above) has frizzy brown hair. The henna/indigo process relaxes her curls, and makes her hair as glossy, sleek and black as her kittens! You can use body art quality henna and indigo from mehandi.com over synthetic dyes and chemical processes, and you can use chemical processes over henna and indigo from mehandi.com. Mehandi.com sells only pure dried smashed plants, with no chemicals. Copyright © 2006 Catherine Cartwright-Jones Tapdancing Lizard LLC All rights reserved Call 330-673-0600 to ask questions or order, or order online: www.mehandi.com 2 Figure 2: White hair, dyed with henna, dyed with a mix of henna and indigo, and dyed with indigo over henna Henna is a plant which has a red-orange dye molecule and works in a mildly acidic mix. Indigo is a plant that has a dark blue dye molecule and works in a mildly base mix. If you dye white hair with henna, you’ll get a coppery red. -
The Good Henna Guide \ How to Use Henna Effectively
The Good Henna Guide \ How To Use Henna Effectively For Hair Colouring by Tricia Cartmell © Copyright 2013 Tricia Cartmell, It’s Pure Ltd Contents Chapter 1: What is pure henna? Chapter 2: Henna hair colouring instructions Chapter 3: Mixing henna with cassia powder Chapter 4: Mixing indigo with henna to get brown or black shades Chapter 5: Other plant ingredients you can mix with henna Chapter 6: Good henna and bad henna: dispelling myths and misunderstanding Chapter 7: Questions and answers about henna Chapter 8: It’s Pure Organics product list May 2013 © Copyright 2013 Tricia Cartmell, It’s Pure Ltd All the material in this E-book is copywrite and may not be reproduced without permission from Its Pure Ltd. It’s Pure Ltd, Beacon House, Willow Walk, Skelmersdale, WN8 6UR, UK Website: www.itspure.co.uk Tel 01695 728286 Chapter 1: What is Pure Henna? The henna plant, lawsonia inermis, is a flowering shrub. It grows in hot, dry cli- mates such as the Middle East and India. The leaves of this shrub are harvested, dried, and powdered. This powder has been used for thousands of years to dye hair, skin (for body art), leather and fabrics. Pure henna powder gives a reddish orange colour. Figure 1: Fresh Henna Leaves - Lawsonia Inermis Other things that are mistakenly called henna This book is about pure henna from the lawsonia inermis plant. It is important to distinguish this from products that call themselves ‘henna’, but which actually contain other ingredients mixed in with the henna. We are talking about using pure henna (which can be used either on its own, or mixed into your own reci- pes) rather than ready-mixed, branded hair dyes. -
Basic Genetic Terms for Teachers
Student Name: Date: Class Period: Page | 1 Basic Genetic Terms Use the available reference resources to complete the table below. After finding out the definition of each word, rewrite the definition using your own words (middle column), and provide an example of how you may use the word (right column). Genetic Terms Definition in your own words An example Allele Different forms of a gene, which produce Different alleles produce different hair colors—brown, variations in a genetically inherited trait. blond, red, black, etc. Genes Genes are parts of DNA and carry hereditary Genes contain blue‐print for each individual for her or information passed from parents to children. his specific traits. Dominant version (allele) of a gene shows its Dominant When a child inherits dominant brown‐hair gene form specific trait even if only one parent passed (allele) from dad, the child will have brown hair. the gene to the child. When a child inherits recessive blue‐eye gene form Recessive Recessive gene shows its specific trait when (allele) from both mom and dad, the child will have blue both parents pass the gene to the child. eyes. Homozygous Two of the same form of a gene—one from Inheriting the same blue eye gene form from both mom and the other from dad. parents result in a homozygous gene. Heterozygous Two different forms of a gene—one from Inheriting different eye color gene forms from mom mom and the other from dad are different. and dad result in a heterozygous gene. Genotype Internal heredity information that contain Blue eye and brown eye have different genotypes—one genetic code. -
Molecular Biology and Applied Genetics
MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included. -
WHAT DOES SHE LOOK LIKE? Preview a 1–09 Listen
2 WHAT DOES SHE LOOK LIKE? Preview A 1–09 Listen. Circle the words you hear. 1. Person A has (long / short) red hair. 2. Person B has (wavy / curly) brown hair. 3. Person C has (blond / black) hair and (green / blue) eyes. 4. Person D has (black / brown) hair and (blue / brown) eyes. 5. Person E has (spiky / short) black hair and (brown / green) eyes. B Look at the photos. Find people to match the descriptions in A. Write the numbers. C Work with a partner. Choose three people in the photos and write notes about them. Describe the people to your partner. PERSON DESCRIPTION This person is male. He has short black hair. Is it Person 2? 16 569101_TZSB2_U2_PP6.indd 16 2/25/15 3:40 PM short black hair 1 straight blond hair 2 3 long black hair 4 brown eyes 5 6 7 short brown hair 8 blue eyes 9 10 11 12 13 14 15 short, curly red hair 16 long, curly 17 18 brown hair 19 20 17 569101_TZSB2_U2_PP6.indd 17 2/25/15 3:40 PM Language Focus A 1–10 Listen and read. Then repeat the conversation REAL ENGLISH I’m on my way. and replace the words in blue. B Practice with a partner. Replace any words to make your own conversation. Ming, I’m at the soccer 1 game now. Where are you? 2 She has short blond hair and blue eyes. Emily? What does Sorry, I’m late. I’m on my way. she look like? Do you see Emily? hockey straight black / brown rugby spiky red / green 3 Does she wear glasses? 4 Excuse me, are you Emily? I’m . -
Running Head: ANESTHESIA REQUIREMENTS for REDHEADS 1 Anesthesia Requirements for Redheads Nathan Classon, RN, BSN, SRNA Adventis
Running head: ANESTHESIA REQUIREMENTS FOR REDHEADS 1 Anesthesia Requirements for Redheads Nathan Classon, RN, BSN, SRNA Adventist University of Health Sciences Project Mentor: Tom Andrews, MD, JLR Anesthesia Group Committee Chair: Alescia DeVasher Bethea, PhD, CRNA Nurse Anesthesia Program, Adventist University of Health Sciences March 16, 2016 ANESTHESIA REQUIREMENTS FOR REDHEADS 2 Abstract As the melanocortin-1 receptor gene was not discovered until 1995, only anecdotal observation supported that redheads had an increased anesthetic requirement. Utilizing relatively recent research, this project aimed to enhance the knowledge regarding the anesthetic requirements for redheads among student registered nurse anesthetists (SRNAs). Interestingly, there was a decided perspectival shift in the opinion of literature reviewed between 2004 and 2015. Earlier studies were supportive of an increased anesthetic requirement of redheads, while more recent studies discouraged such an approach. It is possible that the later studies relied on self-reported hair phenotype, rather than analysis of genetic makeup of the MC1R genotype. Given this, it is plausible that there is a significant difference in the anesthetic requirements of redheads, depending on whether they are homozygous, heterozygous, or compound heterozygous. Therefore, current literature was reviewed, synthesized, and presented simultaneously to two cohorts of SRNAs at Adventist University (ADU). The project’s efficacy was determined by comparing the scores of an identical pre- and post-test. -
Survey and Occurrence of PPD, PTD and Other Allergenic Hair Dye Substances in Hair Dyes
Survey and occurrence of PPD, PTD and other allergenic hair dye substances in hair dyes Survey of Chemicals in Consumer Products No 121, 2013 Title: Editing: Survey and occurrence of PPD, PTD and other Pia Brunn Poulsen og Maria Strandesen allergenic hair dye substances in hair dyes FORCE Technology Published by: The Danish Environmental Protection Agency Strandgade 29 DK-1401 Copenhagen K Denmark www.mst.dk Year: ISBN no. 2013 978-87-92903-92-1 Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. Sources must be acknowledged. 2 Fejl! Ingen tekst med den anførte typografi i dokumentet. Content PREFACE 5 SUMMARY AND CONCLUSIONS 7 1 INTRODUCTION 11 1.1 INTRODUCTION 11 1.1.1 Use pattern and adverse skin reactions from hair dyes 11 1.1.2 Skin allergy from hair dyes 11 1.1.3 Yearly sale of hair dyes 12 1.2 PURPOSE OF THIS PROJECT 12 2 DEFINITIONS/ABBREVIATIONS 13 2.1 HAIR DYE/HAIR DYE PRODUCT 13 2.2 HAIR DYE BRAND 13 2.3 HAIR DYE SUBSTANCE 13 2.4 CATEGORIES OF HAIR DYES 13 2.5 HAIR DYE -
From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases. -
Genotype-Independent Near Whole Genome Next Generation Assays for HCV Resistance Evaluation How Do We Test for HCV Ravs?
How do we test for HCV RAVs? A Technology Based Presentation Genotype-Independent Near Whole Genome Next Generation Assays for HCV Resistance Evaluation Anita Howe, Ph.D. Centre for Excellence in HIV/AIDS British Columbia, Canada Objectives 1. Overview of key virology assays 2. Sanger population sequencing and RECall 3. Near Whole Genome HCV Next Generation Sequencing (NGS) 4. Random Primer NGS assay for Mixed Infection 5. Probe Enrichment Key HCV Assays for Resistance Testing Viral Load Genotyping Sequencing Phenotypic Assays Branched DNA Line-Probe Sanger Population ® VERSANT HCV RNA Hybridization Sequencing F.L. Stable Replicons 3.0 branched DNA VERSANT® HCV High throughput • GT1a_H77 (Bayer/Siemens) GENOTYPE 2.0 [LIPA] LOD ~20% • GT1b_con1 (Innogenetics) • GT 2a_JFH1 RT-PCR Clonal Sequencing • GT 3a_S52 • ABBOTT REAL- RT-PCR Labor intensive • GT 4a_ED43 TIME HCV RT-PCR ABBOTT REAL-TIME HCV • GT 5a_SA1 (Abbott) Linkage of mutations GENOTYPE II (Abbott) • GT 6a_consensus • HCV SUPERQUANT (National Genetics Allele-specific Real-time Institute) Direct Sequencing Chimeric/Transient • COBAS AmpliPrep/ TRUGENE DIRECT DNA PCR Replicons in Limit to known mutations COBAS TaqMan HCV SEQUENCING (Bayer/ • GT1a_H77 Siemens) TEST (Roche • GT1b_con1 Molecular Systems) • GT2a_JFH1 Serotyping Next Generation Transcription- MUREX HCV Sequencing Infectious HCV SEROTYPING (Abbott) Mediated Illumina, Ion Torrent, 454 • GT1a_H77 Amplification (Roche), PyroMark (Qiagen), • GT 2a_JFH1 VERSANT HCV RNA ABI SOLiD, SMRT (Pac Bio) (Siemens) Ø Sensitive Reporter Assay Ø 5’UTR/Core/NS5B Ø GT1 – 6 Ø Medium-high throughput SEAP for NS3 Ø High costs Ø 5’UTR/Core Ø Limited subtype Ø 9.6 – 108 IU/mL information Enzymatic assays NS3, NS5B RECall Web Based Sequence Analysis http://pssm.cfenet.ubc.ca/account/login Woods et al. -
Effects of Aging on Hair Color, Melanosome Morphology
International Journal of Molecular Sciences Article Effects of Aging on Hair Color, Melanosome Morphology, and Melanin Composition in Japanese Females Takashi Itou 1,* , Shosuke Ito 2 and Kazumasa Wakamatsu 2 1 Kao Corporation, R&D - Hair Care Products Research, Tokyo 131-8501, Japan 2 Department of Chemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi 470-1192, Japan * Correspondence: [email protected]; Tel.: +81-3-5630-9972 Received: 26 June 2019; Accepted: 27 July 2019; Published: 31 July 2019 Abstract: In a previous study, we showed that the size of melanosomes isolated from Japanese female hairs enlarges with age, and this affects the hair color. In this study, we analyzed the age-dependent changes in hair melanin in order to further explore the factors related to hair color changing by aging. A significant positive correlation with age was found in the total melanin amount (TM) and the mol% of 5,6-dihydroxyindole (DHI) units, while no correlation was found in pheomelanin mol%. TM showed significant correlations with hair color parameters and the melanosome volume, suggesting that hair color darkening by aging is caused by the increase in TM due to the enlargement of the size of melanosome. From the measurement of absorbance spectra on synthetic eumelanins with different ratios of DHI and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), we found that the increase in DHI mol% also contributes to the darkening of hair color by aging. In addition, the level of pyrrole-2,3-dicarboxylic acid (PDCA), a marker of DHI melanin, showed a significant negative correlation with the aspect ratio of melanosome, suggesting a contribution of DHI melanin to the change in melanosome morphology by aging. -
Hair Color Stereotypes and Their Associated Perceptions in Relationships and the Workplace Michelle Beddow University of Michigan–Dearborn
Hair Color Stereotypes and Their Associated Perceptions in Relationships and the Workplace Michelle Beddow University of Michigan–Dearborn ABSTRACT. Previous research has shown that people associate positive and negative personality traits with certain hair colors. Participants view blondes as attractive but dumb, brunettes as studious and competent, and redheads as smart but temperamental. The present study examined the effects of stereotypes with respect to hair color, setting, and gender. Participants rated a male or female model on several personal characteristics (e.g., attractiveness, intelligence) based on a description and photo of the model. The model was depicted in both a work setting and a dating setting and was shown in the photo with 1 of 3 hair colors: blonde, brown, or red. Results indicated that hair color stereotypes are not only linked to various personal traits, but are affected by the setting as well. When placed in a setting with certain stereotypes, the stereotypes associated with that hair color are augmented. t is the nature of human beings to categorize degree of flexibility in order to accommodate any everyday life. In order to process all the individual who is clearly a member of the category, Iinformation encountered during the day, yet does not fit the classifications (Tajfel, 1969). humans are programmed to develop categories for Therefore, in a sense, anyone could fit into a the things and people around them (Allport, 1954). category if he/she has the relevant factors. The point of categorization is to make individuals’ A common dichotomy people use is that of lives easier so they can quickly understand the gender. -
Punnett Squares
What is Genetics? Genetics is the scientific study of heredity What is a Trait? A trait is a specific characteristic that varies from one individual to another. Examples: Brown hair, blue eyes, tall, curly What is an Allele? Alleles are the different possibilities for a given trait. Every trait has at least two alleles (one from the Examples of Alleles: A = Brown Eyes mother and one from the a = Blue Eyes father) B = Green Eyes b = Hazel Eyes Example: Eye color – Brown, blue, green, hazel What are Genes? Genes are the sequence of DNA that codes for a protein and thus determines a trait. Gregor Mendel Father of Genetics 1st important studies of heredity Identified specific traits in the garden pea and studied them from one generation to another Mendel’s Conclusions 1.Law of Segregation – Two alleles for each trait separate when gametes form; Parents pass only one allele for each trait to each offspring 2.Law of Independent Assortment – Genes for different traits are inherited independently of each other Dominant vs. Recessive Dominant - Masks the other trait; the trait that shows if present Represented by a capital letter R Recessive – An organism with a recessive allele for a particular trait will only exhibit that trait when the dominant allele is not present; Will only show if both alleles are present Represented by a lower case letter r Dominant & Recessive Practice T – straight hair t - curly hair TT - Represent offspring with straight hair Tt - Represent offspring with straight hair tt - Represents offspring with curly hair Genotype vs. Phenotype Genotype – The genetic makeup of an organism; The gene (or allele) combination an organism has.