Exploring Interaction Patterns in Job Search
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geohack - Boroo Gold Mine
GeoHack - Boroo Gold Mine DMS 48° 44′ 45″ N, 106° 10′ 10″ E Decim al 48.745833, 106.169444 Geo URI geo:48.745833,106.169444 UTM 48U 585970 5399862 More formats... Type landmark Region MN Article Boroo Gold Mine (edit | report inaccu racies) Contents: Global services · Local services · Photos · Wikipedia articles · Other Popular: Bing Maps Google Maps Google Earth OpenStreetMap Global/Trans-national services Wikimedia maps Service Map Satellite More JavaScript disabled or out of map range. ACME Mapper Map Satellite Topo, Terrain, Mapnik Apple Maps (Apple devices Map Satellite only) Bing Maps Map Aerial Bird's Eye Blue Marble Satellite Night Lights Navigator Copernix Map Satellite Fourmilab Satellite GeaBios Satellite GeoNames Satellite Text (XML) Google Earthnote Open w/ meta data Terrain, Street View, Earth Map Satellite Google Maps Timelapse GPS Visualizer Map Satellite Topo, Drawing Utility HERE Map Satellite Terrain MapQuest Map Satellite NASA World Open Wind more maps, Nominatim OpenStreetMap Map (reverse geocoding), OpenStreetBrowser Sentinel-2 Open maps.vlasenko.net Old Soviet Map Waze Map Editor, App: Open, Navigate Wikimapia Map Satellite + old places WikiMiniAtlas Map Yandex.Maps Map Satellite Zoom Earth Satellite Photos Service Aspect WikiMap (+Wikipedia), osm-gadget-leaflet Commons map (+Wikipedia) Flickr Map, Listing Loc.alize.us Map VirtualGlobetrotting Listing See all regions Wikipedia articles Aspect Link Prepared by Wikidata items — Article on specific latitude/longitude Latitude 48° N and Longitude 106° E — Articles on -
Rethinking the Recall Measure in Appraising Information Retrieval Systems and Providing a New Measure by Using Persian Search Engines
Archive of SID International Journal of Information Science and Management Vol. 17, No. 1, 2019, 1-16 Rethinking the Recall Measure in Appraising Information Retrieval Systems and Providing a New Measure by Using Persian Search Engines Mohsen Nowkarizi Mahdi Zeynali Tazehkandi Associate Prof. Department of Knowledge & M.A. Department of Knowledge & Information Information Sciences, Faculty of Education Sciences, Faculty of Education Sciences & Sciences & Psychology, Ferdowsi University Psychology, Ferdowsi University of Mashhad, of Mashhad, Mashhad, Iran Mashhad, Iran Corresponding Author: [email protected] Abstract The aim of the study was to improve Persian search engines’ retrieval performance by using the new measure. In this regard, consulting three experts from the Department of Knowledge and Information Science (KIS) at Ferdowsi University of Mashhad, 192 FUM students of different degrees from different fields of study, both male and female, were asked to conduct the search based on 32 simulated work tasks (SWT) on the selected search engines and report the results by citing the related URLs. The Findings indicated that to measure recall, one does not focus on how documents are selecting, but the retrieval of related documents that are indexed in the information retrieval system database is considered While to measure comprehensiveness, in addition to considering the related documents' retrieval in the system's database, the performance of the documents selecting on the web (performance of crawler) was also measured. At the practical level, there was no strong correlation between the two measures (recall and comprehensiveness) however, these two measure different features. Also, the test of repeated measures design showed that with the change of the measure from recall to comprehensiveness, the search engine’s performance score is varied. -
Paper Title (Use Style: Paper Title)
3th International Conference on Web Research Search Engine Pictures: Empirical Analysis of a Web Search Engine Query Log Farzaneh Shoeleh , Mohammad Sadegh Zahedi, Mojgan Farhoodi Iran Telecommunication Research Center, Tehran, Iran {f.shoeleh, s.zahedi, farhoodi}@itrc.ac.ir Abstract— Since the use of internet has incredibly increased, search engine log file which is quantitative. It should be noted it becomes an important source of knowledge about anything for that the human based measurement is more everyone. Therefore, the role of search engine as an effective accurate. However, the second category has become an approach to find information is critical for internet's users. The important role in search engine evaluation because of the study of search engine users' behavior has attracted considerable expensive and time-consuming of the first category. research attention. These studies are helpful in developing more effective search engine and are useful in three points of view: for In general, the goal of log analysis is to make sense out of users at the personal level, for search engine vendors at the the records of a software system. Indeed, search log analysis as business level, and for government and marketing at social a kind of Web analytics software parses the log file obtained society level. These kinds of studies can be done through from a search engine to drive information about when, how, analyzing the log file of search engine wherein the interactions and by whom a search engine is visited. between search engine and the users are captured. In this paper, we aim to present analyses on the query log of a well-known and The search logs capture a large and varied amount of most used Persian search engine. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
A Comparative Study of Search Engines Results Using Data Mining
International Journal of Statistics and Applied Mathematics 2020; 5(5): 30-33 ISSN: 2456-1452 Maths 2020; 5(5): 30-33 © 2020 Stats & Maths A comparative study of search engines results using www.mathsjournal.com Received: 16-07-2020 data mining and statistical analysis Accepted: 20-08-2020 Prabhu Pant Prabhu Pant, Pankaj Joshi and Sanjay Joshi Department of Information Technology, College of Technology, GBPUA&T, Abstract Pantnagar, Uttarakhand, India Web search engines are keys to the immense treasure of information. Dependency on the search engines is increasing drastically for both personal and professional use. It has become essential for the users to Pankaj Joshi understand the differences between the search engines in order to attain a higher satisfaction. There is a Department of Information great assortment of search engines which offer various options to the web user. Thus, it is significant to Technology, College of evaluate and compare search engines in the quest of a single search engine that would satisfy all the Technology, GBPUA&T, needs of the user. Pantnagar, Uttarakhand, India Keywords: Search engines, data analysis, URL Sanjay Joshi Department of Information Technology, College of Introduction Technology, GBPUA&T, Web search engines are among the most sought after tools over the internet. Millions of users Pantnagar, Uttarakhand, India access these search tools in quest of information from various spheres of life such as technology, tourism, travel, current affairs, literature, music, food, science and many more. Search engines have a huge database to which millions of pages are added everyday. Availability of pages searched by the search engines is dynamic, which means that the pages retrieved previously for a search query may not be available any longer as it might have been deleted by the author or turned obsolete. -
Annex I: List of Internet Robots, Crawlers, Spiders, Etc. This Is A
Annex I: List of internet robots, crawlers, spiders, etc. This is a revised list published on 15/04/2016. Please note it is rationalised, removing some previously redundant entries (e.g. the text ‘bot’ – msnbot, awbot, bbot, turnitinbot, etc. – which is now collapsed down to a single entry ‘bot’). COUNTER welcomes updates and suggestions for this list from our community of users. bot spider crawl ^.?$ [^a]fish ^IDA$ ^ruby$ ^voyager\/ ^@ozilla\/\d ^ÆÆ½âºóµÄ$ ^ÆÆ½âºóµÄ$ alexa Alexandria(\s|\+)prototype(\s|\+)project AllenTrack almaden appie Arachmo architext aria2\/\d arks ^Array$ asterias atomz BDFetch Betsie biadu biglotron BingPreview bjaaland Blackboard[\+\s]Safeassign blaiz\-bee bloglines blogpulse boitho\.com\-dc bookmark\-manager Brutus\/AET bwh3_user_agent CakePHP celestial cfnetwork checkprivacy China\sLocal\sBrowse\s2\.6 cloakDetect coccoc\/1\.0 Code\sSample\sWeb\sClient ColdFusion combine contentmatch ContentSmartz core CoverScout curl\/7 cursor custo DataCha0s\/2\.0 daumoa ^\%?default\%?$ Dispatch\/\d docomo Download\+Master DSurf easydl EBSCO\sEJS\sContent\sServer ELinks\/ EmailSiphon EmailWolf EndNote EThOS\+\(British\+Library\) facebookexternalhit\/ favorg FDM(\s|\+)\d feedburner FeedFetcher feedreader ferret Fetch(\s|\+)API(\s|\+)Request findlinks ^FileDown$ ^Filter$ ^firefox$ ^FOCA Fulltext Funnelback GetRight geturl GLMSLinkAnalysis Goldfire(\s|\+)Server google grub gulliver gvfs\/ harvest heritrix holmes htdig htmlparser HttpComponents\/1.1 HTTPFetcher http.?client httpget httrack ia_archiver ichiro iktomi ilse -
Web Searching in Chinese: a Study of a Search Engine in Hong Kong
Web Searching in Chinese: A Study of a Search Engine in Hong Kong Michael Chau School of Business, University of Hong Kong, Pokfulam, Hong Kong. E-mail: [email protected] Xiao Fang College of Business Administration, University of Toledo, Toledo, OH 43606. E-mail: [email protected] Christopher C. Yang Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. E-mail: [email protected] The number of non-English resources has been increas- query to a search engine. While most Web contents are in ing rapidly on the Web. Although many studies have English, there are increasingly more Web pages that are au- been conducted on the query logs in search engines that thored in other languages. Besides, many Web users are not are primarily English-based (e.g., Excite and AltaVista), only a few of them have studied the information-seeking native English speakers; some even do not know English at behavior on the Web in non-English languages. In this all. It has been estimated that only around 36.5% of Internet article, we report the analysis of the search-query logs of users are native English speakers (Global Reach, 2004). a search engine that focused on Chinese. Three months Consequently, it is common for users to perform Web of search-query logs of Timway, a search engine based searches for non-English resources. While most large com- in Hong Kong, were collected and analyzed. Metrics on sessions, queries, search topics, and character usage mercial search engines such as Google can handle queries in are reported. -
NSF Sensational 60
Cover credits Background: © 2010 JupiterImages Corporation Inset credits (left to right): Courtesy Woods Hole Oceanographic Institution; Gemini Observatory; Nicolle Rager Fuller, National Science Foundation; Zee Evans, National Science Foundation; Nicolle Rager Fuller, National Science Foundation; Zina Deretsky, National Science Foundation, adapted from map by Chris Harrison, Human-Computer Interaction Institute, Carnegie Mellon University; Tobias Hertel, Insti- tute for Physical Chemistry, University of Würzburg Design by: Adrian Apodaca, National Science Foundation 1 Introduction The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. Congress passed legislation creating the NSF in 1950 and President Harry S. Truman signed that legislation on May 10, 1950, creating a government agency that funds research in the basic sciences, engineering, mathematics and technology. NSF is the federal agency responsible for nonmedical research in all fields of science, engineering, education and technology. NSF funding is approved through the federal budget process. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF has an independent governing body called the National Science Board (NSB) that oversees and helps direct NSF programs and activities. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. NSF is the funding source for approximately 20 percent of all federally supported basic research conducted by America’s colleges and universities. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly. NSF has a total workforce of about 1,700 at its Arlington, Va., headquarters, including approximately 1,200 career employees, 150 scientists from research institutions on temporary duty, 200 contract workers and the staff of the NSB office and the Office of the Inspector General. -
Effective Query Recommendation with Medoid-Based Clustering Using a Combination of Query, Click and Result Features
Effective Query Recommendation with Medoid-based Clustering using a Combination of Query, Click and Result Features Elham Esmaeeli-Gohari Faculty of Computer Engineering, Yazd University, Yazd, Iran [email protected] Sajjad Zarifzadeh* Faculty of Computer Engineering, Yazd University, Yazd, Iran [email protected] Received: 20/Nov/2019 Revised: 21/Dec/2019 Accepted: 29/Feb/2020 Abstract Query recommendation is now an inseparable part of web search engines. The goal of query recommendation is to help users find their intended information by suggesting similar queries that better reflect their information needs. The existing approaches often consider the similarity between queries from one aspect (e.g., similarity with respect to query text or search result) and do not take into account different lexical, syntactic and semantic templates exist in relevant queries. In this paper, we propose a novel query recommendation method that uses a comprehensive set of features to find similar queries. We combine query text and search result features with bipartite graph modeling of user clicks to measure the similarity between queries. Our method is composed of two separate offline (training) and online (test) phases. In the offline phase, it employs an efficient k-medoids algorithm to cluster queries with a tolerable processing and memory overhead. In the online phase, we devise a randomized nearest neighbor algorithm for identifying most similar queries with a low response-time. Our evaluation results on two separate datasets from AOL and Parsijoo search engines show the superiority of the proposed method in improving the precision of query recommendation, e.g., by more than 20% in terms of p@10, compared with some well-known algorithms. -
Information Rereival, Part 1
11/4/2019 Information Retrieval Deepak Kumar Information Retrieval Searching within a document collection for a particular needed information. 1 11/4/2019 Query Search Engines… Altavista Entireweb Leapfish Spezify Ask Excite Lycos Stinky Teddy Baidu Faroo Maktoob Stumpdedia Bing Info.com Miner.hu Swisscows Blekko Fireball Monster Crawler Teoma ChaCha Gigablast Naver Walla Dogpile Google Omgili WebCrawler Daum Go Rediff Yahoo! Dmoz Goo Scrub The Web Yandex Du Hakia Seznam Yippy Egerin HotBot Sogou Youdao ckDuckGo Soso 2 11/4/2019 Search Engine Marketshare 2019 3 11/4/2019 Search Engine Marketshare 2017 Matching & Ranking matched pages ranked pages 1. 2. query 3. muddy waters matching ranking “hits” 4 11/4/2019 Index Inverted Index • A mapping from content (words) to location. • Example: the cat sat on the dog stood on the cat stood 1 2 3 the mat the mat while a dog sat 5 11/4/2019 Inverted Index the cat sat on the dog stood on the cat stood 1 2 3 the mat the mat while a dog sat a 3 cat 1 3 dog 2 3 mat 1 2 on 1 2 sat 1 3 stood 2 3 the 1 2 3 while 3 Inverted Index the cat sat on the dog stood on the cat stood 1 2 3 the mat the mat while a dog sat a 3 cat 1 3 dog 2 3 mat 1 2 Every word in every on 1 2 web page is indexed! sat 1 3 stood 2 3 the 1 2 3 while 3 6 11/4/2019 Searching the cat sat on the dog stood on the cat stood 1 2 3 the mat the mat while a dog sat a 3 cat 1 3 query dog 2 3 mat 1 2 cat on 1 2 sat 1 3 stood 2 3 the 1 2 3 while 3 Searching the cat sat on the dog stood on the cat stood 1 2 3 the mat the mat while a dog sat a 3 cat -
List of Search Engines Listed by Types of Searches
List of Search Engines Listed by Types of Searches - © 09-14-2014 - images removed Copyright - Professional Web Services Internet Marketing SEO Business Solutions - http://pwebs.net - All Rights Reserved List of Search Engines Listed by Types of Searches by ProWebs - Article last updated on: Saturday, July 28, 2012 http://pwebs.net/2011/04/search-engines-list/ To view images click link above. This page posting has been updated with the addition of some of the newer search engines. The original search engine page was dealing mainly with B2B and B2C search. However, with today's broad based Internet activity, and how it relates to various aspects of business usage, personal searches, and even internal intranet enterprise searches, we wanted to highlight some of the different search market segments. This list of the various search engines, is posted here mainly for research and education purposes. We felt it is nice to be able to reference and have links to some of the different search engines all in one place. While the list below does not cover each and every search engine online, it does provide a broad list of most of the major search companies that are available. Also note that some of the search engine links have been redirected to other sites due to search buyouts, mergers, and acquisitions with other companies, along with changes with the search engines themselves (for example: search companies have changed brand names, different URLs, and links). You will also notice that some of the search websites go back a number of years. If you would like to read more about the details of any particular search engine, take a look at the Wikipedia Search Engines List article, and follow the links to each specific search engine for a descriptive overview. -
Motori Di Ricerca E Portali, Dei
2 Repertorio Il testo è un repertorio di oltre 180 motori di ricerca e portali, dei escluse le piattaforme commerciali come Amazon, iTunes, ecc. motori I motori di ricerca sicuri e consigliati, quali SearX, Qwant, Startpage e DuckDuckGo, sono stati omessi, così come Google (analizzato esclusivamente per il carattere quasi monopolistico), in quanto di Repertorio dei trattati nel volume Motori di ricerca, Trovare informazioni in rete. ricer Strumenti per le ricerche sul web. Il catalogo è articolato per macro-aree tematiche relative alle ca. motori di ricerca possibili ricerche: privacy e sicurezza, tipologia di contenuti e T risultati, musica, video, foto, immagini, icone, eBook, documenti. r ovar Il capitolo primo tratta i motori di ricerca sicuri e a tutela della Trovare informazioni in rete privacy. e Il capitolo secondo riporta i motori di ricerca focalizzati sulla infor Strumenti per le ricerche sul web tipologia di contenuti e risultati. Un esempio sono CC Search, per la ricerca di contenuti multimediali non coperti da copyright, mazioni oppure FindSounds per l’individuazione di suoni in fonti aperte. I capitoli successivi hanno come oggetto le risorse per la ricerca di contenuti documentali e multimediali. Flavio Gallucci in Il capitolo terzo raccoglie le risorse per la ricerca di foto, immagini r e icone. TinEye merita attenzione per la tecnica di reverse image ete. search, ovvero la ricerca a partire dal caricamento di una foto. Strumenti Il capitolo quarto elenca strumenti e risorse per la ricerca di brani musicali, l’ascolto di musica in streaming e l’individuazione di eventi. Il capitolo quinto propone i portali dedicati alla ricerca di video.