Note on Operator Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Note on Operator Algebras Note on Operator Algebras Takahiro Sagawa Department of Physics, The University of Tokyo 15 December 2010 Contents 1 General Topology 2 2 Hilbert Spaces and Operator Algebras 5 2.1 Hilbert Space . 5 2.2 Bounded Operators . 6 2.3 Trace Class Operators . 8 2.4 von Neumann Algebras . 10 2.5 Maps on von Neumann Algebras . 12 3 Abstract Operator Algebras 13 3.1 C∗-Algebras . 13 3.2 W ∗-algebras . 14 1 Chapter 1 General Topology Topology is an abstract structure that can be built on the set theory. We start with introducing the topological structure by open stets, which is the most standard way. A topological space is a set Ω together with O, a collection of subsets of Ω, satisfying the following properties: ∙ 휙 2 O and Ω 2 O. ∙ If O1 2 O and O2 2 O, then O1 \ O2 2 O. ∙ If O훼 2 O (훼 2 I) for arbitrary set of suffixes, then [훼2I O훼 2 O. An element of O is called an open set. In general, a set may have several topologies. If two topologies satisfy O1 ⊂ O2, then O1 is called weaker than O2, or smaller than O2. Topological structure can be generated by a subset of open spaces. Let B be a collection of subsets of a set Ω. The weakest topology O such that B ⊂ O is called generated by B. We note that such O does not always exist for an arbitrary B. Figure 1.1: An open set and a compact set. We review some important concepts in topological spaces: 2 ∙ If O is an open set, then Ω n O is called a closed set. ∙ The closure of S ⊂ Ω is the smallest closed set containing S. ∙ S ⊂ Ω is called compact if an arbitrary open cover of S has a finite subcover. Ex- plicitly, for every arbitrary collection of open sets fU훼g훼2I ⊂ O with I being the 0 set of suffixes such that S ⊂ [훼2I U훼, there exists a finite subset I of I such that S ⊂ [훼2I0 U훼. In particular, if Ω is compact, then the topological space is called compact. Example: In the usual topology in Rn, a set S ⊂ Rn is compact if and only if it is closed and bounded. The followings are important properties that will be used in the proofs of the main argument. ◜ ◝ ∙ A closed subset of a compact space is compact. ∙ If fSpgp2N be a family of compact subsets of a topological space such that Sp+1 ⊂ Sp, then \pSp 6= 휙. ◟ ◞ An important example of topological spaces is a Banach space. A Banach spaces V is a complete normed vector space. Here, a normed vector space is a vector space with a norm k ⋅ k satisfying: ∙ kxk ≥ 0 for all x 2 V , where kxk = 0 if and only if x = 0. ∙ kaxk = jajkxk with a 2 C. ∙ kx + yk ≤ kxk + kyk. A normed vector space is complete if every Cauchy sequence in V converges to an element of V . Explicitly, fxngn2N ⊂ V is called a Cauchy sequence, if for every " > 0 there exists N 2 N such that kxn − xmk < " for every n; m > N. ◜ ◝ P n n 2 C is a Banach space with the standard norm kxk = i=1 jxij with x = (x1; x2; ⋅ ⋅ ⋅ ; xn). ◟ ◞ We next discuss continuous maps between two topological spaces Ω and Ω0. Map f;Ω ! Ω0 is continuous if, for every open set O0 ⊂ Ω0, f −1(O0) is an open set in Ω. We can also define the continuity of map f;Ω ! Ω0 at a single point x 2 Ω. In usual Rn, such a continuity can be defined in terms of the convergence of sequences. However, this definition is not enough in general. Instead, we need the concept of net. 3 A set is called net if it is labeled by a directed set I as fxigi2I . Here, I is a directed set if it has \≤" that satisfies the following properties: ∙ a ≤ a ∙ If a ≤ b and b ≤ c, then a ≤ c. ∙ For arbitrary a; b 2 I, there exists c 2 I such that a ≤ c and b ≤ c. We note that a sequence is a special net with I = N. A net fxigi2I ⊂ Ω converges to x 2 Ω if, for every open set O with x 2 O, there exists i 2 I such that xk 2 O for all k with i ≤ k. We write this as limi2I xi = x. The following proposition is important. 0 f;Ω ! Ω is continuous at x 2 Ω if limi2I f(xi) = f(x) holds for for every net fxigi2I that converges to x. ◜ ◝ f;Ω ! Ω0 is continuous if and only if it is continuous at all a 2 Ω. ◟ ◞ We note that the concept of net is not necessary for first-countable spaces.1 If the topological space is first-countable, every \net" above can be replaced by \sequence". Usual Rn, every Hilbert space, and every Banach space are all first-countable in their norm topologies. Finally, we discuss a way to create a topological space from another topological space. Let Ω be a topological space and Ω0 be its subset. Then we can define a topology on Ω0 as follows: O0 ⊂ Ω0 is an open set if and only if there exists an open set O ⊂ Ω such that O0 = O \ Ω0. This topology on Ω0 is called relative topology. Figure 1.2: Relative topology. 1Here we only note that every metric space is first-countable. 4 Chapter 2 Hilbert Spaces and Operator Algebras We shortly review some basic concepts of Hilbert spaces and operator algebras. 2.1 Hilbert Space A Hilbert space H is a complex vector space with an inner product (⋅; ⋅) that is complete in terms of the norm k'k2 ≡ ('; '). By definition, a Hilbert space is a Banach space. Cn with the standard inner product is a n-dimensional Hilbert space and vice versa. We then generally introduce the orthonormal bases which can be applied even to \non-countable- dimensional" Hilbert spaces. Let I be a set of suffixes. A set of vectors f'훼g훼2I ⊂ H is an orthonormal basis of H , if it satisfies that: ∙ ('i;'j) = 훿i;j. ∙ For any 2 H , there exists a countable subset I0 ⊂ I such that XN lim k − ('i ; )'i k = 0; (2.1) N!1 n n n=1 0 where fi1; i2; ⋅ ⋅ ⋅ g = I . Then we can show that: ◜ ◝ Every Hilbert space has orthonormal bases, and their cardinalities are equal. ◟ ◞ The above proposition leads to the dimension of Hilbert spaces. Let f'igi2I be an orthonormal basis of H . The cardinality of I is called the dimension of H . If I is a countable set, then H is called separable. 5 In the following, we only consider separable Hilbert spaces. A typical example of a separable infinite-dimensional Hilbert space is L2(Rn), which is defined as the set of all Lebesgue measurable functions f; Rn ! R satisfying Z jf(x)j2dx < 1: (2.2) Rn In the case of infinite-dimensional Hilbert spaces, we can define two types of convergences. One is the ordinary convergence in terms of the standard norm, and the other topology is weaker than it. (Strong) convergence: A sequence of points f'ngn2N ⊂ H is said to converge strongly (or simply \converge") to a point ' 2 H if k'n − 'k ! 0. Weak convergence: A sequence of points f'ngn2N ⊂ H is said to converge weakly to a point ' 2 H if ( ; 'n) ! ( ; ') for all 2 H . These two convergences are equivalent only in the case of a finite-dimensional Hilbert space. In general, if a sequence f'ng strongly converges, then it weakly converges, because j( ; ') − ( ; 'n)j = j( ; ' − 'n)j ≤ k kk' − 'nk: (2.3) However, the inverse of this does not always hold true for infinite-dimensional Hilbert spaces. For example, let us consider an orthonormal basis f'ngn2N of a separable Hilbert space. This sequence weakly converge to 0 2 H , because limn!1('n; ) = 0 for all 2 H . However, f'ng does not converge to 0, because k'n − 0k = 1 for all n. 2.2 Bounded Operators We will focus on operator algebras on a separable Hilbert space H . An important class of linear operators on a Hilbert space is the set of bounded operators, which corresponds to the set of observables (and its linear combinations over C). A bounded operator x is a linear operator on H satisfying kxk ≡ sup kx k < 1; (2.4) 2H ;k k=1 where k⋅k is the norm of bounded operators, which actually satisfies the properties of norm. We write as B(H ) the set of all bounded operators on H . We next introduce the concept of adjoint. 6 ◜ ◝ It can be shown that for any x 2 B(H ), there exists a unique operator x∗ 2 B(H ) such that (x ; 휙) = ( ; x∗휙) (2.5) for all ; 휙 2 H . ◟ ◞ ∙ We call x∗ 2 B(H ) the adjoint of x 2 B(H ). ∙ A bounded operator x 2 B(H ) is self-adjoint if x = x∗. The topology on B(H ) defined by norm k ⋅ k is called the uniform topology or the norm topology. The following property plays an important role in the theory of operator algebras: ◜ ◝ B(H ) is complete in terms of the norm k ⋅ k, in other words, B(H ) is a Banach space. ◟ ◞ Besides the uniform topology, B(H ) has several important topologies. They can be under- stood in terms of locally convex topologies that are defined in terms of seminorms.
Recommended publications
  • Weak Topologies
    Weak topologies David Lecomte May 23, 2006 1 Preliminaries from general topology In this section, we are given a set X, a collection of topological spaces (Yi)i∈I and a collection of maps (fi)i∈I such that each fi maps X into Yi. We wish to define a topology on X that makes all the fi’s continuous. And we want to do this in the cheapest way, that is: there should be no more open sets in X than required for this purpose. −1 Obviously, all the fi (Oi), where Oi is an open set in Yi should be open in X. Then finite intersections of those should also be open. And then any union of finite intersections should be open. By this process, we have created as few open sets as required. Yet it is not clear that the collection obtained is closed under finite intersections. It actually is, as a consequence of the following lemma: Lemma 1 Let X be a set and let O ⊂ P(X) be a collection of subsets of X, such that • ∅ and X are in O; • O is closed under finite intersections. Then T = { O | O ⊂ O} is a topology on X. OS∈O Proof: By definition, T contains X and ∅ since those were already in O. Furthermore, T is closed under unions, again by definition. So all that’s left is to check that T is closed under finite intersections. Let A1 and A2 be two elements of T . Then there exist O1 and O2, subsets of O, such that A = O and A = O 1 [ 2 [ O∈O1 O∈O2 1 It is then easy to check by double inclusion that A ∩ A = O ∩ O 1 2 [ 1 2 O1∈O1 O2∈O2 Letting O denote the collection {O1 ∩ O2 | O1 ∈ O1 O2 ∈ O2}, which is a subset of O since the latter is closed under finite intersections, we get A ∩ A = O 1 2 [ O∈O This set belongs to T .
    [Show full text]
  • Distinguished Property in Tensor Products and Weak* Dual Spaces
    axioms Article Distinguished Property in Tensor Products and Weak* Dual Spaces Salvador López-Alfonso 1 , Manuel López-Pellicer 2,* and Santiago Moll-López 3 1 Department of Architectural Constructions, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Emeritus and IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain 3 Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] 0 Abstract: A local convex space E is said to be distinguished if its strong dual Eb has the topology 0 0 0 0 b(E , (Eb) ), i.e., if Eb is barrelled. The distinguished property of the local convex space Cp(X) of real- valued functions on a Tychonoff space X, equipped with the pointwise topology on X, has recently aroused great interest among analysts and Cp-theorists, obtaining very interesting properties and nice characterizations. For instance, it has recently been obtained that a space Cp(X) is distinguished if and only if any function f 2 RX belongs to the pointwise closure of a pointwise bounded set in C(X). The extensively studied distinguished properties in the injective tensor products Cp(X) ⊗# E and in Cp(X, E) contrasts with the few distinguished properties of injective tensor products related to the dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual of Cp(X, E). To partially fill this gap, some distinguished properties in the injective tensor product space Lp(X) ⊗# E are presented and a characterization of the distinguished property of the weak* dual of Cp(X, E) for wide classes of spaces X and E is provided.
    [Show full text]
  • Math 261Y: Von Neumann Algebras (Lecture 5)
    Math 261y: von Neumann Algebras (Lecture 5) September 9, 2011 In this lecture, we will state and prove von Neumann's double commutant theorem. First, let's establish a bit of notation. Let V be a Hilbert space, and let B(V ) denote the Hilbert space of bounded operators on V . We will consider several topologies on B(V ): (1) The norm topology, which has a subbasis (in fact, a basis) of open sets given by fx 2 B(V ): jjx−x0jj < g where x0 2 B(V ) and is a positive real number. (2) The strong topology, which has a subbasis of open sets given by fx 2 B(V ): jjx(v) − x0(v)jj < g, where x0 2 B(V ), v 2 V , and is a positive real number. (3) The weak topology, which has a subbases of open sets given by fx 2 B(V ): j(x(v) − x0(v); w)j < g where x0 2 B(V ), v; w 2 V , and is a positive real number. Each of these topologies is more coarse than the previous. That is, we have norm convergence ) strong convergence ) weak convergence. Warning 1. With respect to the norm topology, B(V ) is a metric space, so its topology is determined by the collection of convergent sequences. However, the strong and weak topologies do not have this property. However, the unit ball of B(V ) is metrizable in either topology if V is a separable Hilbert space. Warning 2. The multiplication map B(V ) × B(V ) ! B(V ) (x; y) 7! xy is not continuous with respect to either the strong or weak topology.
    [Show full text]
  • A Topology for Operator Modules Over W*-Algebras Bojan Magajna
    Journal of Functional AnalysisFU3203 journal of functional analysis 154, 1741 (1998) article no. FU973203 A Topology for Operator Modules over W*-Algebras Bojan Magajna Department of Mathematics, University of Ljubljana, Jadranska 19, Ljubljana 1000, Slovenia E-mail: Bojan.MagajnaÄuni-lj.si Received July 23, 1996; revised February 11, 1997; accepted August 18, 1997 dedicated to professor ivan vidav in honor of his eightieth birthday Given a von Neumann algebra R on a Hilbert space H, the so-called R-topology is introduced into B(H), which is weaker than the norm and stronger than the COREultrastrong operator topology. A right R-submodule X of B(H) is closed in the Metadata, citation and similar papers at core.ac.uk Provided byR Elsevier-topology - Publisher if and Connector only if for each b #B(H) the right ideal, consisting of all a # R such that ba # X, is weak* closed in R. Equivalently, X is closed in the R-topology if and only if for each b #B(H) and each orthogonal family of projections ei in R with the sum 1 the condition bei # X for all i implies that b # X. 1998 Academic Press 1. INTRODUCTION Given a C*-algebra R on a Hilbert space H, a concrete operator right R-module is a subspace X of B(H) (the algebra of all bounded linear operators on H) such that XRX. Such modules can be characterized abstractly as L -matricially normed spaces in the sense of Ruan [21], [11] which are equipped with a completely contractive R-module multi- plication (see [6] and [9]).
    [Show full text]
  • 7.3 Topological Vector Spaces, the Weak and Weak⇤ Topology on Banach Spaces
    138 CHAPTER 7. ELEMENTS OF FUNCTIONAL ANALYSIS 7.3 Topological Vector spaces, the weak and weak⇤ topology on Banach spaces The following generalizes normed Vector space. Definition 7.3.1. Let X be a vector space over K, K = C, or K = R, and assume that is a topology on X. we say that X is a topological vector T space (with respect to ), if (X X and K X are endowed with the T ⇥ ⇥ respective product topology) +:X X X, (x, y) x + y is continuous ⇥ ! 7! : K X (λ, x) λ x is continuous. · ⇥ 7! · A topological vector space X is called locally convex,ifeveryx X has a 2 neighborhood basis consisting of convex sets, where a set A X is called ⇢ convex if for all x, y A, and 0 <t<1, it follows that tx +1 t)y A. 2 − 2 In order to define a topology on a vector space E which turns E into a topological vector space we (only) need to define an appropriate neighbor- hood basis of 0. Proposition 7.3.2. Assume that (E, ) is a topological vector space. And T let = U , 0 U . U0 { 2T 2 } Then a) For all x E, x + = x + U : U is a neighborhood basis of x, 2 U0 { 2U0} b) for all U there is a V so that V + V U, 2U0 2U0 ⇢ c) for all U and all R>0 there is a V ,sothat 2U0 2U0 λ K : λ <R V U, { 2 | | }· ⇢ d) for all U and x E there is an ">0,sothatλx U,forall 2U0 2 2 λ K with λ <", 2 | | e) if (E, ) is Hausdor↵, then for every x E, x =0, there is a U T 2 6 2U0 with x U, 62 f) if E is locally convex, then for all U there is a convex V , 2U0 2T with V U.
    [Show full text]
  • Let H Be a Hilbert Space. on B(H), There Is a Whole Zoo of Topologies
    Let H be a Hilbert space. On B(H), there is a whole zoo of topologies weaker than the norm topology – and all of them are considered when it comes to von Neumann algebras. It is, however, a good idea to concentrate on one of them right from the definition. My choice – and Murphy’s [Mur90, Chapter 4] – is the strong (or strong operator=STOP) topology: Definition. A von Neumann algebra is a ∗–subalgebra A ⊂ B(H) of operators acting nonde- generately(!) on a Hilbert space H that is strongly closed in B(H). (Every norm convergent sequence converges strongly, so A is a C∗–algebra.) This does not mean that one has not to know the other topologies; on the contrary, one has to know them very well, too. But it does mean that proof techniques are focused on the strong topology; if we use a different topology to prove something, then we do this only if there is a specific reason for doing so. One reason why it is not sufficient to worry only about the strong topology, is that the strong topology (unlike the norm topology of a C∗–algebra) is not determined by the algebraic structure alone: There are “good” algebraic isomorphisms between von Neumann algebras that do not respect their strong topologies. A striking feature of the strong topology on B(H) is that B(H) is order complete: Theorem (Vigier). If aλ λ2Λ is an increasing self-adjoint net in B(H) and bounded above (9c 2 B(H): aλ ≤ c8λ), then aλ converges strongly in B(H), obviously to its least upper bound in B(H).
    [Show full text]
  • Chapter 14. Duality for Normed Linear Spaces
    14.1. Linear Functionals, Bounded Linear Functionals, and Weak Topologies 1 Chapter 14. Duality for Normed Linear Spaces Note. In Section 8.1, we defined a linear functional on a normed linear space, a bounded linear functional, and the functional norm. In Proposition 8.1 (the proof is Exercise 8.2) it is shown that the collection of bounded linear functionals themselves form a normed linear space called the dual space of X, denoted X∗. In Chapters 14 and 15 we consider the mapping from X × X∗ → R defined by (x, ψ) 7→ ψ(x) to “uncover the analytic, geometric, and topological properties of Banach spaces.” The “departure point for this exploration” is the Hahn-Banach Theorem which is started and proved in Section 14.2 (Royden and Fitzpatrick, page 271). Section 14.1. Linear Functionals, Bounded Linear Functionals, and Weak Topologies Note. In this section we consider the linear space of all real valued linear function- als on linear space X (without requiring X to be named or the functionals to be bounded), denoted X]. We also consider a new topology on a normed linear space called the weak topology (the old topology which was induced by the norm we now may call the strong topology). For the deal X∗ of normed linear space X, the weak topology is called the weak-∗ topology. 14.1. Linear Functionals, Bounded Linear Functionals, and Weak Topologies 2 Note. Recall that if Y and Z are subspaces of a linear space then Y + Z is also a subspace of X (by Exercise 13.2) and that if Y ∩ Z = {0} then Y + Z is denoted T ⊕ Z and is called the direct sum of Y and Z.
    [Show full text]
  • The Banach-Alaoglu Theorem for Topological Vector Spaces
    The Banach-Alaoglu theorem for topological vector spaces Christiaan van den Brink a thesis submitted to the Department of Mathematics at Utrecht University in partial fulfillment of the requirements for the degree of Bachelor in Mathematics Supervisor: Fabian Ziltener date of submission 06-06-2019 Abstract In this thesis we generalize the Banach-Alaoglu theorem to topological vector spaces. the theorem then states that the polar, which lies in the dual space, of a neighbourhood around zero is weak* compact. We give motivation for the non-triviality of this theorem in this more general case. Later on, we show that the polar is sequentially compact if the space is separable. If our space is normed, then we show that the polar of the unit ball is the closed unit ball in the dual space. Finally, we introduce the notion of nets and we use these to prove the main theorem. i ii Acknowledgments A huge thanks goes out to my supervisor Fabian Ziltener for guiding me through the process of writing a bachelor thesis. I would also like to thank my girlfriend, family and my pet who have supported me all the way. iii iv Contents 1 Introduction 1 1.1 Motivation and main result . .1 1.2 Remarks and related works . .2 1.3 Organization of this thesis . .2 2 Introduction to Topological vector spaces 4 2.1 Topological vector spaces . .4 2.1.1 Definition of topological vector space . .4 2.1.2 The topology of a TVS . .6 2.2 Dual spaces . .9 2.2.1 Continuous functionals .
    [Show full text]
  • Weak Topologies Weak-Type Topologies on Vector Spaces. Let X
    Weak topologies Weak-type topologies on vector spaces. Let X be a vector space with the algebraic dual X]. Let Y ½ X] be a subspace. We want to de¯ne a topology σ on X in order to make continuous all elements of Y . Fix x0 2 X. If σ is such a topology, then the sets of the form x0 V";g := fx 2 X : jg(x) ¡ g(x0)j < "g = fx 2 X : jg(x ¡ x0)j < "g (" > 0; g 2 Y ) are open neighborhoods of x0. But this family is not a basis of σ-neighborhoods of x0, since the intersection of two of its members does not necessarily contain another member of the family. This is the reason why we instead consider the sets of the form x0 (1) V";g1;:::;gn := fx 2 X : jgi(x ¡ x0)j < "; i = 1; : : : ; ng (" > 0; n 2 N; gi 2 Y ) : x0 x0 It is easy to see that the intersection V \ V 0 of two of such sets ";g1;:::;gn " ;h1;:::;hm x0 00 0 contains V 00 where " = minf"; " g. " ;g1;:::;gn;h1;:::;hm Theorem 0.1. Let X be a vector space, and Y ½ X] a subspace which separates the points of X (that is, a so-called total subspace). 1. There exists a (unique) topology on X such that, for each x0 2 X, the sets (1) form a basis of neighborhoods of x0. This topology, denoted by σ(X; Y ), is called the weak topology determined by Y . 2. σ(X; Y ) is the weakest topology on X that makes continuous all elements of Y .
    [Show full text]
  • AND the DOUBLE COMMUTANT THEOREM Recall
    Egbert Rijke Utrecht University [email protected] THE STRONG OPERATOR TOPOLOGY ON B(H) AND THE DOUBLE COMMUTANT THEOREM ABSTRACT. These are the notes for a presentation on the strong and weak operator topolo- gies on B(H) and on commutants of unital self-adjoint subalgebras of B(H) in the seminar on von Neumann algebras in Utrecht. The main goal for this talk was to prove the double commutant theorem of von Neumann. We will also give a proof of Vigiers theorem and we will work out several useful properties of the commutant. Recall that a seminorm on a vector space V is a map p : V ! [0;¥) with the properties that (i) p(lx) = jljp(x) for every vector x 2 V and every scalar l and (ii) p(x + y) ≤ p(x) + p(y) for every pair of vectors x;y 2 V. If P is a family of seminorms on V there is a topology generated by P of which the subbasis is defined by the sets fv 2 V : p(v − x) < eg; where e > 0, p 2 P and x 2 V. Hence a subset U of V is open if and only if for every x 2 U there exist p1;:::; pn 2 P, and e > 0 with the property that n \ fv 2 V : pi(v − x) < eg ⊂ U: i=1 A family P of seminorms on V is called separating if, for every non-zero vector x, there exists a seminorm p in P such that p(x) 6= 0.
    [Show full text]
  • Weak Operator Topology, Operator Ranges and Operator Equations Via Kolmogorov Widths
    Weak operator topology, operator ranges and operator equations via Kolmogorov widths M. I. Ostrovskii and V. S. Shulman Abstract. Let K be an absolutely convex infinite-dimensional compact in a Banach space X . The set of all bounded linear operators T on X satisfying TK ⊃ K is denoted by G(K). Our starting point is the study of the closure WG(K) of G(K) in the weak operator topology. We prove that WG(K) contains the algebra of all operators leaving lin(K) invariant. More precise results are obtained in terms of the Kolmogorov n-widths of the compact K. The obtained results are used in the study of operator ranges and operator equations. Mathematics Subject Classification (2000). Primary 47A05; Secondary 41A46, 47A30, 47A62. Keywords. Banach space, bounded linear operator, Hilbert space, Kolmogorov width, operator equation, operator range, strong operator topology, weak op- erator topology. 1. Introduction Let K be a subset in a Banach space X . We say (with some abuse of the language) that an operator D 2 L(X ) covers K, if DK ⊃ K. The set of all operators covering K will be denoted by G(K). It is a semigroup with a unit since the identity operator is in G(K). It is easy to check that if K is compact then G(K) is closed in the norm topology and, moreover, sequentially closed in the weak operator topology (WOT). It is somewhat surprising that for each absolutely convex infinite- dimensional compact K the WOT-closure of G(K) is much larger than G(K) itself, and in many cases it coincides with the algebra L(X ) of all operators on X .
    [Show full text]
  • Spaces of Compact Operators N
    Math. Ann. 208, 267--278 (1974) Q by Springer-Verlag 1974 Spaces of Compact Operators N. J. Kalton 1. Introduction In this paper we study the structure of the Banach space K(E, F) of all compact linear operators between two Banach spaces E and F. We study three distinct problems: weak compactness in K(E, F), subspaces isomorphic to l~ and complementation of K(E, F) in L(E, F), the space of bounded linear operators. In § 2 we derive a simple characterization of the weakly compact subsets of K(E, F) using a criterion of Grothendieck. This enables us to study reflexivity and weak sequential convergence. In § 3 a rather dif- ferent problem is investigated from the same angle. Recent results of Tong [20] indicate that we should consider when K(E, F) may have a subspace isomorphic to l~. Although L(E, F) often has this property (e.g. take E = F =/2) it turns out that K(E, F) can only contain a copy of l~o if it inherits one from either E* or F. In § 4 these results are applied to improve the results obtained by Tong and also to approach the problem investigated by Tong and Wilken [21] of whether K(E, F) can be non-trivially complemented in L(E,F) (see also Thorp [19] and Arterburn and Whitley [2]). It should be pointed out that the general trend of this paper is to indicate that K(E, F) accurately reflects the structure of E and F, in the sense that it has few properties which are not directly inherited from E and F.
    [Show full text]