Dixmier Traces 194 6.1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Dixmier Traces 194 6.1 Introduction De Gruyter Studies in Mathematics 46 Editors Carsten Carstensen, Berlin, Germany Nicola Fusco, Napoli, Italy Fritz Gesztesy, Columbia, USA Niels Jacob, Swansea, United Kingdom Karl-Hermann Neeb, Erlangen, Germany Steven Lord Fedor Sukochev Dmitriy Zanin Singular Traces Theory and Applications De Gruyter Mathematical Subject Classification 2010: 46L51, 47L20, 58B34, 47B06, 47B10, 46B20, 46E30, 46B45, 47G10, 58J42. ISBN 978-3-11-026250-6 e-ISBN 978-3-11-026255-1 Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the internet at http://dnb.dnb.de. © 2013 Walter de Gruyter GmbH, Berlin/Boston Typesetting: PTP-Berlin Protago-TEX-Production GmbH, www.ptp-berlin.de Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen Printed on acid-free paper Printed in Germany www.degruyter.com Preface This book is dedicated to the memory of Nigel Kalton. Nigel was going to be a co- author but, tragically, he passed away before the text could be started. The book has become a tribute. A tribute to his influence on us, and a tribute to his influence on the area of singular traces. It would not have been written without his inspiration on techniques concerning symmetric norms and quasi-nilpotent operators. A lot of the development was very recent. Singular traces is still an evolving mathematical field. Our book concentrates very much on the functional analysis side, which we feel is heading toward some early form of maturity. It was a sense of consolidation, that we had something worth report- ing, which sponsored the idea of writing a book. We thought that new results discov- ered with Nigel, based on previous work about symmetric spaces, symmetric func- tionals and commutator subspaces by Nigel, Peter and Theresa Dodds, Ken Dykema, Thierry Fack, Tadius Figiel, Victor Kaftal, Ben de Pagter, Albrecht Pietsch, Alek- sander Sedaev, Evgenii Semenov, Gary Weiss, Mariusz Wodzicki, and many others, deserved a wider audience amongst operator algebraists, functional analysts, noncom- mutative geometers and allied mathematical physicists. Despite the patchiness of a young field, what is emerging is that singular traces are as fundamental to the study of functional analysis as the canonical trace. The book is complete, in the limited sense that any investigation can be complete, as a story of the existence of continuous traces on symmetrically normed ideals. It is a complete story about the Calkin correspondence and the Lidskii eigenvalue formula for continuous traces. It is a complete story of the Dixmier trace on the dual of the Macaev ideal. It is a complete story about Connes’ Trace Theorem. We strongly emphasize, however, that this book is not a reference for, nor a snapshot of, the entire field. We have included end notes to each chapter, giving historical background, credit of results, and reference to alternative approaches to the best of our knowledge; we apologize in advance for possible omissions. We hope we have made the topic accessible, as well as displaying what we think to be the vital and interesting features of singular traces on symmetric operator spaces. The authors acknowledge their families for their invaluable support. Steven Lord and Fedor Sukochev thank their partners, Rebekkah Sparrow and Olga Lopatko. We thank Fritz Gesztesy for the introduction to the publisher and assistance during the publica- tion process, and for his help with the permission to reproduce a tribute from the Nigel Kalton Memorial Website. We thank Anna Tomskova for LaTeX and editing support. vi Preface We thank Albrecht Pietsch for helping us with historical comments. We thank Jacques Dixmier for his permission to quote from the letter he wrote to the conference “Singu- lar Traces and Their Applications” (Luminy, January 2012). We thank colleagues that have given us invaluable advice, encouragement, and criticism, Alan Carey, Vladimir Chilin, Victor Gayral, John Phillips, Denis Potapov, and Adam Rennie, amongst those not already mentioned, and we acknowledge contributors and co-workers in the field, Nurulla Azamov, Daniele Guido, Bruno Iochum, Tommaso Isola, Alexandr Usachev, and Joseph Várilly, amongst many others. Sydney, Australia, 30 July 2012 Steven Lord Fedor Sukochev Dmitriy Zanin Notations N set of natural numbers Z set of integers ZC set of non-negative integers R field of real numbers RC set of positive real numbers Rd Euclidean space of dimension d jj Euclidean norm on Rd C field of complex numbers MN .C/ algebra of square N N complex matrices Tr.A/ trace of a matrix A det.A/ determinant of a matrix A L N direct sum of Banach spaces, traces or operators tensor product of von Neumann algebras, traces or operators ? convolution « orthocomplement submajorization C uniform submajorization à uniform convergence a˛ " a (a˛ # a) increasing (decreasing) net with respect to a partial order Gamma function logC.x/ maxflog jxj,0g H complex separable Hilbert space h, i inner product (complex linear in the first variable) kk norm (usually the vector norm on a Hilbert space) kk1 operator (uniform) norm L.H / algebra of bounded operators on H 1 fengnD0 orthonormal basis of H ˝ one-dimensional operator on H defined by . ˝ /x :Dhx, i 1 identity map on H diag.a/ diagonal operator on H associated with a 2 l1 ŒA, B commutator of operators A and B A adjoint of the operator A jAj absolute value of the operator A viii Notations A 0 operator A is positive AC (A) positive (negative) part of a self-adjoint operator A <A (=A) real (imaginary) part of the operator A A˚n direct sum of n-copies of the operator A Dom.A/ domain of the operator A ker.A/ kernel of the operator A .A/ spectrum of the operator A .A/ an eigenvalue sequence of the operator A .n, A/ n-th element of an eigenvalue sequence of the operator A .A/ singular value sequence (or function) of the operator A .n, A/ n-th element of the singular value sequence of the operator A .t, A/ value at t 2 Œ0, 1 of the singular value function of the operator A J Calkin sequence space JC positive part of the space J Z.J / center of J J two-sided ideal of compact operators JC positive part of the ideal J Com.J / commutator subspace of J c00 space of eventually vanishing sequences c0 space of converging to zero sequences c space of convergent sequences l1 space of bounded sequences l1 space of summable sequences l2 Hilbert space of square summable sequences lp space of p-summable sequences lp,1 weak-lp sequence space lˆ Orlicz sequence space associated with an Orlicz function ˆ m1,1 Sargent sequence space C00.H / ideal of finite rank operators on H C0.H / ideal of compact operators on H L1 ideal of trace class operators L2 ideal of Hilbert-Schmidt operators Lp Schatten-von Neumann ideal of compact operators Lp,1 weak-lp ideal of compact operators Lˆ ideal of compact operators associated with lˆ M1,1 Dixmier-Macaev ideal of compact operators .M1,1/0 separable part of M1,1 kkp (standard) norm on lp, Lp or Lp kk1,w quasi-norm on l1,1 or L1,1 Notations ix Tr.A/ (standard) trace of the trace class operator A Tr!.A/ Dixmier trace (discrete version) of the operator A C.X/ space of continuous functions on a compact Hausdorff topological space X C0.X/ space of continuous functions vanishing at infinity on a locally compact Hausdorff topological space X .X, †, / -finite measure space L1.X/ algebra of (equivalence classes of) bounded functions on X L1.X/ space of (equivalence classes of) integrable functions on X L2.X/ Hilbert space of (equivalence classes of) square integrable func- tions on X Lp.X/ space of (equivalence classes of) p-integrable functions on X A characteristic function of a measurable set A  X trace associated with a measure m Lebesgue measure L0.0, 1/ set of measurable functions on RC [f1g C R L0 .0, 1/ set of positive measurable functions on C [f1g S.0, 1/ set of all (m)-measurable functions on .0, 1/ (on .0, 1/) (S.0, 1/) Lp Lebesgue Lp-space on .0, 1/ or .0, 1/ 0 L1.0, 1/ space of (equivalence classes of) bounded functions vanishing at infinity Mx multiplication operator on L2.X/ for x 2 L1.X/ supp.x/ support of a sequence x, a complex valued function x,oradistri- bution x M semifinite von Neumann algebra L.H /C (MC) set of positive elements of L.H / (M) Proj.M/ lattice of projections in M _ (^) supremum (infimum) operation (in a lattice) faithful normal semifinite trace on M .M, / von Neumann algebra M equipped with a faithful normal semifi- nite trace S.M, / set of -measurable operators Lp.M, / noncommutative Lp-space C0.M, / ideal of -compact operators EA spectral measure of the operator A 2 M nA spectral distribution function of the operator A 2 M E symmetric sequence or function space kkE symmetric norm on E E0 separable part of E x Notations E symmetric ideal of compact operators E.M, / symmetric operator space associated to the pair .M, / kkE norm on E or E.M, / E0 (E.M, /0) separable part of E (E.M, /) E (E.M, /) dual space of E (E.M, /) E.jA/ expectation operator associated with the partition A DE Lin.fx 2 E : x D .x/g/ ZE Lin.fx1 x2 :0Ä x1, x2 2 E, .x1/ D .x2/g/ ' trace, continuous trace or (fully) symmetric functional L.'/./ symmetric functional on E.M, / associated with a symmetric functional ' on E 'C positive part of a hermitian symmetric functional ' positive concave increasing function on .0, 1/ 0 derivative of m Lorentz sequence space associated with m Köthe dual space to m M Lorentz ideal of compact operators associated with m M Lorentz ideal of compact operators associated with m M Lorentz function space associated with M Köthe dual space to M M .M, / Lorentz operator space associated with M M M .
Recommended publications
  • Weak Compactness in the Space of Operator Valued Measures and Optimal Control Nasiruddin Ahmed
    Weak Compactness in the Space of Operator Valued Measures and Optimal Control Nasiruddin Ahmed To cite this version: Nasiruddin Ahmed. Weak Compactness in the Space of Operator Valued Measures and Optimal Control. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. pp.49-58, 10.1007/978-3-642-36062-6_5. hal-01347522 HAL Id: hal-01347522 https://hal.inria.fr/hal-01347522 Submitted on 21 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License WEAK COMPACTNESS IN THE SPACE OF OPERATOR VALUED MEASURES AND OPTIMAL CONTROL N.U.Ahmed EECS, University of Ottawa, Ottawa, Canada Abstract. In this paper we present a brief review of some important results on weak compactness in the space of vector valued measures. We also review some recent results of the author on weak compactness of any set of operator valued measures. These results are then applied to optimal structural feedback control for deterministic systems on infinite dimensional spaces. Keywords: Space of Operator valued measures, Countably additive op- erator valued measures, Weak compactness, Semigroups of bounded lin- ear operators, Optimal Structural control.
    [Show full text]
  • Math 259A Lecture 7 Notes
    Math 259A Lecture 7 Notes Daniel Raban October 11, 2019 1 WO and SO Continuity of Linear Functionals and The Pre-Dual of B 1.1 Weak operator and strong operator continuity of linear functionals Lemma 1.1. Let X be a vector space with seminorms p1; : : : ; pn. Let ' : X ! C be a Pn linear functional such that j'(x)j ≤ i=1 pi(x) for all x 2 X. Then there exist linear P functionals '1;:::;'n : X ! C such that ' = i 'i with j'i(x)j ≤ pi(x) for all x 2 X and for all i. Proof. Let D = fx~ = (x; : : : ; x): x 2 Xg ⊆ Xn, which is a vector subspace. On Xn, n P take p((xi)i=1) = i pi(xi). We also have a linear map' ~ : D ! C given by' ~(~x) = '(x). This map satisfies j~(~x)j ≤ p(~x). By the Hahn-Banach theorem, there exists an n ∗ extension 2 (X ) of' ~ such that j (x1; : : : ; xn)j ≤ p(x1; : : : ; xn). Now define 'k(x) := (0; : : : ; x; 0;::: ), where the x is in the k-th position. Theorem 1.1. Let ' : B! C be linear. ' is weak operator continuous if and only if it is it is strong operator continuous. Proof. We only need to show that if ' is strong operator continuous, then it is weak Pn operator continuous. So assume there exist ξ1; : : : ; ξn 2 X such that j'(x)j ≤ i=1 kxξik P for all x 2 B. By the lemma, we can split ' = 'k, such that j'k(x)j ≤ kxξkk for all x and k.
    [Show full text]
  • Derivations on Metric Measure Spaces
    Derivations on Metric Measure Spaces by Jasun Gong A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2008 Doctoral Committee: Professor Mario Bonk, Chair Professor Alexander I. Barvinok Professor Juha Heinonen (Deceased) Associate Professor James P. Tappenden Assistant Professor Pekka J. Pankka “Or se’ tu quel Virgilio e quella fonte che spandi di parlar si largo fiume?” rispuos’io lui con vergognosa fronte. “O de li altri poeti onore e lume, vagliami ’l lungo studio e ’l grande amore che m’ha fatto cercar lo tuo volume. Tu se’ lo mio maestro e ’l mio autore, tu se’ solo colui da cu’ io tolsi lo bello stilo che m’ha fatto onore.” [“And are you then that Virgil, you the fountain that freely pours so rich a stream of speech?” I answered him with shame upon my brow. “O light and honor of all other poets, may my long study and the intense love that made me search your volume serve me now. You are my master and my author, you– the only one from whom my writing drew the noble style for which I have been honored.”] from the Divine Comedy by Dante Alighieri, as translated by Allen Mandelbaum [Man82]. In memory of Juha Heinonen, my advisor, teacher, and friend. ii ACKNOWLEDGEMENTS This work was inspired and influenced by many people. I first thank my parents, Ping Po Gong and Chau Sim Gong for all their love and support. They are my first teachers, and from them I learned the value of education and hard work.
    [Show full text]
  • Connes Trace Theorem for Curved Noncommutative Tori. Application to Scalar Curvature
    CONNES’ TRACE THEOREM FOR CURVED NONCOMMUTATIVE TORI. APPLICATION TO SCALAR CURVATURE RAPHAEL¨ PONGE Abstract. In this paper we prove a version of Connes’ trace theorem for noncommutative tori of any dimension n ě 2. This allows us to recover and improve earlier versions of this result in dimension n “ 2 and n “ 4 by Fathizadeh-Khalkhali [21, 22]. We also recover the Connes integration formula for flat noncommutative tori of McDonald-Sukochev-Zanin [43]. As a further application we prove a curved version of this integration formula in terms of the Laplace-Beltrami operator defined by an arbitrary Riemannian metric. For the class of so-called self-compatible Riemannian metrics (including the conformally flat metrics of Connes-Tretkoff) this shows that Connes’ noncommutative integral allows us to recover the Riemannian density. This exhibits a neat link between this notion of noncommutative integral and noncommutative measure theory in the sense of operator algebras. As an application of these results, we setup a natural notion of scalar curvature for curved noncommutative tori. 1. Introduction The main goal of noncommutative geometry is to translate the classical tools of differential geometry in the Hilbert space formalism of quantum mechanics [8]. In this framework the role of the integral is played by positive (normalized) traces on the weak trace class L 1,8. Important examples of such traces are provided by Dixmier traces [17]. An operator T L 1,8 is measurable (resp., strongly measurable) when the value ϕ T is independent of the traceP ϕ when it ranges p q throughout Dixmier traces (resp., positive normalized traces).
    [Show full text]
  • Arxiv:Math/0608375V2 [Math.OA] 23 Aug 2006 -Al [email protected] E-Mail: AUSTRALIA 0200, ACT
    DIXMIER TRACES AND SOME APPLICATIONS IN NONCOMMUTATIVE GEOMETRY Alan L. Carey Fyodor A. Sukochev Mathematical Sciences Institute School of Informatics and Engineering Australian National University Flinders University Canberra, ACT. 0200, AUSTRALIA Bedford Park S.A 5042 AUSTRALIA e-mail: [email protected] e-mail: sukochev@infoeng.flinders.edu.au Contents 1. Introduction 3 2. Preliminaries: spaces and functionals 6 2.1. Marcinkiewicz function and sequence spaces 6 2.2. Singular symmetric functionals on Marcinkiewicz spaces. 7 2.3. Symmetric operator spaces and functionals. 8 3. General facts about symmetric functionals. 10 4. Preliminaries on dilation and translation invariant states. 12 5. Concrete constructions of singular symmetric functionals. 16 5.1. Dixmier traces 16 5.2. Connes-Dixmier traces 19 5.3. Rearrangement invariant functionals and singular traces. 20 6. Class of measurable elements. 20 arXiv:math/0608375v2 [math.OA] 23 Aug 2006 7. Norming properties of Dixmier and Connes-Dixmier functionals 23 8. Fredholm modules and spectral triples 25 8.1. Notation and definitions 25 8.2. Bounded versus unbounded 26 8.3. More on Semifinite Spectral Triples 26 8.4. Summability and Dimension 27 9. Spectral Flow 28 9.1. Spectral Flow Formulae 29 1 2 9.2. Relation to Cyclic Cohomology 29 10. The Dixmier trace and residues of the zeta function 31 10.1. Preliminaries 31 10.2. The zeta function and the Dixmier trace 35 11. The heat semigroup formula 38 12. The case of p> 1 40 13. Generalised Toeplitz operators and their index 41 14. Non-smooth foliations and pseudo-differential operators 43 15.
    [Show full text]
  • Course Structure for M.Sc. in Mathematics (Academic Year 2019 − 2020)
    Course Structure for M.Sc. in Mathematics (Academic Year 2019 − 2020) School of Physical Sciences, Jawaharlal Nehru University 1 Contents 1 Preamble 3 1.1 Minimum eligibility criteria for admission . .3 1.2 Selection procedure . .3 2 Programme structure 4 2.1 Overview . .4 2.2 Semester wise course distribution . .4 3 Courses: core and elective 5 4 Details of the core courses 6 4.1 Algebra I .........................................6 4.2 Real Analysis .......................................8 4.3 Complex Analysis ....................................9 4.4 Basic Topology ...................................... 10 4.5 Algebra II ......................................... 11 4.6 Measure Theory .................................... 12 4.7 Functional Analysis ................................... 13 4.8 Discrete Mathematics ................................. 14 4.9 Probability and Statistics ............................... 15 4.10 Computational Mathematics ............................. 16 4.11 Ordinary Differential Equations ........................... 18 4.12 Partial Differential Equations ............................. 19 4.13 Project ........................................... 20 5 Details of the elective courses 21 5.1 Number Theory ..................................... 21 5.2 Differential Topology .................................. 23 5.3 Harmonic Analysis ................................... 24 5.4 Analytic Number Theory ............................... 25 5.5 Proofs ........................................... 26 5.6 Advanced Algebra ...................................
    [Show full text]
  • Fixed-Points in the Cone of Traces on a C -Algebra
    Fixed-points in the cone of traces on a C∗-algebra Mikael Rørdam∗ Dedicated to the memory of John Roe Abstract Nicolas Monod introduced in [16] the class of groups with the fixed-point property for cones, characterized by always admitting a non-zero fixed point whenever acting (suitably) on proper weakly complete cones. He proved that his class of groups contains the class of groups with subexponential growth and is contained in the class of supramenable groups. In this paper we investigate what Monod's results say about the existence of invariant traces on (typically non-unital) C∗-algebras equipped with an action of a group with the fixed-point property for cones. As an application of these results we provide results on the existence (and non-existence) of traces on the (non-uniform) Roe algebra. 1 Introduction Whenever a discrete amenable group acts on a unital C∗-algebra with at least one tracial state, then the C∗-algebra admits an invariant tracial state, and the crossed product C∗-al- gebra admits a tracial state. This, moreover, characterizes amenable groups. The purpose of this paper is to find statements, similar to this well-known fact, about the existence of invariant traces on non-unital C∗-algebras using the results of the recent paper by Monod, [16], in which the class of groups with the fixed-point property for cones is introduced and developed. In [16], a group is said to have the fixed-point property for cones if whenever it acts continuously on a proper weakly complete cone (embedded into a locally convex topological vector space), such that the action is of cobounded type and locally bounded, then there is a non-zero fixed point in the cone.
    [Show full text]
  • Spectral Radii of Bounded Operators on Topological Vector Spaces
    SPECTRAL RADII OF BOUNDED OPERATORS ON TOPOLOGICAL VECTOR SPACES VLADIMIR G. TROITSKY Abstract. In this paper we develop a version of spectral theory for bounded linear operators on topological vector spaces. We show that the Gelfand formula for spectral radius and Neumann series can still be naturally interpreted for operators on topological vector spaces. Of course, the resulting theory has many similarities to the conventional spectral theory of bounded operators on Banach spaces, though there are several im- portant differences. The main difference is that an operator on a topological vector space has several spectra and several spectral radii, which fit a well-organized pattern. 0. Introduction The spectral radius of a bounded linear operator T on a Banach space is defined by the Gelfand formula r(T ) = lim n T n . It is well known that r(T ) equals the n k k actual radius of the spectrum σ(T ) p= sup λ : λ σ(T ) . Further, it is known −1 {| | ∈ } ∞ T i that the resolvent R =(λI T ) is given by the Neumann series +1 whenever λ − i=0 λi λ > r(T ). It is natural to ask if similar results are valid in a moreP general setting, | | e.g., for a bounded linear operator on an arbitrary topological vector space. The author arrived to these questions when generalizing some results on Invariant Subspace Problem from Banach lattices to ordered topological vector spaces. One major difficulty is that it is not clear which class of operators should be considered, because there are several non-equivalent ways of defining bounded operators on topological vector spaces.
    [Show full text]
  • Noncommutative Geometry
    Mathematisches Forschungsinstitut Oberwolfach Report No. 29/2015 DOI: 10.4171/OWR/2015/29 Noncommutative Geometry Organised by Alain Connes, Paris Joachim Cuntz, M¨unster Stefaan Vaes, Leuven Guoliang Yu, College Station 14 June – 20 June 2015 Abstract. These reports contain an account of 2015’s meeting on noncom- mutative geometry. Noncommutative geometry has developed itself over the years to a completely new branch of mathematics shedding light on many other areas as number theory, differential geometry and operator algebras. A connection that was highlighted in particular in this meeting was the connec- tion with the theory of II1-factors and geometric group theory. Mathematics Subject Classification (2010): 58B34. Introduction by the Organisers Noncommutative geometry applies ideas from geometry to mathematical struc- tures determined by noncommuting variables. Within mathematics, it is a highly inter-disciplinary subject drawing ideas and methods from many areas of math- ematics and physics. Natural questions involving noncommuting variables arise in abundance in many parts of mathematics and theoretical quantum physics. On the basis of ideas and methods from algebraic and differential topology and Riemannian geometry, as well as from the theory of operator algebras and from homological algebra, an extensive machinery has been developed which permits the formulation and investigation of the geometric properties of noncommutative structures. This includes K-theory, cyclic homology and the theory of spectral triples. Areas of intense research in recent years are related to topics such as in- dex theory, quantum groups and Hopf algebras, the Novikov and Baum-Connes conjectures as well as to the study of specific questions in other fields such as number theory, modular forms, topological dynamical systems, renormalization 1632 Oberwolfach Report 29/2015 theory, theoretical high-energy physics and string theory.
    [Show full text]
  • Weak Operator Topology, Operator Ranges and Operator Equations Via Kolmogorov Widths
    Weak operator topology, operator ranges and operator equations via Kolmogorov widths M. I. Ostrovskii and V. S. Shulman Abstract. Let K be an absolutely convex infinite-dimensional compact in a Banach space X . The set of all bounded linear operators T on X satisfying TK ⊃ K is denoted by G(K). Our starting point is the study of the closure WG(K) of G(K) in the weak operator topology. We prove that WG(K) contains the algebra of all operators leaving lin(K) invariant. More precise results are obtained in terms of the Kolmogorov n-widths of the compact K. The obtained results are used in the study of operator ranges and operator equations. Mathematics Subject Classification (2000). Primary 47A05; Secondary 41A46, 47A30, 47A62. Keywords. Banach space, bounded linear operator, Hilbert space, Kolmogorov width, operator equation, operator range, strong operator topology, weak op- erator topology. 1. Introduction Let K be a subset in a Banach space X . We say (with some abuse of the language) that an operator D 2 L(X ) covers K, if DK ⊃ K. The set of all operators covering K will be denoted by G(K). It is a semigroup with a unit since the identity operator is in G(K). It is easy to check that if K is compact then G(K) is closed in the norm topology and, moreover, sequentially closed in the weak operator topology (WOT). It is somewhat surprising that for each absolutely convex infinite- dimensional compact K the WOT-closure of G(K) is much larger than G(K) itself, and in many cases it coincides with the algebra L(X ) of all operators on X .
    [Show full text]
  • Dixmier Traces and Some Applications in Non-Commutative Geometry
    Russian Math. Surveys 61:6 1039–1099 c 2006 RAS(DoM) and LMS Uspekhi Mat. Nauk 61:6 45–110 DOI 10.1070/RM2006v061n06ABEH004369 Dixmier traces and some applications in non-commutative geometry A. L. Carey and F. A. Sukochev Abstract. This is a discussion of recent progress in the theory of singular traces on ideals of compact operators, with emphasis on Dixmier traces and their applications in non-commutative geometry. The starting point is the book Non-commutative geometry by Alain Connes, which contains several open problems and motivations for their solutions. A distinctive feature of the exposition is a treatment of operator ideals in general semifinite von Neumann algebras. Although many of the results presented here have already appeared in the literature, new and improved proofs are given in some cases. The reader is referred to the table of contents below for an overview of the topics considered. Contents 1. Introduction 1040 2. Preliminaries: spaces and functionals 1043 2.1. Marcinkiewicz function spaces and sequence spaces 1044 2.2. Singular symmetric functionals on Marcinkiewicz spaces 1044 2.3. Symmetric operator spaces and functionals 1045 3. General facts about symmetric functionals 1047 4. Preliminaries on dilation- and translation-invariant states 1049 5. Concrete constructions of singular symmetric functionals 1054 5.1. Dixmier traces 1054 5.2. Connes–Dixmier traces 1056 5.3. Rearrangement-invariant functionals and singular traces 1058 6. Class of measurable elements 1058 7. Norming properties of Dixmier and Connes–Dixmier functionals 1061 8. Fredholm modules and spectral triples 1063 8.1. Notation and definitions 1063 8.2.
    [Show full text]
  • An Introduction to Some Aspects of Functional Analysis, 7: Convergence of Operators
    An introduction to some aspects of functional analysis, 7: Convergence of operators Stephen Semmes Rice University Abstract Here we look at strong and weak operator topologies on spaces of bounded linear mappings, and convergence of sequences of operators with respect to these topologies in particular. Contents I The strong operator topology 2 1 Seminorms 2 2 Bounded linear mappings 4 3 The strong operator topology 5 4 Shift operators 6 5 Multiplication operators 7 6 Dense sets 9 7 Shift operators, 2 10 8 Other operators 11 9 Unitary operators 12 10 Measure-preserving transformations 13 II The weak operator topology 15 11 Definitions 15 1 12 Multiplication operators, 2 16 13 Dual linear mappings 17 14 Shift operators, 3 19 15 Uniform boundedness 21 16 Continuous linear functionals 22 17 Bilinear functionals 23 18 Compactness 24 19 Other operators, 2 26 20 Composition operators 27 21 Continuity properties 30 References 32 Part I The strong operator topology 1 Seminorms Let V be a vector space over the real or complex numbers. A nonnegative real-valued function N(v) on V is said to be a seminorm on V if (1.1) N(tv) = |t| N(v) for every v ∈ V and t ∈ R or C, as appropriate, and (1.2) N(v + w) ≤ N(v) + N(w) for every v, w ∈ V . Here |t| denotes the absolute value of a real number t, or the modulus of a complex number t. If N(v) > 0 when v 6= 0, then N(v) is a norm on V , and (1.3) d(v, w) = N(v − w) defines a metric on V .
    [Show full text]