Spectral Asymptotics Associated with Dirac-Type Operators

Total Page:16

File Type:pdf, Size:1020Kb

Spectral Asymptotics Associated with Dirac-Type Operators Spectral asymptotics associated with Dirac-type operators Dominic Michael Vella A thesis in fulfulment of the requirements for the degree of Doctor of Philosophy School of Mathematics and Statistics Faculty of Science August 2019 Thesis/Dissertation Sheet Surname/Family Name : Vella Given Name/s : Dominic Michael Abbreviation for degree as given in the University calendar : PhD Faculty : Science School : Mathematics and Statistics Thesis Title : Spectral asymptotics associated with Dirac-type operators Abstract 350 words maximum: (PLEASE TYPE) This thesis is concerned first with a non-compact variation of Connes' trace theorem, which demonstrated that the Dixmier trace extends the notion of Lebesgue integration on a compact manifold. To obtain the variation, we develop a new $\zeta$-residue formula, which is proved by an innovative approach using double operator integrals. Using this formula, Connes' trace theorem is shown for operators of the form $M_f(1-\Delta)^{- \frac{d}{2}}$ on $L_2(\mathbb{R}^d)$, where $M_f$ is multiplication by a function belonging to the Sobolev space $W_1^d(\mathbb{R}^d)$---the space of all integrable functions on $\mathbb{R}^d$ whose weak derivatives up to order $d$ are all also integrable---and $\Delta$ is the Laplacian on $L_2(\mathbb{R}^d)$. An analogous formula for the Moyal plane is also shown. The $\zeta$-residue formula we derive also enables a second result. We consider the smoothed Riesz map $\mathrm{g}$ of the massless Dirac operator $\mathcal{D}$ on $\mathbb{R}^d$, for $d\geq 2$, and study its properties in terms of weak Schatten classes. Our sharp estimates, which are optimal in the scale of weak Schatten classes, show that the decay of singular values of $\mathrm{g}(\mathcal{D}+V)-\mathrm{g}(\mathcal{D})$ differs dramatically for the case when the perturbation $V$ is a purely electric potential and the case when $V$ is a magnetic one. The application of double operator integrals also yields a similar result for the operator $f(\mathcal{D}+V)-f(\mathcal{D})$ for an arbitrary monotone function $f$ on $\mathbb{R}$ whose derivative is Schwartz. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Signature Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. INCLUSION OF PUBLICATIONS STATEMENT UNSW is supportive of candidates publishing their research results during their candidature as detailed in the UNSW Thesis Examination Procedure. Publications can be used in their thesis in lieu of a Chapter if: • The student contributed greater than 50% of the content in the publication and is the “primary author”, i.e. the student was responsible primarily for the planning, execution and preparation of the work for publication • The student has approval to include the publication in their thesis in lieu of a Chapter from their supervisor and Postgraduate Coordinator. • The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis Please indicate whether this thesis contains published material or not. This thesis contains no publications, either published or submitted for publication ☐ Some of the work described in this thesis has been published and it has been ☒ documented in the relevant Chapters with acknowledgement This thesis has publications (either published or submitted for publication) ☐ incorporated into it in lieu of a chapter and the details are presented below CANDIDATE’S DECLARATION I declare that: • I have complied with the Thesis Examination Procedure • where I have used a publication in lieu of a Chapter, the listed publication(s) below meet(s) the requirements to be included in the thesis. Name Signature Date (dd/mm/yy) Dominic Michael Vella v COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the public) my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known. I acknowledge that I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or dissertation in future works (such as articles or books).’ ‘For any substantial portions of copyright material used in this thesis, written permission for use has been obtained, or the copyright material is removed from the final public version of the thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. Abstract This thesis is concerned first with a non-compact variation of Connes' trace theorem, which demonstrated that the Dixmier trace extends the notion of Lebesgue integration on a compact manifold. To obtain the variation, we develop a new ζ-residue formula, which is proved by an innovative approach using double operator integrals. Using this formula, − d d Connes' trace theorem is shown for operators of the form Mf (1 − ∆) 2 on L2(R ), where d d Mf is multiplication by a function belonging to the Sobolev space W1 (R )|the space of all d integrable functions on R whose weak derivatives up to order d are all also integrable| d and ∆ is the Laplacian on L2(R ). An analogous formula for the Moyal plane is also shown. The ζ-residue formula we derive also enables a second result. We consider the smoothed d Riesz map g of the massless Dirac operator D on R , for d ≥ 2, and study its properties in terms of weak Schatten classes. Our sharp estimates, which are optimal in the scale of weak Schatten classes, show that the decay of singular values of g(D + V ) − g(D) differs dramatically for the case when the perturbation V is a purely electric potential and the case when V is a magnetic one. The application of double operator integrals also yields a similar result for the operator f(D + V ) − f(D) for an arbitrary monotone function f on R whose derivative is Schwartz. iii iv Acknowledgements At some point near the end of 2016, a starry-eyed student with a fresh bachelor's degree in mathematics and a mind to pursue a PhD in mathematical physics visited Alan Carey at ANU. At that meeting, Alan advised the student that the prolific academic and his close collaborator, Fedor Sukochev, was likely a good person to speak to. Though not a mathematical physicist, Fedor's research in noncommutative geometry had inextricable roots in the area. Moreover, he worked at UNSW, the university where the student had conducted his undergrad studies. Within days, Fedor found the na¨ıve stranger of a student knocking at his office door and (quite uncharacteristically, I might add) decided to accept him as a student almost immediately! I know not by what rubric he made that remarkable decision, but it was due to that decision|and Alan's direction|that the student was able to eventually produce the present thesis. Fedor's supervision was as unconventional as it was effective. His broad insights, wis- dom and perfectionism were all inspiring to behold and were a constant driver for the direction of my research, but balancing his own research projects with all of his research students, of which there were both numerous, was a nontrivial task. For this reason, I benefitted from the co-supervision of correspondingly numerous academics, each of whom were tasked with fostering a certain set of skills. Dima's door was always open, and he was constantly brimming with keen mathematical insights. He encouraged the pursuit of beauty and generality in results proven through clever argumentation. Steven countered this by ensuring my approach to mathematics remained grounded, rigorous, clearly written and timely, with his careful and time-consuming reading of my work time and time again resulting in essential course-correction.
Recommended publications
  • Arxiv:Math/0608375V2 [Math.OA] 23 Aug 2006 -Al [email protected] E-Mail: AUSTRALIA 0200, ACT
    DIXMIER TRACES AND SOME APPLICATIONS IN NONCOMMUTATIVE GEOMETRY Alan L. Carey Fyodor A. Sukochev Mathematical Sciences Institute School of Informatics and Engineering Australian National University Flinders University Canberra, ACT. 0200, AUSTRALIA Bedford Park S.A 5042 AUSTRALIA e-mail: [email protected] e-mail: sukochev@infoeng.flinders.edu.au Contents 1. Introduction 3 2. Preliminaries: spaces and functionals 6 2.1. Marcinkiewicz function and sequence spaces 6 2.2. Singular symmetric functionals on Marcinkiewicz spaces. 7 2.3. Symmetric operator spaces and functionals. 8 3. General facts about symmetric functionals. 10 4. Preliminaries on dilation and translation invariant states. 12 5. Concrete constructions of singular symmetric functionals. 16 5.1. Dixmier traces 16 5.2. Connes-Dixmier traces 19 5.3. Rearrangement invariant functionals and singular traces. 20 6. Class of measurable elements. 20 arXiv:math/0608375v2 [math.OA] 23 Aug 2006 7. Norming properties of Dixmier and Connes-Dixmier functionals 23 8. Fredholm modules and spectral triples 25 8.1. Notation and definitions 25 8.2. Bounded versus unbounded 26 8.3. More on Semifinite Spectral Triples 26 8.4. Summability and Dimension 27 9. Spectral Flow 28 9.1. Spectral Flow Formulae 29 1 2 9.2. Relation to Cyclic Cohomology 29 10. The Dixmier trace and residues of the zeta function 31 10.1. Preliminaries 31 10.2. The zeta function and the Dixmier trace 35 11. The heat semigroup formula 38 12. The case of p> 1 40 13. Generalised Toeplitz operators and their index 41 14. Non-smooth foliations and pseudo-differential operators 43 15.
    [Show full text]
  • Fixed-Points in the Cone of Traces on a C -Algebra
    Fixed-points in the cone of traces on a C∗-algebra Mikael Rørdam∗ Dedicated to the memory of John Roe Abstract Nicolas Monod introduced in [16] the class of groups with the fixed-point property for cones, characterized by always admitting a non-zero fixed point whenever acting (suitably) on proper weakly complete cones. He proved that his class of groups contains the class of groups with subexponential growth and is contained in the class of supramenable groups. In this paper we investigate what Monod's results say about the existence of invariant traces on (typically non-unital) C∗-algebras equipped with an action of a group with the fixed-point property for cones. As an application of these results we provide results on the existence (and non-existence) of traces on the (non-uniform) Roe algebra. 1 Introduction Whenever a discrete amenable group acts on a unital C∗-algebra with at least one tracial state, then the C∗-algebra admits an invariant tracial state, and the crossed product C∗-al- gebra admits a tracial state. This, moreover, characterizes amenable groups. The purpose of this paper is to find statements, similar to this well-known fact, about the existence of invariant traces on non-unital C∗-algebras using the results of the recent paper by Monod, [16], in which the class of groups with the fixed-point property for cones is introduced and developed. In [16], a group is said to have the fixed-point property for cones if whenever it acts continuously on a proper weakly complete cone (embedded into a locally convex topological vector space), such that the action is of cobounded type and locally bounded, then there is a non-zero fixed point in the cone.
    [Show full text]
  • Noncommutative Geometry
    Mathematisches Forschungsinstitut Oberwolfach Report No. 29/2015 DOI: 10.4171/OWR/2015/29 Noncommutative Geometry Organised by Alain Connes, Paris Joachim Cuntz, M¨unster Stefaan Vaes, Leuven Guoliang Yu, College Station 14 June – 20 June 2015 Abstract. These reports contain an account of 2015’s meeting on noncom- mutative geometry. Noncommutative geometry has developed itself over the years to a completely new branch of mathematics shedding light on many other areas as number theory, differential geometry and operator algebras. A connection that was highlighted in particular in this meeting was the connec- tion with the theory of II1-factors and geometric group theory. Mathematics Subject Classification (2010): 58B34. Introduction by the Organisers Noncommutative geometry applies ideas from geometry to mathematical struc- tures determined by noncommuting variables. Within mathematics, it is a highly inter-disciplinary subject drawing ideas and methods from many areas of math- ematics and physics. Natural questions involving noncommuting variables arise in abundance in many parts of mathematics and theoretical quantum physics. On the basis of ideas and methods from algebraic and differential topology and Riemannian geometry, as well as from the theory of operator algebras and from homological algebra, an extensive machinery has been developed which permits the formulation and investigation of the geometric properties of noncommutative structures. This includes K-theory, cyclic homology and the theory of spectral triples. Areas of intense research in recent years are related to topics such as in- dex theory, quantum groups and Hopf algebras, the Novikov and Baum-Connes conjectures as well as to the study of specific questions in other fields such as number theory, modular forms, topological dynamical systems, renormalization 1632 Oberwolfach Report 29/2015 theory, theoretical high-energy physics and string theory.
    [Show full text]
  • Dixmier Traces and Some Applications in Non-Commutative Geometry
    Russian Math. Surveys 61:6 1039–1099 c 2006 RAS(DoM) and LMS Uspekhi Mat. Nauk 61:6 45–110 DOI 10.1070/RM2006v061n06ABEH004369 Dixmier traces and some applications in non-commutative geometry A. L. Carey and F. A. Sukochev Abstract. This is a discussion of recent progress in the theory of singular traces on ideals of compact operators, with emphasis on Dixmier traces and their applications in non-commutative geometry. The starting point is the book Non-commutative geometry by Alain Connes, which contains several open problems and motivations for their solutions. A distinctive feature of the exposition is a treatment of operator ideals in general semifinite von Neumann algebras. Although many of the results presented here have already appeared in the literature, new and improved proofs are given in some cases. The reader is referred to the table of contents below for an overview of the topics considered. Contents 1. Introduction 1040 2. Preliminaries: spaces and functionals 1043 2.1. Marcinkiewicz function spaces and sequence spaces 1044 2.2. Singular symmetric functionals on Marcinkiewicz spaces 1044 2.3. Symmetric operator spaces and functionals 1045 3. General facts about symmetric functionals 1047 4. Preliminaries on dilation- and translation-invariant states 1049 5. Concrete constructions of singular symmetric functionals 1054 5.1. Dixmier traces 1054 5.2. Connes–Dixmier traces 1056 5.3. Rearrangement-invariant functionals and singular traces 1058 6. Class of measurable elements 1058 7. Norming properties of Dixmier and Connes–Dixmier functionals 1061 8. Fredholm modules and spectral triples 1063 8.1. Notation and definitions 1063 8.2.
    [Show full text]
  • Trotter-Kato Product Formulae in Dixmier Ideal 3
    Trotter-Kato product formulae in Dixmier ideal On the occasion of the 100th birthday of Tosio Kato Valentin A.Zagrebnov Abstract It is shown that for a certain class of the Kato functions the Trotter-Kato product formulae converge in Dixmier ideal C1,∞ in topology, which is defined by the k·k1,∞-norm. Moreover, the rate of convergence in this topology inherits the error-bound estimate for the corresponding operator-norm convergence. 1 Preliminaries. Symmetrically-normed ideals Let H be a separable Hilbert space. For the first time the Trotter-Kato product formulae in Dixmier ideal C1,∞(H ), were shortly discussed in conclusion of the paper [19]. This remark was a program addressed to extension of results, which were known for the von Neumann-Schatten ideals Cp(H ), p ≥ 1 since [24], [14]. Note that a subtle point of this program is the question about the rate of con- vergence in the corresponding topology. Since the limit of the Trotter-Kato product formula is a strongly continuous semigroup, for the von Neumann-Schatten ideals this topology is the trace-norm k·k1 on the trace-class ideal C1(H ). In this case the limit is a Gibbs semigroup [25]. For self-adjoint Gibbs semigroups the rate of convergence was estimated for the first time in [7] and [9]. The authors considered the case of the Gibbs-Schr¨odinger semigroups. They scrutinised in these papers a dependence of the rate of conver- gence for the (exponential) Trotter formula on the smoothness of the potential in the Schr¨odinger generator. arXiv:1812.11411v1 [math.FA] 29 Dec 2018 The first abstract result in this direction was due to [19].
    [Show full text]
  • The Spectral Geometry of Operators of Dirac and Laplace Type
    Handbook of Global Analysis 287 Demeter Krupka and David Saunders c 2007 Elsevier All rights reserved The spectral geometry of operators of Dirac and Laplace type P. Gilkey Contents 1 Introduction 2 The geometry of operators of Laplace and Dirac type 3 Heat trace asymptotics for closed manifolds 4 Hearing the shape of a drum 5 Heat trace asymptotics of manifolds with boundary 6 Heat trace asymptotics and index theory 7 Heat content asymptotics 8 Heat content with source terms 9 Time dependent phenomena 10 Spectral boundary conditions 11 Operators which are not of Laplace type 12 The spectral geometry of Riemannian submersions 1 Introduction The field of spectral geometry is a vibrant and active one. In these brief notes, we will sketch some of the recent developments in this area. Our choice is somewhat idiosyncratic and owing to constraints of space necessarily incomplete. It is impossible to give a com- plete bibliography for such a survey. We refer Carslaw and Jaeger [41] for a comprehensive discussion of problems associated with heat flow, to Gilkey [54] and to Melrose [91] for a discussion of heat equation methods related to the index theorem, to Gilkey [56] and to Kirsten [84] for a calculation of various heat trace and heat content asymptotic formulas, to Gordon [66] for a survey of isospectral manifolds, to Grubb [73] for a discussion of the pseudo-differential calculus relating to boundary problems, and to Seeley [116] for an introduction to the pseudo-differential calculus. Throughout we shall work with smooth manifolds and, if present, smooth boundaries. We have also given in each section a few ad- ditional references to relevant works.
    [Show full text]
  • Spectral Flow in Breuer-Fredholm Modules (1.1)
    SPECTRAL FLOW IN BREUER-FREDHOLM MODULES A.L. CAREY1 AND JOHN PHILLIPS2 ABSTRACT. This review discusses work in progress and related earlier studies by many authors. We have attempted to place our results in their broadcontext beginning with the L 2 index theorem of Atiyah and Singer, subsequent extensions and the motivation for our results and conjectures. The geometric setting is the analysis of L 2 invariants of non-compact covering spaces, several of which are not present (or are trivial) on compact mamfolds. These invariants use the von Neumann algebra of the covering transformation group in an essential way. 1. INTRODUCTION The story begins with Atiyah and Singer [At][Si] in the mid-seventies, who were investigating a generalization of the Atiyah-Singer index theorem to (non-compact) covering spaces of compact Riemannian manifolds and with the work of Atiyah, Patodi and Singer on the index theorem for manifolds with boundary, spectral flow and the eta invariant [APS]. The optimistic viewpoint on our work is that it would lead to a real synthesis of these two directions in the sense of giving, for naturally defined geometric operators on bundles over these covering spaces, a useful theory of spectral flow and its relation to the Breuer-Fredholm index and the 1 2 index theorem. Indeed a careful reading of [APS] seems to indicate an intention to pursue this line by those authors. However results of this nature did not eventuate. One can only surmise that there were technical problems not the least of which is the obvious one: the whole idea seems unlikely because the operators which arise in examples can have continuous spectrum and so there is no notion of spectral flow as an intersection number.
    [Show full text]
  • Spectral Asymmetry of the Massless Dirac Operator on a 3-Torus
    Spectral asymmetry of the massless Dirac operator on a 3-torus Article Accepted Version Downes, R. J., Levitin, M. and Vassiliev, D. (2013) Spectral asymmetry of the massless Dirac operator on a 3-torus. Journal of Mathematical Physics, 54 (11). 111503. ISSN 0022- 2488 doi: https://doi.org/10.1063/1.4828858 Available at http://centaur.reading.ac.uk/34885/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1063/1.4828858 Publisher: American Institute of Physics All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Spectral asymmetry of the massless Dirac operator on a 3-torus Robert J. Downes,1, a) Michael Levitin,2, b) and Dmitri Vassiliev1, c) 1)Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK 2)Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explic- itly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric.
    [Show full text]
  • Spectral Geometry Bruno Iochum
    Spectral Geometry Bruno Iochum To cite this version: Bruno Iochum. Spectral Geometry. A. Cardonna, C. Neira-Jemenez, H. Ocampo, S. Paycha and A. Reyes-Lega. Spectral Geometry, Aug 2011, Villa de Leyva, Colombia. World Scientific, 2014, Geometric, Algebraic and Topological Methods for Quantum Field Theory, 978-981-4460-04-0. hal- 00947123 HAL Id: hal-00947123 https://hal.archives-ouvertes.fr/hal-00947123 Submitted on 14 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spectral Geometry Bruno Iochum Aix-Marseille Université, CNRS UMR 7332, CPT, 13288 Marseille France Abstract The goal of these lectures is to present some fundamentals of noncommutative geometry looking around its spectral approach. Strongly motivated by physics, in particular by relativity and quantum mechanics, Chamseddine and Connes have defined an action based on spectral considerations, the so-called spectral action. The idea here is to review the necessary tools which are behind this spectral action to be able to compute it first in the case of Riemannian manifolds (Einstein–Hilbert action). Then, all primary objects defined for manifolds will be generalized to reach the level of noncommutative geometry via spectral triples, with the concrete analysis of the noncommutative torus which is a deformation of the ordinary one.
    [Show full text]
  • Index Theorems
    Scuola Internazionale Superiore di Studi Avanzati - Trieste DOCTORAL THESIS Index Theorems and Soft Theorems CANDIDATE : Diksha Jain ADVISOR : Prof. Atish Dabholkar OPPONENTS : Prof. Boris Pioline Prof. Ashoke Sen ACADEMIC YEAR 2019 – 2020 SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY ii Dedicated to my mother for making me who I am and my father for supporting me all the way... iii Abstract This thesis deals with Index theorems and Soft theorems for gravitini. In the first part, we derive the Atiyah-Patodi-Singer (APS) index theorem using supersymmetric quantum mechanics. We relate the APS η-invariant to the temper- ature dependence of the noncompact Witten index. It turns out that the temper- ature derivative of the Witten index depends solely on the asymptotic boundary of the noncompact target space. We also compute the elliptic genus of some non- compact superconformal field theories, namely N = (2; 2) cigar and N = (4; 4) TaubNUT. This elliptic genera is the completion of a mock Jacobi form. The holo- morphic anomaly of this mock Jacobi form again depends on the boundary theory as in the case of the Witten index. We show that the APS index theorem can then be related to the completion of a mock Jacobi form via noncompact Witten index. In the second part, we derive the leading order soft theorem for multiple soft gravitini. We compute it in an arbitrary theory of supergravity with an arbitrary number of finite energy particles. Our results are valid at all orders in perturba- tion theory in more than three dimensions. We also comment on the infrared (IR) divergences in supergravity.
    [Show full text]
  • A Canonical Trace Associated with Certain Spectral Triples 3
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 077, 17 pages A Canonical Trace Associated with Certain Spectral Triples⋆ Sylvie PAYCHA Laboratoire de Math´ematiques, 63177 Aubi`ere Cedex, France E-mail: [email protected] URL: http://math.univ-bpclermont.fr/~paycha/ Received March 11, 2010, in final form September 13, 2010; Published online September 29, 2010 doi:10.3842/SIGMA.2010.077 Abstract. In the abstract pseudodifferential setup of Connes and Moscovici, we prove a general formula for the discrepancies of zeta-regularised traces associated with certain spectral triples, and we introduce a canonical trace on operators, whose order lies outside (minus) the dimension spectrum of the spectral triple. Key words: spectral triples; zeta regularisation; noncommutative residue; discrepancies 2010 Mathematics Subject Classification: 58B34; 58J42; 47B47 1 Introduction Connes and Moscovici’s setup for abstract pseudodifferential calculus [4] (see also [6]) associated with a certain type of spectral triple ( , , D) provides a framework, in which the ordinary A H trace on trace-class operators can be extended to a linear form on all abstract pseudodifferential operators using zeta regualarisation type methods. Here, is an involutive algebra represented A in a complex Hilbert space and D a self-adjoint operator in . This linear extension, which H H depends on the operator D used as a regulator in the zeta regularisation procedure, does not vanish on commutators as it can be seen from results of [4]. These constructions mimick the classical pseudodifferential calculus setup on a closed mani- fold, where similar linear extensions of the ordinary trace are built using the same zeta regulari- sation type procedure.
    [Show full text]
  • Preface Issue 2-2014
    Jahresber Dtsch Math-Ver (2014) 116:85 DOI 10.1365/s13291-014-0094-6 PREFACE Preface Issue 2-2014 Hans-Christoph Grunau Published online: 20 May 2014 © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2014 Most mathematicians have at least a basic knowledge of ordinary differential equa- tions but I am rather sure that a lot of them including those, who work on differential equations, have not thought about delay differential equations, yet. At the same time there are many obvious examples of applications, where it takes some time for the state of a system to gain influence on its rate of change. Hans-Otto Walther begins his survey on “Topics in Delay Differential Equations” with the simple looking ex- ample x(t) =−αx(t − 1) and its variants to explain the most striking differences between differential equations with or without delay. After explaining a number of further examples and giving a brief overview of the basic theory the survey puts some emphasis on the dynamical behaviour of scalar equations with constant delay as well as on equations with state-dependent delay. This is the second issue where we have, in collaboration with the Zentralblatt für Mathematik, a contribution to the category “Classics Revisited”. Hervé Queffélec takes a new look at the paper on “The converse of Abel’s theorem on power series” written by John E. Littlewood in 1911, at the age of 26. It generalises a previous result by Tauber and may be viewed as a seminal contribution to what we call nowa- days “Tauberian theorems”. It seems that this paper attracted Hardy’s attention and initiated their long and fruitful collaboration.
    [Show full text]