Topological Properties of the Unitary Group 3

Total Page:16

File Type:pdf, Size:1020Kb

Topological Properties of the Unitary Group 3 TOPOLOGICAL PROPERTIES OF THE UNITARY GROUP JESUS´ ESPINOZA AND BERNARDO URIBE Abstract. We show that the strong operator topology, the weak operator topology and the compact-open topology agree on the space of unitary opera- tors of a infinite dimensional separable Hilbert space. Moreover, we show that the unitary group endowed with any of these topologies is a Polish group. Introduction The purpose of this short note is to settle some topological properties of the unitary group U( ) of an infinite dimensional separable Hilbert space , whenever the group is endowedH with the compact open topology. H When dealing with equivariant Hilbert bundles and its relation with its associ- ated unitary principal equivariant bundles (see [1]), one is obliged to consider the compact-open topology on the structural group U( ). In one of the foundational papers for twisted equivariantH K-theory, Atiyah and Segal claimed that the unitary group endowed with the compact-open topology was not a topological group [1, Page 40], based on the fact that the inverse map on GL( ) is not continuous when GL( ) is endowed with the strong operator topol- ogy.H This unfortunate claim obligedH Atiyah and Segal to device a set of ingenious constructions in order to make U( ) into a topological group with the desired topo- logical properties suited for the classificationH of Fredholm bundles. Nevertheless, these ingenious constructions of Atiyah and Segal added difficulties on the quest of finding local cross sections for equivariant projective bundles, and therefore a clarification on the veracity of the claim was due. The purpose of this note is to show that the unitary group U( ) endowed with the compact-open topology is indeed a topological group, moreoveHr a Polish group, and that this topology agrees with the strong operator topology, as the weak op- arXiv:1407.1869v1 [math.AT] 7 Jul 2014 erator topology; this is the content of Theorem 1.2 which is the main result of this note. 1. Operator topologies on the unitary group Let be a separable Hilbert space with inner product , inducing the norm H h i x := x, x for x . Let L( , ) denote the vector space of linear operators from| | toh iand denote∈ H by B( H) theH vector space of bounded linear operators Hp H H B( ) := T L( , ): M > 0 x T x M x . H { ∈ H H ∃ ∀ ∈ H | |≤ | |} 2010 Mathematics Subject Classification. (primary) 47D03 (secondary) 57S20. Key words and phrases. Unitary group, strong operator topology, compact-open topology. The first author acknowledges the financial support of CONACyT and of the Universidad de Sonora. The second author acknowledges the financial support of the Alexander von Humboldt Foundation. 1 2 JESUS´ ESPINOZA AND BERNARDO URIBE The space of bounded linear operators B( ) endowed with the norm H T = sup T x | | |x|≤1 | | becomes a Banach space. Denote the adjoint operator T ∗ as the operator defined by the equality Tx,y = x, T ∗y for all x, y . The space B(h ) cani beh endowedi with several∈ H operator topologies and we will list the ones that interestH us in this work. They all can be defined by specifying which are the convergent sequences. Then let Tk be a sequence of linear operators on { } B( ) and denote by Tk ? T the statement that Tk converges to T in the topology ?, andH denote B( ) the→ space of bounded operators endowed with the topology H ? ?. In what follows the notation xk x denotes that the sequence xk k in converges to x. → { } H Norm Topology (Uniform convergence): • Tk n T if sup Tkx T x 0. → |x|≤1{| − |} → Strong Operator Topology (Pointwise convergence): • Tk s T if for all x , Tkx T x. Weak→ Operator Topology:∈ H → • Tk w T if for all x, y , Tkx, y Tx,y Compact→ Open Topology∈ H h (Uniformi → h convergencei on compact sets): • Tk co T if for all compact subsets C , the restricted sequence Tk C k → ⊂ H { | } converges uniformly to T C. Strong* Operator Topology:| • ∗ ∗ ∗ Tk s T if both Tk s T and Tk s T . Weak*→ Operator Topology:→ → • ∗ ∗ ∗ Tk w T if both Tk w T and Tk w T . Compact→ Open* Topology:→ → • ∗ ∗ Tk co∗ T if both Tk co T and T co T . → → k → The identity map on B( ) induces the following commutative diagram of con- tinuous maps H / / / (1.1) B( ) / B( ) ∗ / B( ) ∗ / B( ) ∗ H n H co H s H w B( ) / B( ) / B( ) H co H s H w with the property that none of the maps is a homeomorphism. Let U( ) denote the group of unitary operators on , i.e. H H U( )= U B( ): UU ∗ = U ∗U = Id , H { ∈ H H} and note that U −1 = U ∗ and that x, y = Ux,Uy for all x, y . Since U( ) B( ), the group U( ) can beh endowedi h with anyi of the operator∈ H topolo- H ⊂ H H gies previously defined. The group U( )n endowed with the norm topology is a topological group and it is the prototypicalH example of what is known as a Banach Lie group, see [3]. The fact that U( ) endowed with any of the other topologies defined above is also a topological groupH is the main result of this section Theorem 1.2. The operator topologies: compact open, strong, weak and their * counterparts, all agree on the group U( ), i.e. H U( ) ∗ = U( ) ∗ = U( ) ∗ = U( ) = U( ) = U( ) . H co H s H w H co H s H w TOPOLOGICAL PROPERTIES OF THE UNITARY GROUP 3 Moreover, the group U( ) endowed with any of these topologies is a Polish group, i.e. a completely metrizableH topological group. The proof of the theorem is built out from various Lemmas: Lemma 1.3. The map U( ) U( ) , T T ∗ is continuous. In particular H w → H w 7→ U( ) ∗ = U( ) . H w H w Proof. Consider Tk w T and x, y . Then → ∈ H ∗ ∗ x, T y = Tkx, y Tx,y = x, T y , h k i h i → h i h i ∗ ∗ ∗ and therefore Tk w T . This proves that T T is continuous. Hence we conclude that the weak→ and the weak* topologies7→ agree on U( ). H Lemma 1.4. The composition of operators U( )s U( )s U( )s, (T,S) TS, is continuous in the strong operator topology.H × H → H 7→ Proof. Consider a convergent sequence (Tk,Sk) s (T,S) in U( )s U( )s. For x we have → H × H ∈ H TkSkx T Sx = TkSkx TkSx + TkSx T Sx | − | | − − | TkSkx TkSx + TkSx T Sx ≤ | − | | − | = Tk(Skx Sx) + (Tk T )Sx | − | | − | = Skx Sx + (Tk T )Sx , | − | | − | and since Skx Sx and Tk(Sx) T (Sx), then we have that (TkSk)x (TS)x. Therefore the composition→ of operators→ is continuous in the strong operator→ topol- ogy. Lemma 1.5. The weak and the strong operator topologies agree on U( ). There- H fore we have that U( )s is a topological group and moreover that U( )s∗ = U( )s = U( ) . H H H H w Proof. Consider a convergent sequence Tk w T in U( ) . To prove that Tk s T → H w → it is enough to show the convergence Tkx T x for x a unit vector in . We have → H then that x = 1 and therefore Tkx =1= T x . Now we compute | | | | | | 2 2 2 Tkx T x = Tkx 2Re Tkx, T x + T x =2 2Re Tkx, T x | − | | | − h i | | − h i and since Tk w T , we have that Tkx, T x T x, T x = 1. Therefore Tkx 2 → h i → h i | − T x 0 and hence we conclude that Tkx T x. This shows that the identity map| U→( ) U( ) is continuous, and therefore→ U( ) = U( ) . H w → H s H w H s Now, by Lemma 1.3 we know that the inverse map T T ∗ = T −1 is continuous, and by Lemma 1.4 we know that the composition is continuous.7→ Then we have that U( ) with the strong (or weak) operator topology is a topological group; the fact thatH the strong* topology agrees with the strong topology follows from the continuity of the inverse map. The proofs of the previous lemmas follow the proofs that appear in [2, Cor. 9.4]. Lemma 1.6. The topological group U( ) is metrizable. H s 4 JESUS´ ESPINOZA AND BERNARDO URIBE Proof. Consider an orthonormal basis ej j N of . Consider the map { } ∈ H N Ψ: U( ) , T (Tej)j N H s → H 7→ ∈ N where is endowed with the product topology. For a convergent sequence Tk s H → T we have that Tkej Tej for all j N, this implies that the maps U( ) → ∈ H s → , T Tej are all continuous and therefore by the universal properties of the H 7→ product topology we obtain that the map Ψ is continuous. Since the basis ej j∈N generates a dense subset of , we have that any two operators which agree{ on} the H basis ej j∈N must be equal; hence we have that the map Ψ is injective. Now{ let} us show that the map Ψ is an embedding. For this purpose let us take a convergent sequence Ψ(Tk) Ψ(T ) in the image of Ψ. Since Tkej Tej for → → all basis vectors, we have that the sequence Tk k converges pointwise to T in { } the dense subset of generated by the basis ej j N, and since the operators are H { } ∈ unitary we can conclude that Tk s T . Let us see in more detail this argument: → take x and let xj j N with each xj belonging to the dense subset generated ∈ H { } ∈ by ej j N and such that xj x.
Recommended publications
  • Weak Compactness in the Space of Operator Valued Measures and Optimal Control Nasiruddin Ahmed
    Weak Compactness in the Space of Operator Valued Measures and Optimal Control Nasiruddin Ahmed To cite this version: Nasiruddin Ahmed. Weak Compactness in the Space of Operator Valued Measures and Optimal Control. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. pp.49-58, 10.1007/978-3-642-36062-6_5. hal-01347522 HAL Id: hal-01347522 https://hal.inria.fr/hal-01347522 Submitted on 21 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License WEAK COMPACTNESS IN THE SPACE OF OPERATOR VALUED MEASURES AND OPTIMAL CONTROL N.U.Ahmed EECS, University of Ottawa, Ottawa, Canada Abstract. In this paper we present a brief review of some important results on weak compactness in the space of vector valued measures. We also review some recent results of the author on weak compactness of any set of operator valued measures. These results are then applied to optimal structural feedback control for deterministic systems on infinite dimensional spaces. Keywords: Space of Operator valued measures, Countably additive op- erator valued measures, Weak compactness, Semigroups of bounded lin- ear operators, Optimal Structural control.
    [Show full text]
  • 7.3 Topological Vector Spaces, the Weak and Weak⇤ Topology on Banach Spaces
    138 CHAPTER 7. ELEMENTS OF FUNCTIONAL ANALYSIS 7.3 Topological Vector spaces, the weak and weak⇤ topology on Banach spaces The following generalizes normed Vector space. Definition 7.3.1. Let X be a vector space over K, K = C, or K = R, and assume that is a topology on X. we say that X is a topological vector T space (with respect to ), if (X X and K X are endowed with the T ⇥ ⇥ respective product topology) +:X X X, (x, y) x + y is continuous ⇥ ! 7! : K X (λ, x) λ x is continuous. · ⇥ 7! · A topological vector space X is called locally convex,ifeveryx X has a 2 neighborhood basis consisting of convex sets, where a set A X is called ⇢ convex if for all x, y A, and 0 <t<1, it follows that tx +1 t)y A. 2 − 2 In order to define a topology on a vector space E which turns E into a topological vector space we (only) need to define an appropriate neighbor- hood basis of 0. Proposition 7.3.2. Assume that (E, ) is a topological vector space. And T let = U , 0 U . U0 { 2T 2 } Then a) For all x E, x + = x + U : U is a neighborhood basis of x, 2 U0 { 2U0} b) for all U there is a V so that V + V U, 2U0 2U0 ⇢ c) for all U and all R>0 there is a V ,sothat 2U0 2U0 λ K : λ <R V U, { 2 | | }· ⇢ d) for all U and x E there is an ">0,sothatλx U,forall 2U0 2 2 λ K with λ <", 2 | | e) if (E, ) is Hausdor↵, then for every x E, x =0, there is a U T 2 6 2U0 with x U, 62 f) if E is locally convex, then for all U there is a convex V , 2U0 2T with V U.
    [Show full text]
  • Math 259A Lecture 7 Notes
    Math 259A Lecture 7 Notes Daniel Raban October 11, 2019 1 WO and SO Continuity of Linear Functionals and The Pre-Dual of B 1.1 Weak operator and strong operator continuity of linear functionals Lemma 1.1. Let X be a vector space with seminorms p1; : : : ; pn. Let ' : X ! C be a Pn linear functional such that j'(x)j ≤ i=1 pi(x) for all x 2 X. Then there exist linear P functionals '1;:::;'n : X ! C such that ' = i 'i with j'i(x)j ≤ pi(x) for all x 2 X and for all i. Proof. Let D = fx~ = (x; : : : ; x): x 2 Xg ⊆ Xn, which is a vector subspace. On Xn, n P take p((xi)i=1) = i pi(xi). We also have a linear map' ~ : D ! C given by' ~(~x) = '(x). This map satisfies j~(~x)j ≤ p(~x). By the Hahn-Banach theorem, there exists an n ∗ extension 2 (X ) of' ~ such that j (x1; : : : ; xn)j ≤ p(x1; : : : ; xn). Now define 'k(x) := (0; : : : ; x; 0;::: ), where the x is in the k-th position. Theorem 1.1. Let ' : B! C be linear. ' is weak operator continuous if and only if it is it is strong operator continuous. Proof. We only need to show that if ' is strong operator continuous, then it is weak Pn operator continuous. So assume there exist ξ1; : : : ; ξn 2 X such that j'(x)j ≤ i=1 kxξik P for all x 2 B. By the lemma, we can split ' = 'k, such that j'k(x)j ≤ kxξkk for all x and k.
    [Show full text]
  • Derivations on Metric Measure Spaces
    Derivations on Metric Measure Spaces by Jasun Gong A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2008 Doctoral Committee: Professor Mario Bonk, Chair Professor Alexander I. Barvinok Professor Juha Heinonen (Deceased) Associate Professor James P. Tappenden Assistant Professor Pekka J. Pankka “Or se’ tu quel Virgilio e quella fonte che spandi di parlar si largo fiume?” rispuos’io lui con vergognosa fronte. “O de li altri poeti onore e lume, vagliami ’l lungo studio e ’l grande amore che m’ha fatto cercar lo tuo volume. Tu se’ lo mio maestro e ’l mio autore, tu se’ solo colui da cu’ io tolsi lo bello stilo che m’ha fatto onore.” [“And are you then that Virgil, you the fountain that freely pours so rich a stream of speech?” I answered him with shame upon my brow. “O light and honor of all other poets, may my long study and the intense love that made me search your volume serve me now. You are my master and my author, you– the only one from whom my writing drew the noble style for which I have been honored.”] from the Divine Comedy by Dante Alighieri, as translated by Allen Mandelbaum [Man82]. In memory of Juha Heinonen, my advisor, teacher, and friend. ii ACKNOWLEDGEMENTS This work was inspired and influenced by many people. I first thank my parents, Ping Po Gong and Chau Sim Gong for all their love and support. They are my first teachers, and from them I learned the value of education and hard work.
    [Show full text]
  • Course Structure for M.Sc. in Mathematics (Academic Year 2019 − 2020)
    Course Structure for M.Sc. in Mathematics (Academic Year 2019 − 2020) School of Physical Sciences, Jawaharlal Nehru University 1 Contents 1 Preamble 3 1.1 Minimum eligibility criteria for admission . .3 1.2 Selection procedure . .3 2 Programme structure 4 2.1 Overview . .4 2.2 Semester wise course distribution . .4 3 Courses: core and elective 5 4 Details of the core courses 6 4.1 Algebra I .........................................6 4.2 Real Analysis .......................................8 4.3 Complex Analysis ....................................9 4.4 Basic Topology ...................................... 10 4.5 Algebra II ......................................... 11 4.6 Measure Theory .................................... 12 4.7 Functional Analysis ................................... 13 4.8 Discrete Mathematics ................................. 14 4.9 Probability and Statistics ............................... 15 4.10 Computational Mathematics ............................. 16 4.11 Ordinary Differential Equations ........................... 18 4.12 Partial Differential Equations ............................. 19 4.13 Project ........................................... 20 5 Details of the elective courses 21 5.1 Number Theory ..................................... 21 5.2 Differential Topology .................................. 23 5.3 Harmonic Analysis ................................... 24 5.4 Analytic Number Theory ............................... 25 5.5 Proofs ........................................... 26 5.6 Advanced Algebra ...................................
    [Show full text]
  • Spectral Radii of Bounded Operators on Topological Vector Spaces
    SPECTRAL RADII OF BOUNDED OPERATORS ON TOPOLOGICAL VECTOR SPACES VLADIMIR G. TROITSKY Abstract. In this paper we develop a version of spectral theory for bounded linear operators on topological vector spaces. We show that the Gelfand formula for spectral radius and Neumann series can still be naturally interpreted for operators on topological vector spaces. Of course, the resulting theory has many similarities to the conventional spectral theory of bounded operators on Banach spaces, though there are several im- portant differences. The main difference is that an operator on a topological vector space has several spectra and several spectral radii, which fit a well-organized pattern. 0. Introduction The spectral radius of a bounded linear operator T on a Banach space is defined by the Gelfand formula r(T ) = lim n T n . It is well known that r(T ) equals the n k k actual radius of the spectrum σ(T ) p= sup λ : λ σ(T ) . Further, it is known −1 {| | ∈ } ∞ T i that the resolvent R =(λI T ) is given by the Neumann series +1 whenever λ − i=0 λi λ > r(T ). It is natural to ask if similar results are valid in a moreP general setting, | | e.g., for a bounded linear operator on an arbitrary topological vector space. The author arrived to these questions when generalizing some results on Invariant Subspace Problem from Banach lattices to ordered topological vector spaces. One major difficulty is that it is not clear which class of operators should be considered, because there are several non-equivalent ways of defining bounded operators on topological vector spaces.
    [Show full text]
  • Weak Operator Topology, Operator Ranges and Operator Equations Via Kolmogorov Widths
    Weak operator topology, operator ranges and operator equations via Kolmogorov widths M. I. Ostrovskii and V. S. Shulman Abstract. Let K be an absolutely convex infinite-dimensional compact in a Banach space X . The set of all bounded linear operators T on X satisfying TK ⊃ K is denoted by G(K). Our starting point is the study of the closure WG(K) of G(K) in the weak operator topology. We prove that WG(K) contains the algebra of all operators leaving lin(K) invariant. More precise results are obtained in terms of the Kolmogorov n-widths of the compact K. The obtained results are used in the study of operator ranges and operator equations. Mathematics Subject Classification (2000). Primary 47A05; Secondary 41A46, 47A30, 47A62. Keywords. Banach space, bounded linear operator, Hilbert space, Kolmogorov width, operator equation, operator range, strong operator topology, weak op- erator topology. 1. Introduction Let K be a subset in a Banach space X . We say (with some abuse of the language) that an operator D 2 L(X ) covers K, if DK ⊃ K. The set of all operators covering K will be denoted by G(K). It is a semigroup with a unit since the identity operator is in G(K). It is easy to check that if K is compact then G(K) is closed in the norm topology and, moreover, sequentially closed in the weak operator topology (WOT). It is somewhat surprising that for each absolutely convex infinite- dimensional compact K the WOT-closure of G(K) is much larger than G(K) itself, and in many cases it coincides with the algebra L(X ) of all operators on X .
    [Show full text]
  • Spaces of Compact Operators N
    Math. Ann. 208, 267--278 (1974) Q by Springer-Verlag 1974 Spaces of Compact Operators N. J. Kalton 1. Introduction In this paper we study the structure of the Banach space K(E, F) of all compact linear operators between two Banach spaces E and F. We study three distinct problems: weak compactness in K(E, F), subspaces isomorphic to l~ and complementation of K(E, F) in L(E, F), the space of bounded linear operators. In § 2 we derive a simple characterization of the weakly compact subsets of K(E, F) using a criterion of Grothendieck. This enables us to study reflexivity and weak sequential convergence. In § 3 a rather dif- ferent problem is investigated from the same angle. Recent results of Tong [20] indicate that we should consider when K(E, F) may have a subspace isomorphic to l~. Although L(E, F) often has this property (e.g. take E = F =/2) it turns out that K(E, F) can only contain a copy of l~o if it inherits one from either E* or F. In § 4 these results are applied to improve the results obtained by Tong and also to approach the problem investigated by Tong and Wilken [21] of whether K(E, F) can be non-trivially complemented in L(E,F) (see also Thorp [19] and Arterburn and Whitley [2]). It should be pointed out that the general trend of this paper is to indicate that K(E, F) accurately reflects the structure of E and F, in the sense that it has few properties which are not directly inherited from E and F.
    [Show full text]
  • An Introduction to Some Aspects of Functional Analysis, 7: Convergence of Operators
    An introduction to some aspects of functional analysis, 7: Convergence of operators Stephen Semmes Rice University Abstract Here we look at strong and weak operator topologies on spaces of bounded linear mappings, and convergence of sequences of operators with respect to these topologies in particular. Contents I The strong operator topology 2 1 Seminorms 2 2 Bounded linear mappings 4 3 The strong operator topology 5 4 Shift operators 6 5 Multiplication operators 7 6 Dense sets 9 7 Shift operators, 2 10 8 Other operators 11 9 Unitary operators 12 10 Measure-preserving transformations 13 II The weak operator topology 15 11 Definitions 15 1 12 Multiplication operators, 2 16 13 Dual linear mappings 17 14 Shift operators, 3 19 15 Uniform boundedness 21 16 Continuous linear functionals 22 17 Bilinear functionals 23 18 Compactness 24 19 Other operators, 2 26 20 Composition operators 27 21 Continuity properties 30 References 32 Part I The strong operator topology 1 Seminorms Let V be a vector space over the real or complex numbers. A nonnegative real-valued function N(v) on V is said to be a seminorm on V if (1.1) N(tv) = |t| N(v) for every v ∈ V and t ∈ R or C, as appropriate, and (1.2) N(v + w) ≤ N(v) + N(w) for every v, w ∈ V . Here |t| denotes the absolute value of a real number t, or the modulus of a complex number t. If N(v) > 0 when v 6= 0, then N(v) is a norm on V , and (1.3) d(v, w) = N(v − w) defines a metric on V .
    [Show full text]
  • On the Cyclicity and Synthesis of Diagonal Operators on the Space of Functions Analytic on a Disk
    ON THE CYCLICITY AND SYNTHESIS OF DIAGONAL OPERATORS ON THE SPACE OF FUNCTIONS ANALYTIC ON A DISK Ian Deters A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of A DISSERTATION May 2009 Committee: Steven Seubert, Advisor Sachi Sakthivel, Graduate Faculty Representative Neal Carothers Juan Bes ii ABSTRACT Steven Seubert, Advisor A diagonal operator on the space of functions holomorphic on a disk of finite radius is a continuous linear operator having the monomials as eigenvectors. In this dissertation, necessary and sufficient conditions are given for a diagonal operator to be cyclic. Necessary and sufficient conditions are also given for a cyclic diagonal operator to admit spectral synthesis, that is, to have as closed invariant subspaces only the closed linear span of sets of eigenvectors. In particular, it is shown that a cyclic diagonal operator admits synthesis if and only if one vector, not depending on the operator, is cyclic. It is also shown that this is equivalent to existence of sequences of polynomials which seperate and have minimum growth on the eigenvalues of the operator. iii This dissertation is dedicated to my Lord and Savior Jesus Christ. Worthy are You, our Lord and our God, to receive glory and honor and power; for You created all things, and because of Your will they existed, and were created. -Revelation 4:11 We give You thanks, O Lord God, the Alighty, Who are and Who were, because You have taken Your great power and have begun to reign. -Revelation 11:17 Great and marvelous are Your works, O Lord God, the Almighty; Righteous and true are Your ways, King of the nations! Who will not fear, O Lord, and glorify Your name? For You alone are holy; For all the nations will come and worship before You, for Your righteous acts have been revealed.
    [Show full text]
  • Note on Operator Algebras
    Note on Operator Algebras Takahiro Sagawa Department of Physics, The University of Tokyo 15 December 2010 Contents 1 General Topology 2 2 Hilbert Spaces and Operator Algebras 5 2.1 Hilbert Space . 5 2.2 Bounded Operators . 6 2.3 Trace Class Operators . 8 2.4 von Neumann Algebras . 10 2.5 Maps on von Neumann Algebras . 12 3 Abstract Operator Algebras 13 3.1 C∗-Algebras . 13 3.2 W ∗-algebras . 14 1 Chapter 1 General Topology Topology is an abstract structure that can be built on the set theory. We start with introducing the topological structure by open stets, which is the most standard way. A topological space is a set Ω together with O, a collection of subsets of Ω, satisfying the following properties: ∙ 휙 2 O and Ω 2 O. ∙ If O1 2 O and O2 2 O, then O1 \ O2 2 O. ∙ If O훼 2 O (훼 2 I) for arbitrary set of suffixes, then [훼2I O훼 2 O. An element of O is called an open set. In general, a set may have several topologies. If two topologies satisfy O1 ⊂ O2, then O1 is called weaker than O2, or smaller than O2. Topological structure can be generated by a subset of open spaces. Let B be a collection of subsets of a set Ω. The weakest topology O such that B ⊂ O is called generated by B. We note that such O does not always exist for an arbitrary B. Figure 1.1: An open set and a compact set. We review some important concepts in topological spaces: 2 ∙ If O is an open set, then Ω n O is called a closed set.
    [Show full text]
  • Locality in GNS Representations of Deformation Quantization
    Locality in GNS Representations of Deformation Quantization Stefan Waldmann∗ Fakult¨at f¨ur Physik Universit¨at Freiburg Hermann-Herder-Str. 3 79104 Freiburg i. Br., F. R. G FR-THEP-99/2 March 1999 Abstract In the framework of deformation quantization we apply the formal GNS construction to find representations of the deformed algebras in pre-Hilbert spaces over C[[λ]] and establish the notion of local operators in these pre-Hilbert spaces. The commutant within the local operators is used to distinguish ‘thermal’ from ‘pure’ representations. The computation of the local commutant is exemplified in various situations leading to the physically reasonable distinction between thermal representations and pure ones. Moreover, an analogue of von Neumann’s double commutant theorem is proved in the particular situation of a GNS representation with respect to a KMS functional and for the Schr¨odinger representation on cotangent bundles. Finally we prove a formal version of the Tomita-Takesaki theorem. arXiv:math/9903053v1 [math.QA] 9 Mar 1999 ∗[email protected] 1 Contents 1 Introduction 3 2 Basic definitions 4 3 Locality in GNS representations and commutants 5 4 Faithful positive linear functionals 10 5 Basic examples 11 6 Strong topologies and von Neumann algebras 17 7 Tomita-Takesaki theory 21 A Pre-Hilbert spaces over ordered rings and the GNS construction 23 B Formal series and λ-adic topology 24 2 1 Introduction The concept of deformation quantization and star products has been introduced by Bayen, Flato, Frønsdal, Lichnerowicz, and Sternheimer in [4] and is now a well-established and successful quan- tization procedure.
    [Show full text]