Callias-Type Operators Associated to Spectral Triples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Spectral Geometry of Operators of Dirac and Laplace Type
Handbook of Global Analysis 287 Demeter Krupka and David Saunders c 2007 Elsevier All rights reserved The spectral geometry of operators of Dirac and Laplace type P. Gilkey Contents 1 Introduction 2 The geometry of operators of Laplace and Dirac type 3 Heat trace asymptotics for closed manifolds 4 Hearing the shape of a drum 5 Heat trace asymptotics of manifolds with boundary 6 Heat trace asymptotics and index theory 7 Heat content asymptotics 8 Heat content with source terms 9 Time dependent phenomena 10 Spectral boundary conditions 11 Operators which are not of Laplace type 12 The spectral geometry of Riemannian submersions 1 Introduction The field of spectral geometry is a vibrant and active one. In these brief notes, we will sketch some of the recent developments in this area. Our choice is somewhat idiosyncratic and owing to constraints of space necessarily incomplete. It is impossible to give a com- plete bibliography for such a survey. We refer Carslaw and Jaeger [41] for a comprehensive discussion of problems associated with heat flow, to Gilkey [54] and to Melrose [91] for a discussion of heat equation methods related to the index theorem, to Gilkey [56] and to Kirsten [84] for a calculation of various heat trace and heat content asymptotic formulas, to Gordon [66] for a survey of isospectral manifolds, to Grubb [73] for a discussion of the pseudo-differential calculus relating to boundary problems, and to Seeley [116] for an introduction to the pseudo-differential calculus. Throughout we shall work with smooth manifolds and, if present, smooth boundaries. We have also given in each section a few ad- ditional references to relevant works. -
Spectral Flow in Breuer-Fredholm Modules (1.1)
SPECTRAL FLOW IN BREUER-FREDHOLM MODULES A.L. CAREY1 AND JOHN PHILLIPS2 ABSTRACT. This review discusses work in progress and related earlier studies by many authors. We have attempted to place our results in their broadcontext beginning with the L 2 index theorem of Atiyah and Singer, subsequent extensions and the motivation for our results and conjectures. The geometric setting is the analysis of L 2 invariants of non-compact covering spaces, several of which are not present (or are trivial) on compact mamfolds. These invariants use the von Neumann algebra of the covering transformation group in an essential way. 1. INTRODUCTION The story begins with Atiyah and Singer [At][Si] in the mid-seventies, who were investigating a generalization of the Atiyah-Singer index theorem to (non-compact) covering spaces of compact Riemannian manifolds and with the work of Atiyah, Patodi and Singer on the index theorem for manifolds with boundary, spectral flow and the eta invariant [APS]. The optimistic viewpoint on our work is that it would lead to a real synthesis of these two directions in the sense of giving, for naturally defined geometric operators on bundles over these covering spaces, a useful theory of spectral flow and its relation to the Breuer-Fredholm index and the 1 2 index theorem. Indeed a careful reading of [APS] seems to indicate an intention to pursue this line by those authors. However results of this nature did not eventuate. One can only surmise that there were technical problems not the least of which is the obvious one: the whole idea seems unlikely because the operators which arise in examples can have continuous spectrum and so there is no notion of spectral flow as an intersection number. -
Group Von Neumann Algebras and Related Algebras
Group von Neumann Algebras and Related Algebras Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fachbereiche der Georg-August-Universit¨at zu G¨ottingen vorgelegt von Holger Reich aus Uelzen G¨ottingen 1998 D7 Referent: Prof. Dr. W. L¨uck Korreferent: Prof. Dr. T. tom Dieck Tag der m¨undlichen Pr¨ufung: Contents 1 Introduction 1 1.1 NotationsandConventions . 4 2 The Algebra of Operators Affiliated to a Finite von Neumann Algebra 5 3 Dimensions 10 3.1 -modules, -modules and Hilbert -modules .......... 10 3.2 A Notion ofU Dimension for -modulesA ............... 15 3.3 The Passage from -modulesU to -modules ............ 19 A U 4 New Interpretation of L2-Invariants 24 5 The Atiyah Conjecture 26 5.1 TheAtiyahConjecture. 26 5.2 AStrategyfortheProof. 29 5.3 The Relation to the Isomorphism Conjecture in Algebraic K-theory 32 6 Atiyah’s Conjecture for the Free Group on Two Generators 37 6.1 FredholmModules .......................... 37 6.2 Some Geometric Propertiesofthe Free Group . 39 6.3 ConstructionofaFredholmModule . 40 7 Classes of Groups and Induction Principles 43 7.1 ElementaryAmenableGroups. 43 7.2 Linnell’s Class ........................... 45 C 8 Linnell’s Theorem 52 8.1 Induction Step: Extensions - The (A)-Part . 55 8.2 Induction Step: Extensions - The (B)-Part . 69 8.3 InductionStep: DirectedUnions . 71 8.4 Starting the Induction - Free Groups . 74 8.5 Starting the Induction - Finite Extensions of Free Groups .... 75 9 Homological Properties and Applications 77 10 K-theory 81 10.1 K0 and K1 of and ........................ 81 10.2 LocalizationSequences.A U . 85 11 Appendix I: Affiliated Operators 87 12AppendixII:vonNeumannRegularRings 95 i 13 Appendix III: Localization of Non-commutative Rings 98 13.1 OreLocalization .......................... -
Spectral Asymmetry of the Massless Dirac Operator on a 3-Torus
Spectral asymmetry of the massless Dirac operator on a 3-torus Article Accepted Version Downes, R. J., Levitin, M. and Vassiliev, D. (2013) Spectral asymmetry of the massless Dirac operator on a 3-torus. Journal of Mathematical Physics, 54 (11). 111503. ISSN 0022- 2488 doi: https://doi.org/10.1063/1.4828858 Available at http://centaur.reading.ac.uk/34885/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1063/1.4828858 Publisher: American Institute of Physics All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Spectral asymmetry of the massless Dirac operator on a 3-torus Robert J. Downes,1, a) Michael Levitin,2, b) and Dmitri Vassiliev1, c) 1)Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK 2)Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explic- itly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. -
Spectral Geometry Bruno Iochum
Spectral Geometry Bruno Iochum To cite this version: Bruno Iochum. Spectral Geometry. A. Cardonna, C. Neira-Jemenez, H. Ocampo, S. Paycha and A. Reyes-Lega. Spectral Geometry, Aug 2011, Villa de Leyva, Colombia. World Scientific, 2014, Geometric, Algebraic and Topological Methods for Quantum Field Theory, 978-981-4460-04-0. hal- 00947123 HAL Id: hal-00947123 https://hal.archives-ouvertes.fr/hal-00947123 Submitted on 14 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spectral Geometry Bruno Iochum Aix-Marseille Université, CNRS UMR 7332, CPT, 13288 Marseille France Abstract The goal of these lectures is to present some fundamentals of noncommutative geometry looking around its spectral approach. Strongly motivated by physics, in particular by relativity and quantum mechanics, Chamseddine and Connes have defined an action based on spectral considerations, the so-called spectral action. The idea here is to review the necessary tools which are behind this spectral action to be able to compute it first in the case of Riemannian manifolds (Einstein–Hilbert action). Then, all primary objects defined for manifolds will be generalized to reach the level of noncommutative geometry via spectral triples, with the concrete analysis of the noncommutative torus which is a deformation of the ordinary one. -
Unbounded Normal Operators in Octonion Hilbert Spaces and Their
Unbounded normal operators in octonion Hilbert spaces and their spectra Ludkovsky S.V. 15 February 2012 Abstract Affiliated and normal operators in octonion Hilbert spaces are studied. Theorems about their properties and of related algebras are demonstrated. Spectra of unbounded normal operators are investi- gated. 1 1 Introduction Unbounded normal operators over the complex field have found many-sided applications in functional analysis, differential and partial differential equa- tions and their applications in the sciences [4, 11, 12, 14, 31]. On the other hand, hypercomplex analysis is fast developing, particularly in relation with problems of theoretical and mathematical physics and of partial differential equations [2, 7, 9]. The octonion algebra is the largest division real algebra arXiv:1204.1554v1 [math.FA] 6 Apr 2012 in which the complex field has non-central embeddings [3, 1, 13]. It is inten- sively used especially in recent years not only in mathematics, but also in applications [5, 10, 8, 15, 16]. In previous works analysis over quaternion and octonions was developed and spectral theory of bounded normal operators and unbounded self-adjoint 1key words and phrases: non-commutative functional analysis, hypercomplex numbers, quaternion skew field, octonion algebra, operator, operator algebra, spectra, spectral mea- sure, non-commutative integration Mathematics Subject Classification 2010: 30G35, 17A05, 17A70, 47A10, 47L30, 47L60 1 operators was described [18, 19, 20, 21, 22]. Some results on their applications in partial differential equations were obtained [23, 24, 25, 26, 27]. This work continuous previous articles and uses their results. The present paper is devoted to unbounded normal operators and affiliated operators in octonion Hilbert spaces, that was not yet studied before. -
On the Lefschetz Problem in Non Commutative Geometry
EXPOSITIONES Expo. Math. 21 (2003): 1-31 © Urban & Fischer Verlag MATHEMATICAE www.u rba nfischer.de/journals/expomath On the Lefschetz Problem in Non Commutative Geometry Moulay-Tahar Benameur Institut Girard Desargues, Universit6 Claude Bernard, Lyon I, 43, Bd du 11-novembre- 1918, 69622 Villeurbanne Cedex, France Abstract: In this paper, we state a Lefschetz problem in Noncommutative geometry. The main tool is a new notion of equivariant cyclic cohomology and its well defined index pairing with equivariant K-theory. We also inves- tigate invariant Connes-von Neumann spectral triples involving some new type II geometric situations. Keywords: C*-algebras, K-theory, Lefschetz, equivariant, cyclic homology. 1. INTRODUCTION In the classical work of Atiyah, Bott and Segal on Lefschetz formu- lae for isometries, the equivariant index theorem plays a fundamental E-mail address: [email protected] 0732-0869/03/21/1-01 $15.00/0 2 M.-T. Benameur part, see [2, 4]. On the other hand, index theory has benefited from Connes' Noncommutative Geometry point of view and local index theo- rems have been proven in many new singular situations, see for instance [22, 23, 11, 32]. The aim of the present paper is to show how equivari- ant index theory can be extended to yield higher Lefschetz formulae, in such singular situations [6, 7]. In the process, we also give a defini- tion of the equivariant Chern-Connes character which is appropriate for Lefschetz formulae and which is closely related with previously known definitions, see for instance [30] or [33]. Moreover, one can include in the present discussion some new results based on Segal's abstract in- tegration theory and the continuous Murray-von Neumann dimension theory [10]. -
Index Theorems
Scuola Internazionale Superiore di Studi Avanzati - Trieste DOCTORAL THESIS Index Theorems and Soft Theorems CANDIDATE : Diksha Jain ADVISOR : Prof. Atish Dabholkar OPPONENTS : Prof. Boris Pioline Prof. Ashoke Sen ACADEMIC YEAR 2019 – 2020 SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY ii Dedicated to my mother for making me who I am and my father for supporting me all the way... iii Abstract This thesis deals with Index theorems and Soft theorems for gravitini. In the first part, we derive the Atiyah-Patodi-Singer (APS) index theorem using supersymmetric quantum mechanics. We relate the APS η-invariant to the temper- ature dependence of the noncompact Witten index. It turns out that the temper- ature derivative of the Witten index depends solely on the asymptotic boundary of the noncompact target space. We also compute the elliptic genus of some non- compact superconformal field theories, namely N = (2; 2) cigar and N = (4; 4) TaubNUT. This elliptic genera is the completion of a mock Jacobi form. The holo- morphic anomaly of this mock Jacobi form again depends on the boundary theory as in the case of the Witten index. We show that the APS index theorem can then be related to the completion of a mock Jacobi form via noncompact Witten index. In the second part, we derive the leading order soft theorem for multiple soft gravitini. We compute it in an arbitrary theory of supergravity with an arbitrary number of finite energy particles. Our results are valid at all orders in perturba- tion theory in more than three dimensions. We also comment on the infrared (IR) divergences in supergravity. -
A Canonical Trace Associated with Certain Spectral Triples 3
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 077, 17 pages A Canonical Trace Associated with Certain Spectral Triples⋆ Sylvie PAYCHA Laboratoire de Math´ematiques, 63177 Aubi`ere Cedex, France E-mail: [email protected] URL: http://math.univ-bpclermont.fr/~paycha/ Received March 11, 2010, in final form September 13, 2010; Published online September 29, 2010 doi:10.3842/SIGMA.2010.077 Abstract. In the abstract pseudodifferential setup of Connes and Moscovici, we prove a general formula for the discrepancies of zeta-regularised traces associated with certain spectral triples, and we introduce a canonical trace on operators, whose order lies outside (minus) the dimension spectrum of the spectral triple. Key words: spectral triples; zeta regularisation; noncommutative residue; discrepancies 2010 Mathematics Subject Classification: 58B34; 58J42; 47B47 1 Introduction Connes and Moscovici’s setup for abstract pseudodifferential calculus [4] (see also [6]) associated with a certain type of spectral triple ( , , D) provides a framework, in which the ordinary A H trace on trace-class operators can be extended to a linear form on all abstract pseudodifferential operators using zeta regualarisation type methods. Here, is an involutive algebra represented A in a complex Hilbert space and D a self-adjoint operator in . This linear extension, which H H depends on the operator D used as a regulator in the zeta regularisation procedure, does not vanish on commutators as it can be seen from results of [4]. These constructions mimick the classical pseudodifferential calculus setup on a closed mani- fold, where similar linear extensions of the ordinary trace are built using the same zeta regulari- sation type procedure. -
Spectral Asymptotics Associated with Dirac-Type Operators
Spectral asymptotics associated with Dirac-type operators Dominic Michael Vella A thesis in fulfulment of the requirements for the degree of Doctor of Philosophy School of Mathematics and Statistics Faculty of Science August 2019 Thesis/Dissertation Sheet Surname/Family Name : Vella Given Name/s : Dominic Michael Abbreviation for degree as given in the University calendar : PhD Faculty : Science School : Mathematics and Statistics Thesis Title : Spectral asymptotics associated with Dirac-type operators Abstract 350 words maximum: (PLEASE TYPE) This thesis is concerned first with a non-compact variation of Connes' trace theorem, which demonstrated that the Dixmier trace extends the notion of Lebesgue integration on a compact manifold. To obtain the variation, we develop a new $\zeta$-residue formula, which is proved by an innovative approach using double operator integrals. Using this formula, Connes' trace theorem is shown for operators of the form $M_f(1-\Delta)^{- \frac{d}{2}}$ on $L_2(\mathbb{R}^d)$, where $M_f$ is multiplication by a function belonging to the Sobolev space $W_1^d(\mathbb{R}^d)$---the space of all integrable functions on $\mathbb{R}^d$ whose weak derivatives up to order $d$ are all also integrable---and $\Delta$ is the Laplacian on $L_2(\mathbb{R}^d)$. An analogous formula for the Moyal plane is also shown. The $\zeta$-residue formula we derive also enables a second result. We consider the smoothed Riesz map $\mathrm{g}$ of the massless Dirac operator $\mathcal{D}$ on $\mathbb{R}^d$, for $d\geq 2$, and study its properties in terms of weak Schatten classes. Our sharp estimates, which are optimal in the scale of weak Schatten classes, show that the decay of singular values of $\mathrm{g}(\mathcal{D}+V)-\mathrm{g}(\mathcal{D})$ differs dramatically for the case when the perturbation $V$ is a purely electric potential and the case when $V$ is a magnetic one. -
Lp-Lq Fourier Multipliers on Locally Compact Groups
Lp-Lq Fourier multipliers on locally compact groups A thesis presented for the degree of Doctor of Philosophy of Imperial College by Rauan Akylzhanov Department of Mathematics Imperial College 180 Queen's Gate, London SW7 2AZ 1 2 Declaration I certify that the contents of this thesis are my own original work, unless indicated otherwise. Section 1.6, Chapter 5 and Section A.2 are based on my joint work with Erlan Nursultanov and Michael Ruzhansky. Chapters 1-4 are based on my joint work Michael Ruzhansky. Section A.1 collects basic facts on linear unbounded operators measurable with respect to semi-finite von Neumann algebras. This section has been written by me, but its contents are based on the existing literature. SIGNED: ....................................... DATE: ........................... 3 4 c The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives license. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the license terms of this work. 5 6 Acknowledgements I am eternally grateful to my wife Gulnara Akylzhanova for her constant love and support. I am also grateful to my supervisor Michael Ruzhansky whom I thank for his countless valuable and timely feedback. Next, I would like to mention my collaborator Shahn Majid. Thank you for your all those pleasurable hours spent in Hampstead Waterstones. -
Lecture Notes for Ph219/CS219: Quantum Information Chapter 3
Lecture Notes for Ph219/CS219: Quantum Information Chapter 3 John Preskill California Institute of Technology Updated October 2018 Contents 3 Foundations II: Measurement and Evolution 4 3.1 Orthogonal measurement and beyond 4 3.1.1 Orthogonal Measurements 4 3.1.2 Generalized measurements 8 3.2 Quantum channels 11 3.2.1 The operator-sum representation 11 3.2.2 Reversibility 13 3.2.3 Quantum channels in the Heisenberg picture 14 3.2.4 Quantum operations 16 3.2.5 Linearity 17 3.2.6 Complete positivity 18 3.3 Channel-state duality and the dilation of a channel 20 3.3.1 Channel-state duality 20 3.3.2 Stinespring dilation 22 3.3.3 Axioms revisited 23 3.4 Three quantum channels 24 3.4.1 Depolarizing channel 24 3.4.2 Dephasing channel 27 3.4.3 Amplitude-damping channel 31 3.5 Master equations for open quantum systems 34 3.5.1 Markovian evolution 34 3.5.2 The Liouvillian 35 3.5.3 Damped harmonic oscillator 38 3.6 Non-Markovian noise 41 3.6.1 Gaussian phase noise 41 3.6.2 Spin echo 43 3.6.3 Qubits as noise spectrometers 44 3.6.4 Spin-boson model at nonzero temperature 45 3.7 Summary 47 2 Contents 3 3.8 Exercises 49 3 Foundations II: Measurement and Evolution 3.1 Orthogonal measurement and beyond In Chapter 2 we discussed how to describe the state of an open quantum system, one which is part of a larger system. In this Chapter we will extend the theory of open quantum systems further.