From Dynkin Diagram Symmetries to Fixed Point Structures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Affine Kac-Moody Algebras
An introduction to affine Kac-Moody algebras David Hernandez To cite this version: David Hernandez. An introduction to affine Kac-Moody algebras. DEA. Lecture notes from CTQM Master Class, Aarhus University, Denmark, October 2006, 2006. cel-00112530 HAL Id: cel-00112530 https://cel.archives-ouvertes.fr/cel-00112530 Submitted on 9 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AN INTRODUCTION TO AFFINE KAC-MOODY ALGEBRAS DAVID HERNANDEZ Abstract. In these lectures we give an introduction to affine Kac- Moody algebras, their representations, and applications of this the- ory. Contents 1. Introduction 1 2. Quick review on semi-simple Lie algebras 2 3. Affine Kac-Moody algebras 5 4. Representations of Lie algebras 8 5. Fusion product, conformal blocks and Knizhnik- Zamolodchikov equations 14 References 19 1. Introduction Affine Kac-Moody algebras ˆg are infinite dimensional analogs of semi-simple Lie algebras g and have a central role both in Mathematics (Modular forms, Geometric Langlands program...) and Mathematical Physics (Conformal Field Theory...). These lectures are an introduction to the theory of affine Kac-Moody algebras and their representations with basic results and constructions to enter the theory. -
Root Components for Tensor Product of Affine Kac-Moody Lie Algebra Modules
ROOT COMPONENTS FOR TENSOR PRODUCT OF AFFINE KAC-MOODY LIE ALGEBRA MODULES SAMUEL JERALDS AND SHRAWAN KUMAR 1. Abstract Let g be an affine Kac-Moody Lie algebra and let λ, µ be two dominant integral weights for g. We prove that under some mild restriction, for any positive root β, V(λ)⊗V(µ) contains V(λ+µ−β) as a component, where V(λ) denotes the integrable highest weight (irreducible) g-module with highest weight λ. This extends the corresponding result by Kumar from the case of finite dimensional semisimple Lie algebras to the affine Kac-Moody Lie algebras. One crucial ingredient in the proof is the action of Virasoro algebra via the Goddard-Kent-Olive construction on the tensor product V(λ) ⊗ V(µ). Then, we prove the corresponding geometric results including the higher cohomology vanishing on the G-Schubert varieties in the product partial flag variety G=P × G=P with coefficients in certain sheaves coming from the ideal sheaves of G-sub Schubert varieties. This allows us to prove the surjectivity of the Gaussian map. 2. Introduction Let g be a symmetrizable Kac–Moody Lie algebra, and fix two dominant inte- gral weights λ, µ 2 P+. To these, we can associate the integrable, highest weight (irreducible) representations V(λ) and V(µ). Then, the content of the tensor decom- position problem is to express the product V(λ)⊗V(µ) as a direct sum of irreducible components; that is, to find the decomposition M ⊕mν V(λ) ⊗ V(µ) = V(ν) λ,µ ; ν2P+ ν where mλ,µ 2 Z≥0 is the multiplicity of V(ν) in V(λ) ⊗ V(µ). -
Geometries, the Principle of Duality, and Algebraic Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Expo. Math. 24 (2006) 195–234 www.elsevier.de/exmath Geometries, the principle of duality, and algebraic groups Skip Garibaldi∗, Michael Carr Department of Mathematics & Computer Science, Emory University, Atlanta, GA 30322, USA Received 3 June 2005; received in revised form 8 September 2005 Abstract J. Tits gave a general recipe for producing an abstract geometry from a semisimple algebraic group. This expository paper describes a uniform method for giving a concrete realization of Tits’s geometry and works through several examples. We also give a criterion for recognizing the auto- morphism of the geometry induced by an automorphism of the group. The E6 geometry is studied in depth. ᭧ 2005 Elsevier GmbH. All rights reserved. MSC 2000: Primary 22E47; secondary 20E42, 20G15 Contents 1. Tits’s geometry P ........................................................................197 2. A concrete geometry V , part I..............................................................198 3. A concrete geometry V , part II .............................................................199 4. Example: type A (projective geometry) .......................................................203 5. Strategy .................................................................................203 6. Example: type D (orthogonal geometry) ......................................................205 7. Example: type E6 .........................................................................208 -
On Dynkin Diagrams, Cartan Matrices
Physics 220, Lecture 16 ? Reference: Georgi chapters 8-9, a bit of 20. • Continue with Dynkin diagrams and the Cartan matrix, αi · αj Aji ≡ 2 2 : αi The j-th row give the qi − pi = −pi values of the simple root αi's SU(2)i generators acting on the root αj. Again, we always have αi · µ 2 2 = qi − pi; (1) αi where pi and qi are the number of times that the weight µ can be raised by Eαi , or lowered by E−αi , respectively, before getting zero. Applied to µ = αj, we know that qi = 0, since E−αj jαii = 0, since αi − αj is not a root for i 6= j. 0 2 Again, we then have AjiAij = pp = 4 cos θij, which must equal 0,1,2, or 3; these correspond to θij = π=2, 2π=3, 3π=4, and 5π=6, respectively. The Dynkin diagram has a node for each simple root (so the number of nodes is 2 2 r =rank(G)), and nodes i and j are connected by AjiAij lines. When αi 6= αj , sometimes it's useful to darken the node for the smaller root. 2 2 • Another example: constructing the roots for C3, starting from α1 = α2 = 1, and 2 α3 = 2, i.e. the Cartan matrix 0 2 −1 0 1 @ −1 2 −1 A : 0 −2 2 Find 9 positive roots. • Classify all simple, compact Lie algebras from their Aji. Require 3 properties: (1) det A 6= 0 (since the simple roots are linearly independent); (2) Aji < 0 for i 6= j; (3) AijAji = 0,1, 2, 3. -
Contemporary Mathematics 442
CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV. -
Semi-Simple Lie Algebras and Their Representations
i Semi-Simple Lie Algebras and Their Representations Robert N. Cahn Lawrence Berkeley Laboratory University of California Berkeley, California 1984 THE BENJAMIN/CUMMINGS PUBLISHING COMPANY Advanced Book Program Menlo Park, California Reading, Massachusetts ·London Amsterdam Don Mills, Ontario Sydney · · · · ii Preface iii Preface Particle physics has been revolutionized by the development of a new “paradigm”, that of gauge theories. The SU(2) x U(1) theory of electroweak in- teractions and the color SU(3) theory of strong interactions provide the present explanation of three of the four previously distinct forces. For nearly ten years physicists have sought to unify the SU(3) x SU(2) x U(1) theory into a single group. This has led to studies of the representations of SU(5), O(10), and E6. Efforts to understand the replication of fermions in generations have prompted discussions of even larger groups. The present volume is intended to meet the need of particle physicists for a book which is accessible to non-mathematicians. The focus is on the semi-simple Lie algebras, and especially on their representations since it is they, and not just the algebras themselves, which are of greatest interest to the physicist. If the gauge theory paradigm is eventually successful in describing the fundamental particles, then some representation will encompass all those particles. The sources of this book are the classical exposition of Jacobson in his Lie Algebras and three great papers of E.B. Dynkin. A listing of the references is given in the Bibliography. In addition, at the end of each chapter, references iv Preface are given, with the authors’ names in capital letters corresponding to the listing in the bibliography. -
Algebraic Groups of Type D4, Triality and Composition Algebras
1 Algebraic groups of type D4, triality and composition algebras V. Chernousov1, A. Elduque2, M.-A. Knus, J.-P. Tignol3 Abstract. Conjugacy classes of outer automorphisms of order 3 of simple algebraic groups of classical type D4 are classified over arbitrary fields. There are two main types of conjugacy classes. For one type the fixed algebraic groups are simple of type G2; for the other type they are simple of type A2 when the characteristic is different from 3 and are not smooth when the characteristic is 3. A large part of the paper is dedicated to the exceptional case of characteristic 3. A key ingredient of the classification of conjugacy classes of trialitarian automorphisms is the fact that the fixed groups are automorphism groups of certain composition algebras. 2010 Mathematics Subject Classification: 20G15, 11E57, 17A75, 14L10. Keywords and Phrases: Algebraic group of type D4, triality, outer au- tomorphism of order 3, composition algebra, symmetric composition, octonions, Okubo algebra. 1Partially supported by the Canada Research Chairs Program and an NSERC research grant. 2Supported by the Spanish Ministerio de Econom´ıa y Competitividad and FEDER (MTM2010-18370-C04-02) and by the Diputaci´onGeneral de Arag´on|Fondo Social Europeo (Grupo de Investigaci´on de Algebra).´ 3Supported by the F.R.S.{FNRS (Belgium). J.-P. Tignol gratefully acknowledges the hospitality of the Zukunftskolleg of the Universit¨atKonstanz, where he was in residence as a Senior Fellow while this work was developing. 2 Chernousov, Elduque, Knus, Tignol 1. Introduction The projective linear algebraic group PGLn admits two types of conjugacy classes of outer automorphisms of order two. -
Affine Lie Algebras 8
Affine Lie Algebras Kevin Wray January 16, 2008 Abstract In these lectures the untwisted affine Lie algebras will be constructed. The reader is assumed to be familiar with the theory of semisimple Lie algebras, e.g. that he or she knows a big part of James E. Humphreys' Introduction to Lie algebras and repre- sentation theory [1]. The notations used in these notes will be taken from [1]. These lecture notes are based on the course Affine Lie Algebras given by Prof. Dr. Johan van de Leur at the Mathematical Research Insitute in Utrecht (The Netherlands) during the fall of 2007. 1 Semisimple Lie Algebras 1.1 Root Spaces Recall some basic notions from [1]. Let L be a semisimple Lie algebra, H a Cartan subalgebra (CSA), and κ(x; y) = T r(ad (x) ad (y)) the Killing form on L. Then the Killing form is symmetric, non-degenerate (since L is semisimple and using theorem 5.1 page 22 z [1]), and associative; i.e. κ : L × L ! F is bilinear on L and satisfies κ ([x; y]; z) = κ (x; [y; z]) : The restriction of the Killing form to the CSA, denoted by κjH (·; ·), is non-degenerate (Corollary 8.2 page 37 [1]). This allows for the identification of H with H∗ (see [1] x8.2: ∗ to φ 2 H there corresponds a unique element tφ 2 H satisfying φ(h) = κ(tφ; h) for all h 2 H). This makes it possible to define a symmetric, non-degenerate bilinear form, ∗ ∗ ∗ (·; ·): H × H ! F, given on H as ∗ (α; β) = κ(tα; tβ)(8 α; β 2 H ) : ∗ Let Φ ⊂ H be the root system corresponding to L and ∆ = fα1; : : : ; α`g a fixed basis of Φ (∆ is also called a simple root system). -
Special Unitary Group - Wikipedia
Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group). -
View This Volume's Front and Back Matter
Functions of Several Complex Variables and Their Singularities Functions of Several Complex Variables and Their Singularities Wolfgang Ebeling Translated by Philip G. Spain Graduate Studies in Mathematics Volume 83 .•S%'3SL"?|| American Mathematical Society s^s^^v Providence, Rhode Island Editorial Board David Cox (Chair) Walter Craig N. V. Ivanov Steven G. Krantz Originally published in the German language by Friedr. Vieweg & Sohn Verlag, D-65189 Wiesbaden, Germany, as "Wolfgang Ebeling: Funktionentheorie, Differentialtopologie und Singularitaten. 1. Auflage (1st edition)". © Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden, 2001 Translated by Philip G. Spain 2000 Mathematics Subject Classification. Primary 32-01; Secondary 32S10, 32S55, 58K40, 58K60. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-83 Library of Congress Cataloging-in-Publication Data Ebeling, Wolfgang. [Funktionentheorie, differentialtopologie und singularitaten. English] Functions of several complex variables and their singularities / Wolfgang Ebeling ; translated by Philip Spain. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 83) Includes bibliographical references and index. ISBN 0-8218-3319-7 (alk. paper) 1. Functions of several complex variables. 2. Singularities (Mathematics) I. Title. QA331.E27 2007 515/.94—dc22 2007060745 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. -
Introduction to Vertex Operator Algebras I 1 Introduction
数理解析研究所講究録 904 巻 1995 年 1-25 1 Introduction to vertex operator algebras I Chongying Dong1 Department of Mathematics, University of California, Santa Cruz, CA 95064 1 Introduction The theory of vertex (operator) algebras has developed rapidly in the last few years. These rich algebraic structures provide the proper formulation for the moonshine module construction for the Monster group ([BI-B2], [FLMI], [FLM3]) and also give a lot of new insight into the representation theory of the Virasoro algebra and affine Kac-Moody algebras (see for instance [DL3], [DMZ], [FZ], [W]). The modern notion of chiral algebra in conformal field theory [BPZ] in physics essentially corresponds to the mathematical notion of vertex operator algebra; see e.g. [MS]. This is the first part of three consecutive lectures by Huang, Li and myself. In this part we are mainly concerned with the definitions of vertex operator algebras, twisted modules and examples. The second part by Li is about the duality and local systems and the third part by Huang is devoted to the contragradient modules and geometric interpretations of vertex operator algebras. (We refer the reader to Li and Huang’s lecture notes for the related topics.) So many exciting topics are not covered in these three lectures. The book [FHL] is an excellent introduction to the subject. There are also existing papers [H1], [Ge] and [P] which review the axiomatic definition of vertex operator algebras, geometric interpretation of vertex operator algebras, the connection with conformal field theory, Borcherds algebras and the monster Lie algebra. Most work on vertex operator algebras has been concentrated on the concrete exam- ples of vertex operator algebras and the representation theory. -
Symmetry and Particle Physics, 4
Michaelmas Term 2008, Mathematical Tripos Part III Hugh Osborn Symmetry and Particle Physics, 4 1. The generators of the Lie algebra of SU(3) are Ei± for i = 1, 2, 3 and H1,H2 where [H1,H2] = 0, † [E1+,E2+] = E3+,[E1+,E3+] = [E2+,E3+] = 0 and Ei− = Ei+ . Ei±,Hi obey, for each i, the SU(2) algebra [E+,E−] = H, [H, E±] = ±2E± if H3 = H1 + H2. Also we have [H1,E2±] = ∓E2±, [H2,E1±] = ∓E1±. A state |ψi has weight [r1, r2] if H1|ψi = r1|ψi,H2|ψi = r2|ψi. |n1, n2ihw is a highest weight state with weight [n1, n2] satisfying Ei+|n1, n2ihw = 0. Let (l,k) i l−i k−i |ψi i = (E3−) (E1−) (E2−) |n1, n2ihw . Show that these all have weight [n1 + k − 2l, n2 − 2k + l]. If l ≥ k explain why, in order to construct a basis, it is necessary to restrict i = 0, . , k except if k > n2 when i = k − n2, . , k. For SU(2) generators E±,H obtain n n−1 [E+, (E−) ] = n(E−) (H − n + 1) . From the SU(3) commutators [E3+,E1−] = −E2+,[E3+,E2−] = E1+,[E2+,E3−] = E1− and [E2+,E1−] = [E1+,E2−] = 0 obtain also l−i l−i−1 k−i k−i−1 [E3+, (E1−) ] = − (l − i)(E1−) E2+ , [E3+, (E2−) ] = (k − i)(E2−) E1+ , i i−1 l−i [E2+, (E3−) ] = i E1−(E3−) , [E2+(E1−) ] = 0 . Hence obtain (l,k) (l−1,k−1) (l−1,k−1) E3+|ψi i = i(n1 + n2 − k − l + i + 1)|ψi−1 i − (l − i)(k − i)(n2 − k + i + 1)|ψi i , (l,k) (l−1,k−1) (l−1,k−1) E2+|ψi i = E1− i |ψi−1 i + (k − i)(n2 − k + i + 1)|ψi i .