Precautions Interactions Antimicrobial Action Pharmacokinetics Uses And

Total Page:16

File Type:pdf, Size:1020Kb

Precautions Interactions Antimicrobial Action Pharmacokinetics Uses And tionamide with rifampicin and dapsone.3 A regimen of ograms/mL, the concentration considered by the authors rusAN, riNNJ protionamide, dapsone, rifampicin, and clofazimine has to be essential for therapeutic success. Fidaxomicin been associated with a 22% incidence based on laboratory I. Donald PR, Seifart Cerebrospinal fluid concentrations of ethion­ Pial;J:!P ici!la; Fida�ooiidne; . Fidaxt1 itina!J\; Ill. rry · Upia(!'fly n; 115: t!J tJ monitoring.4 Use of ethionamide with pyrazinamide has amide in children with tuberculous meningitis. Pediatr 1989; 483- PA�1Ql; .1)acumi<;:in.B; .· ·· 6. <ll'l!'ld�COMMt;l114• •... also resulted in a high incidence of abnormal liver func­ J (3E,5OPT-80;E;$5; 9E, 1 1 5,l2R; ,3-(f[�c[:)eo:xy-H)-/.' (3;':)­ tion tests.5 dichlo.ro'l'eth l-4,6"pi1 3/;',lhydSf,lS$)•[ o�ybe �oyn-:M'J- metl)yj.-�-o· In the above studies rifampicin was given daily during mannopyranpsyl)oxyy jmethy1)�1 :HL6·deo� xy-S'C�r)e hyk+i.h part or all of the regimens. The incidence of hepatotoxicity � ProprietaryPreparations (details are given in Volume B) (2'me!hylp:o�n<i>yl): -o-(Yxo- exopyrano y xy}�]·1 '��hyl­ when ethionamide or protionamide is used with once­ � � 9? .8-hydroxy- 18:-[(lR)-l -hydroxyethyll-t) 9, 13;15-trlmethytoxacy­ monthly rifampicin may be lower; hepatotoxicity was not Single-ingredient Preparations. Gr.: Trecator; India: E-Tbio; reported in patients receiving monthly rifampicin and daily Eniimide; Ethide; Ethimax; Ethiobin; Ethiocid; Ethiokox; Ethio­ doo<:taqec�-�.5,9,B;lS,pemaen -2-one. protionamide, isoniazid, and dapsone.6 nam; Ethomid; Etomide; Etumide; MDThide; Mycotuf; Myobid; C52H,.Cb0,s= Rus.: Ethide Ethomid (3-rOMiiJI): Myobid (Mno6ff)l); I. Pattyn SK et a!. Hepatotoxicity of the combination of rifampin­ 9A? .:....,. -,6),6105l.l .. Reginicid (PerHHHIJ;H.n;); S.Afr. : Ethatyl; Thai.: Eton; Turk. : Etyo­ ethionamide in the treatment of multibadllary leprosy. Int Lepr 1984; (3TH�); .. .• . _ !2. 52: 1-6. J mid; USA: Trecator. ATC:':"7 2. Pattyn SR, et a!. Combined regimens of one year duration in the 1\K \If;t-,- .9.'\0ZMJ:Z. treatment of multibadllary leprosy-II: combined regimens with Pharmacopoeial Preparations rifampicin administered during 6 months. Lepr Rev 1989; 60: 118--2 3. USP 36: Ethionamide Tablets. .UNit '""".ZS{'l076G8YQ 3. Cartel J-L, et al. Hepatitis in leprosy patients treated by a daily combination of dapsone, rifampin, and a thioamide. lnt Lepr 1983; 51: Uses and Administration 461-5. J 4. Ji B, et a!. Hepatotoxicity of combined therapy with rifampicin and daily Fidaxomicin is a nonabsorbed, narrow-spectrum macro­ prothionamide for leprosy. Lepr Rev 1984; 55: 283-9. cyclic antibacterial used in the treatment of Clostridium 5. Schiess JM, et a!. The use of ethionamide in combined drugregimens in difficile-associated diarrhoea (see Antibiotic-associated Col­ the re-treatment of isoniazid-resistant pulmonary tuberculosis. Am Rev itis, p. 183.1). It is given orally in a dose of 200mg twice Respir Dis 1965; 91: 728-37. 6. Ellard GA, et al. Long-term prothionamide compliance: a study carried daily for 10 days. out in India using a combined formulation containing prothionamide, 59: References. dapsone and isoniazid. Lepr Rev 1988; 163-75. l. Sullivan , Spooner LM. Fidaxomidn: a macrocyclic antibiotic for the Clostridium diffidle Ann Pharmacother 20 0; 44: managementKM of infection. I 352-9. Precautions 2. Miller M. Fidaxomicin (OPT-80) for the treatment of Clostridium difficile infection. Expert Opin Pharmacother 2010; 11: 1569-78. Ethionamide should not be used in - severe hepatic 3. et a!. Clostridium difficile Etimicin, a derivative of gentamicin C a, is an aminoglyco­ Louie TJ, Fidaxomicin versus vancomycin for impairment. Liver function tests should be carried out 1 infection. N Eng! Med 2011; 364: 422-31. side antibacterial with actions similar to those of gentamicin before, and regularly during, treatment with ethionamide. 4. Mullane KM, GorbachJ S. Fidaxomidn: first-in-class macrocyclic (p. 306.2). It is given intravenously as the sulfate. antibiotic. Expert Rev Anti Infect Ther 2011; 9: 767-77. Caution is necessary in patients with depression or other 5. Mullane KM, et a!. Efficacy of fidaxomicin versus vancomycin as therapy psychiatric illness. Difficulty may occur in the management for Clostridium dijfidle infection in individuals taking concomitant of diabetes mellitus. Periodic monitoring of blood glucose, Zhao C, et al. A randomized controlled clinical trial on etimicin, a new antibiotics for other concurrent infections. Clin Infect Dis 2011; 53: 44G-7. thyroid function, and visual function is desirable. aminoglycoside antibiotic, versus netilmicin in the treatment of bacterial infections. Chin Med (Eng!) 2000; 113: 1026-30. animals. Ethionamide is teratogenic in J Adverse Effectsand Precautions Adverse effects occurring with oral use of fidaxomicin are Interactions ProprietaryPreparations (details are given in Volume B) mainly gastrointestinal in nature and include nausea, The adverse effects of other antimycobacterials may be vomiting, and abdominal pain. Anaemia, neutropenia, and China: Yi (�fuE);Aida (�::k): increased when ethionamide is used (see Effects on the Single-ingredient Preparations. Ai gastrointestinal haemorrhage may also occur. Chuang Cheng Ge Mei Da Pan Nuo (iii!*): Liver, p. 297 .3, and under Cycloserine, Interactions, Since there is only minimal systemic absorption, oral XiNeng (;m;i!�);Yi Qing p. 281.1). (ilrJRJ<;); (�""it:); fidaxomicin should not be used for the treatment of (i!l'i/f). systemic infections. Use of oral fidaxomicin in the absence of ' a proven or strongly suspected Clostridium difficileinfection is Alcohol. A psychotic reaction has been reported in a unlikely to provide benefit and may lead to the patient receiving ethionamide after excessive intake of development of drug resistant bacteria. alcohol.' et at. L Lansdown FS, Psychotoxic reaction during ethionamide therapy. Am Rev Respir Dis 1967; 95: 1053-5. Antimicrobial Action Fidaxomicin has potent bactericidal activity against Clostridium difficile in vitro through its inhibition of RNA Antimicrobial Action synthesis by RNA polymerases. It has more limited activity Ethionamide is active only against mycobacteria including against other Gram-positive bacteria, and no activity against Mycobacterium tuberculosis, M. kansasii, M. leprae, M. Gram-negative bacteria. malmoense, and some strains of M. avium complex. Resistance develops rapidly if used alone and there is complete cross-resistance between ethionamide and Pharmacokinetics protionamide. Cross-resistance has also been reported Fidaxomicin is essentially nonabsorbed from the gastro­ with isoniazid and with in vitro thioacetazone. intestinal tract after an oral dose. It undergoes hydrolysis in the gut to form the main metabolite, OP-1118, which is microbiologically active. Over 92% of a dose is excreted in Cross-resistance. References. 1. Schaaf HS, et al. Ethionamide cross- and co-resistance in children with the faeces as either fidaxomicin or OP-118, although very isoniazid-resistant tuberculosis. lnt Tuberc Lung Dis 2009; 13: 1355-9. small amounts of OP-118 have been recovered in the urine. J Faropenem is a penem antibacterial that is given orally as the sodium salt for the treatment of susceptible infections. P..r�p(l_r?_li<>.n.� . Pharmacokinetics Faropenem medoxomil (USAN) (A-0026; Bay-56-6854; ProprietaryPreparations (details are given in Volume B) Ethionamide has been given as a sugar-coated tablet or SUN-A0026; SUN-208) has been investigated for the more recently as a more stable film-coated tablet. Both treatment of respiratory-tract infections and uncomplicated Single-ingredient Preparations. Canad.: Dificid; Denm.: Dificlir; formulations are readily absorbed from the gastrointestinal skin and skin-structure infections. NOTE. Faropenem Irl. : Dificlir; Norw.: Dificlir; Spain: Dificlir; Swed.: Difidir; UK: tract: after an oral dose of 2 50 mg, sugar-coated tablets medoxomil has also been referred to as faropenem daloxate Dificlir; USA: Dificid. produce a peak plasma concentration of about 1.5 micro­ although such use of the term daloxate is not in keeping grams/mL after 1.5 hours, while film-coated tablets give a with INN nomenclature conventions. (BAN, USAN, r/NN} peak plasma concentration of 2.16micrograms/mL after References. Fleroxacin about I hour. Distribution of ethionamide from the film­ 1. et al. Critchley IA, Activities of faropenem, an oral 13 -lactam, against �teroi:sastipj; Fl�roxa�lniJ; Flerox.adno; f!eroxoci· coated tablet into body tissues and fluids was expected to be recent US isolates of Streptococcus pneumoniae, Haemophilus ·. AM,8�3:n �o-23c6240/(:)QO; .\IlJJ�pOK!?al.!!o\K, similar to that of the sugar-coated tablets. Ethionamide from influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother \.lfll:.• -2}:6240; 2002; 46: 550-5. t 8·Di&;f!uoro-h(2·fluoroEO<thyll-1 4-dl!)ydro,7-(4-methylcl· \ . • sugar-coated tablets is widely distributed throughout body 2. von Eiff C, et a!. Comparative in vitro activity of faropenem against piper\ltit'lyl),4-oxe"3'quinoltnecarboxylic;ildd•. tissues and fluids. It crosses the placenta and penetrates the staphylococci. Antimicrob Chemother 2002; 50: 277-80. uninflamed meninges, appearing in the CSF in concentra­ 3. Milatovic D, et al. In vitro activity of faropenem against 5460 clinical J 50: C:tzflraF.al'!P-;=;$693 tions equivalent to those in serum. It is about 30% bound to bacterial isolates from Europe. Antimicrob Chemother 2002; 293-9. CAS ·;;.. 4. Wexler et a!. In vitro activities of faropenem against 579 strains of plasma proteins. The half-life for the sugar-coated tablet is , J 79660-'72-3. anaerobicHM bacteria. Antimicrob Agents Chemother 2002; 46: 3669-75. reported to be 2 to 3 hours and 1.92 hours for the film­ 5. Jones ME, eta!. Activity of faropenem, a new furanem, against European ATCC.:..JQ 1MA08. coated tablet. Ethionamide is extensively metabolised, respiratory pathogens collected during 2000-2001: a comparison with ATCYet - QJOIMA08. 51: � probably in the liver, to the active sulfoxide and other other beta-lactam agents.
Recommended publications
  • Dose Amoxicillin/Clavulanate
    1 Clinical trial of the treatment of acute sinusitis with standard-dose vs. high- dose amoxicillin/clavulanate Principal Investigator: Paul Sorum, MD, PhD, Professor of Internal Medicine and Pediatrics Co-Investigators: Andrea Matho, MD, 2nd year Med-Ped resident (the four 2nd-year residents will be responsible for the timely follow-up of enrolled patients) Mary Mulqueen, MD, 2nd year Med-Ped resident Aaron Quidort, MD, 2nd year Med-Ped resident Miyuki Tanino, MD, 2nd year Med-Ped resident Sujata Kane, PA-C (who will be enrolling the most patients) Christine McGovern, MS, PA-C (who will work with the residents to assure the smooth enrollment and complete follow-up of patients) Joseph Wayne, MD, MPH, Associate Professor of Internal Medicine and Pediatrics Gina Garrison, Pharm D, Associate Professor of Pharmacy Practice, Albany College of Pharmacy and Health Sciences (who will prepare the medications) Sub-Investigators The other attending physicians at the AMC Internal Medicine and Pediatrics office (who will be enrolling patients): Rahim Dhanani, MD Elizabeth Higgins, MD Hamish Kerr, MD Deborah Light, MD Jennifer Lindstrom, MD Tricia Pelnik-Fecko, MD Ivelisse Verrico, MD Kathleen Zabinski-Kramer, MD The other Medicine-Pediatrics residents (who will be enrolling patients and making follow-up telephone calls) Brady Bowen, DO Melanie Ecung Deyss, MD Laura El-Hage, MD Sara Khalil, MD Preetha Kurian, MD Daniel Lavelle, MD Manpreet Mann, MD Lyndsay Molinari, MD Uwa Otabor, MD Samuel Park, MD Britta Sundquist, MD Lisa Thaler, DO 2 Others Nursing staff (who will provide the patients with documents relating to the study) Medical students for research experience or work-study (who will help the residents to follow-up telephone calls and who will, if possible, enter data into the Excel data base) (to be set up) Statistical consultant: Michael Mulvihill, DPH, Einstein Medical Center, NYC A.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Treatment of Drug-Resistant Tuberculosis an Official ATS/CDC/ERS/IDSA Clinical Practice Guideline Payam Nahid, Sundari R
    AMERICAN THORACIC SOCIETY DOCUMENTS Treatment of Drug-Resistant Tuberculosis An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline Payam Nahid, Sundari R. Mase, Giovanni Battista Migliori, Giovanni Sotgiu, Graham H. Bothamley, Jan L. Brozek, Adithya Cattamanchi, J. Peter Cegielski, Lisa Chen, Charles L. Daley, Tracy L. Dalton, Raquel Duarte, Federica Fregonese, C. Robert Horsburgh, Jr., Faiz Ahmad Khan, Fayez Kheir, Zhiyi Lan, Alfred Lardizabal, Michael Lauzardo, Joan M. Mangan, Suzanne M. Marks, Lindsay McKenna, Dick Menzies, Carole D. Mitnick, Diana M. Nilsen, Farah Parvez, Charles A. Peloquin, Ann Raftery, H. Simon Schaaf, Neha S. Shah, Jeffrey R. Starke, John W. Wilson, Jonathan M. Wortham, Terence Chorba, and Barbara Seaworth; on behalf of the American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America THIS OFFICIAL CLINICAL PRACTICE GUIDELINE WAS APPROVED BY THE AMERICAN THORACIC SOCIETY, THE EUROPEAN RESPIRATORY SOCIETY, AND THE INFECTIOUS DISEASES SOCIETY OF AMERICA SEPTEMBER 2019, AND WAS CLEARED BY THE U.S. CENTERS FOR DISEASE CONTROL AND PREVENTION SEPTEMBER 2019 Background: The American Thoracic Society, U.S. Centers for was judged to be very low, because the data came Disease Control and Prevention, European Respiratory Society, and from observational studies with significant loss to follow-up Infectious Diseases Society of America jointly sponsored this new and imbalance in background regimens between comparator practice guideline on the treatment of drug-resistant tuberculosis groups. Good practices in the management of MDR-TB are (DR-TB). The document includes recommendations on the described. On the basis of the evidence review, a clinical strategy treatment of multidrug-resistant TB (MDR-TB) as well as tool for building a treatment regimen for MDR-TB is also isoniazid-resistant but rifampin-susceptible TB.
    [Show full text]
  • Comparison of Effectiveness and Safety of Imipenem/Clavulanate- Versus Meropenem/Clavulanate-Containing Regimens in the Treatment of MDR- and XDR-TB
    ORIGINAL ARTICLE TUBERCULOSIS Comparison of effectiveness and safety of imipenem/clavulanate- versus meropenem/clavulanate-containing regimens in the treatment of MDR- and XDR-TB Simon Tiberi1,30, Giovanni Sotgiu2,30, Lia D’Ambrosio3,4,30, Rosella Centis3,30, Marcos Abdo Arbex5,6, Edith Alarcon Arrascue7,8, Jan Willem Alffenaar9, Jose A. Caminero8,10, Mina Gaga11, Gina Gualano12, Alena Skrahina13, Ivan Solovic14, Giorgia Sulis15, Marina Tadolini16, Valentina Alarcon Guizado17, Saverio De Lorenzo18, Aurora Jazmín Roby Arias19, Anna Scardigli8, Onno W. Akkerman20, Alena Aleksa21, Janina Artsukevich21, Vera Auchynka13, Eduardo Henrique Bonini5,6, Félix Antonio Chong Marín19, Lorena Collahuazo López19, Gerard de Vries22, Simone Dore2, Heinke Kunst23, Alberto Matteelli15, Charalampos Moschos11, Fabrizio Palmieri12, Apostolos Papavasileiou11, Marie-Christine Payen24, Andrea Piana2, Antonio Spanevello25,26, Dante Vargas Vasquez27, Pietro Viggiani18, Veronica White28, Alimuddin Zumla29 and Giovanni Battista Migliori3 ABSTRACT No large study to date has ever evaluated the effectiveness, safety and tolerability of imipenem/clavulanate versus meropenem/clavulanate to treat multidrug- and extensively drug-resistant tuberculosis (MDR- and XDR-TB). The aim of this observational study was to compare the therapeutic contribution of imipenem/clavulanate versus meropenem/clavulanate added to background regimens to treat MDR- and XDR-TB cases. 84 patients treated with imipenem/clavulanate-containing regimens showed a similar median number of antibiotic resistances (8 versus 8) but more fluoroquinolone resistance (79.0% versus 48.9%, p<0.0001) and higher XDR-TB prevalence (67.9% versus 49.0%, p=0.01) in comparison with 96 patients exposed to meropenem/clavulanate-containing regimens. Patients were treated with imipenem/clavulanate- and meropenem/clavulanate-containing regimens for a median (interquartile range) of 187 (60–428) versus 85 (49–156) days, respectively.
    [Show full text]
  • Ige and Drug Allergy: Antibody Recognition of 'Small' Molecules of Widely Varying Structures and Activities
    Antibodies 2014, 3, 56-91; doi:10.3390/antib3010056 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review IgE and Drug Allergy: Antibody Recognition of ‘Small’ Molecules of Widely Varying Structures and Activities Brian A. Baldo † Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, and Department of Medicine, University of Sydney, Sydney 2065, Australia; E-Mail: [email protected]; Tel.: +61-2-9880-9757 † Author is retired. Formerly: Head of Molecular Immunology Unit. Received: 19 November 2013; in revised form: 19 December 2013 / Accepted: 18 January 2014 / Published: 22 January 2014 Abstract: The variety of chemically diverse pharmacologically-active compounds administered to patients is large and seemingly forever growing, and, with every new drug released and administered, there is always the potential of an allergic reaction. The most commonly occurring allergic responses to drugs are the type I, or immediate hypersensitivity reactions mediated by IgE antibodies. These reactions may affect a single organ, such as the nasopharynx (allergic rhinitis), eyes (conjunctivitis), mucosa of mouth/throat/tongue (angioedema), bronchopulmonary tissue (asthma), gastrointestinal tract (gastroenteritis) and skin (urticaria, eczema), or multiple organs (anaphylaxis), causing symptoms ranging from minor itching and inflammation to death. It seems that almost every drug is capable of causing an immediate reaction and it is unusual to find a drug that has not provoked an anaphylactic response in at least one patient. These facts alone indicate the extraordinary breadth of recognition of IgE antibodies for drugs ranging from relatively simple structures, for example, aspirin, to complex molecules, such as the macrolide antibiotics composed of a large macrocyclic ring with attached deoxy sugars.
    [Show full text]
  • Novel Drug Targets for Food-Borne Pathogen Campylobacter Jejuni: an Integrated Subtractive Genomics and Comparative Metabolic Pathway Study
    OMICS A Journal of Integrative Biology Volume 19, Volume 7, 2015 Original Article ª Mary Ann Liebert, Inc. DOI: 10.1089/omi.2015.0046 Novel Drug Targets for Food-Borne Pathogen Campylobacter jejuni: An Integrated Subtractive Genomics and Comparative Metabolic Pathway Study Kusum Mehla and Jayashree Ramana Abstract Campylobacters are a major global health burden and a cause of food-borne diarrheal illness and economic loss worldwide. In developing countries, Campylobacter infections are frequent in children under age two and may be associated with mortality. In developed countries, they are a common cause of bacterial diarrhea in early adulthood. In the United States, antibiotic resistance against Campylobacter is notably increased from 13% in 1997 to nearly 25% in 2011. Novel drug targets are urgently needed but remain a daunting task to accomplish. We suggest that omics-guided drug discovery is timely and worth considering in this context. The present study employed an integrated subtractive genomics and comparative metabolic pathway analysis approach. We identified 16 unique pathways from Campylobacter when compared against H. sapiens with 326 non-redundant proteins; 115 of these were found to be essential in the Database of Essential Genes. Sixty-six proteins among these were non-homologous to the human proteome. Six membrane proteins, of which four are transporters, have been proposed as potential vaccine candidates. Screening of 66 essential non-homologous proteins against DrugBank resulted in identification of 34 proteins with drug-ability potential, many of which play critical roles in bacterial growth and survival. Out of these, eight proteins had approved drug targets available in DrugBank, the majority serving crucial roles in cell wall synthesis and energy metabolism and therefore having the potential to be utilized as drug targets.
    [Show full text]
  • Emerging Modalities to Combat Resistant Gram-Negative Pathogens in Critically Ill Patients: Part 2: Focus on the Carbapenems
    A 2-Part Series on Emerging Modalities to Combat Resistant Gram-Negative Pathogens in Critically Ill Patients: Part 2: Focus on the Carbapenems Date of Release: August 2007 Expiration Date: August 31, 2008 FACULTY Lena M. Napolitano, MD, PROGRAM OVERVIEW Rising rates of nosocomially acquired multidrug-resistant (MDR) Gram- negative pathogens have drastically narrowed the spectrum of available therapeutic options. FACS, FCCP, FCCM Resistance to antimicrobials is a mounting health concern, both in the United States and world- Professor of Surgery wide. Infections caused by resistant Gram-negative pathogens, such as Pseudomonas aeruginosa Division Chief, Acute Care Surgery and Acinetobacter baumannii, result in higher morbidity, mortality, prolonged hospitalization, and Trauma, Burn, Critical Care, increased costs compared with sensitive strains. Carbapenems possess high potency against a Emergency Surgery broad spectrum of organisms and are regarded as the agents of choice for serious infections with Associate Chair of Surgery for extended-spectrum β-lactamase–producing organisms. However, increased prevalence of pan- Critical Care resistant P. aeruginosa and A. baumannii strains worldwide has limited the utility even of the car- Department of Surgery bapenems. To reduce the likelihood of emergence of resistance, clinical practice guidelines have Director, Surgical Critical Care been developed to direct antimicrobial treatment of nosocomial infections. Initial empiric therapy University of Michigan Health System should offer broad-spectrum coverage of Gram-negative pathogens, and therapy should be tai- Ann Arbor, Michigan lored and de-escalated after positive culture results are obtained. Although the polymyxins have been reintroduced, particularly as a last-line treatment of MDR Gram-negative pathogens, hetero- Robert C.
    [Show full text]
  • Gaps in Knowledge in Therapeutics and Treatment
    Gaps in knowledge in therapeutics and treatment Christopher M Parry Liverpool School of Tropical Medicine and Liverpool Clinical Laboratories, Liverpool, UK School of Tropical Medicine and Global Health, Nagasaki University, Japan Outline Trends in antibiotic resistance Impact of resistance Case finding and treatment as control Antimicrobial combinations Clinical trials Chloramphenicol in typhoid fever ‘…the clinical improvement and complete transformation in a few days can only be appreciated by clinicians who have had previous experience of typhoid fever and have known their own helplessness in the past to affect its protracted course…its great value in saving life and curtailing morbidity in this disease is incontestable’ Edge W. 1950. Typhoid fever treated with chloramphenicol: review of 16 cases. Lancet 255:710-712. Gatifloxacin GatR H58 Azithromycin AZMR Ciprofloxacin NalR R Ofloxacin DCS mutation CIP Ceftriaxone R Cefixime CRO Co-trimoxazole MDR Plasmid Chromosome Ampicillin/Amoxycillin Chloramphenicol CR 1950 1960 1970 1980 1990 2000 2010 2020 Wain et al, Lancet 2016 In the culture-confirmed population, 16 (26%) of 62 patient who received gatifloxacin failed treatment compared with four (7%) of 54 who received ceftriaxone (HR 0.24 (95% CI 0.08-0.73) p=0.01]. Treatment failure was associated with the of S.Typhi exhibiting resistance against fluoroquinolones requiring the trial to be stopped. By contrast, in patients with a negative blood culture, only two (3%) of 58 who received gatifloxacin failed treatment versus 15 (23%) of 65 who received ceftriaxone [HR7.5 (95% CI 1.71-32.80), p =0.01). Alternatives Carbapenems iv Meropenem/Imipenem iv Ertapenem oral Faropenem iv 4th generation cephalosporins iv Tigecycline Oral Mecillinam What are we trying to achieve when we treat a patient with typhoid fever? Individual patient Cure the patient, prevent complications and death Prevent relapse Safe in children and adults Affordable, available, easy adherence Parry.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,347,888 B2 Ghirardi Et Al
    USOO9347888B2 (12) United States Patent (10) Patent No.: US 9,347,888 B2 Ghirardi et al. (45) Date of Patent: May 24, 2016 (54) DETECTION OF BACTERIA EXHIBITING A Wexler et al., “In Vitro Activities of Faropenem against 579 Strains of RESISTANCE TO CARBAPENEMS Anaerobic Bacteria'. Antimicrobial Agents and Chemotherapy, Nov. 2002, vol. 46, No. 11, pp. 3669-3675.* (75) Inventors: Sandrine Ghirardi, Saint Genis les Naiemi et al., “Extended-spectrum beta-lactamases screening agar Ollieres (FR); John Perry, Newcastle with AmpC inhibition”, Eur J. Clin Microbiol Infect Dis (2009) upon Tyne (GB); Gilles Zambardi, 28:989-990. DOI 10.1007/s10096-009-0714-8. Chezeneuve (FR) Rodel et al., “In vitro activities of faropenem, ertapenem, imipenem and meropenem against Borreliaburgdorferi s.l.. International Jour (73) Assignee: BIOMERIEUX, Marcy L’Etoile (FR) nal of Antimicrobial Agents 30 (2007) 83-86.* Pages etal; “Efflux Pump, the Masked Side of B-Lactam Resistance (*) Notice: Subject to any disclaimer, the term of this in Klebsiella pneumoniae Clinical Isolates.” PLoS ONE: Mar. 2009; patent is extended or adjusted under 35 vol. 4: Issue 3, e4817. U.S.C. 154(b) by 0 days. Samraetal; “Evaluation ofCHROMagar KPC for Rapid Detection of Carbapenem-Resistant Enterobacteriaceae.” Journal of Clinical (21) Appl. No.: 14/001565 Microbiology; Jul. 2008; vol. 46; No. 9: pp. 3110-3111. Nordmann et al; "How to Detect NDM-1 Producers.' Journal of (22) PCT Filed: Mar. 16, 2012 Clinical Microbiology; 2011; Dec. 2010; vol. 49; No. 2: pp. 718-721. Mushtaq et al., “Activity of faropenem against cephalosporin-resis (86). PCT No.: PCT/FR2O12/050556 tant Enterobacteriaceae.” Journal of Antimicrobial Chemotherapy; 2007: vol.
    [Show full text]
  • Possible Factors Involved in Oral Inactivity of Meropenem, a Carbapenem Antibiotic
    Pharmacology & Pharmacy, 2012, 3, 201-206 201 http://dx.doi.org/10.4236/pp.2012.32027 Published Online April 2012 (http://www.SciRP.org/journal/pp) Possible Factors Involved in Oral Inactivity of Meropenem, a Carbapenem Antibiotic Toshihide Saito, Rinako Sawazaki, Kaori Ujiie, Masako Oda, Hiroshi Saitoh* Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hok- kaido, Japan. Email: *[email protected] Received January 15th, 2012; revised February 12th, 2012; accepted March 5th, 2012 ABSTRACT Meropenem, a carbapenem antibiotic, is inactive after oral administration and administered exclusively by injection. In this study, in order to address the factors involved in the oral inactivity of meropenem, in vitro permeation characteris- tics across rat ileal segments was investigated using diffusion cells. Moreover, stability of meropenem was evaluated in the Japanese Pharmacopoeia (JP) 1st and 2nd fluid for disintegration test. Cefotaxime, ceftibuten, and faropenem were used for comparison. The permeation of meropenem across rat ileal segments was approximately 5-fold greater in sec- retory direction than in absorptive direction. The secretory-oriented transport of meropenem markedly diminished by replacement of D-glucose in the experimental medium with unmetabolizing 3-O-methyl-D-glucose, suggesting that the secretory transport of meropenem was an energy-dependent process. Cefotaxime exhibited extensively secretory-ori- ented permeation. On the other hand, much weaker directionalities were observed in ceftibuten and faropenem. While meropenem as well as other three β-lactam antibiotics was stable in JP 2nd fluid (pH 6.8), it declined rapidly in JP 1st fluid (pH 1.2).
    [Show full text]
  • APPLICATION of STRUCTURE ACTIVITY RELATIONSHIPS of the MYCOBACTERIUM TUBERCULOSIS BETA-LACTAMASE (Blac)
    APPLICATION OF STRUCTURE ACTIVITY RELATIONSHIPS OF THE MYCOBACTERIUM TUBERCULOSIS BETA-LACTAMASE (BlaC) AND THE NEW DELHI METALLO-BETA-LACTAMASE (NDM-1) TO COMBATING BETA- LACTAMASE MEDIATED DRUG RESISTANCE A Dissertation by JOSEPH ANDREW MIRE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, James C. Sacchettini Co-Chair of Committee, Pingwei Li Committee Members, David O. Peterson David H. Russell Head of Department, Gregory D. Reinhart August 2013 Major Subject: Biochemistry Copyright 2013 Joseph Andrew Mire ABSTRACT β-lactamase enzymes catalyze the irreversible hydrolysis of the four-membered cyclic amide ring characteristic of β-lactam antibiotics rendering them inactive and useless against pathogenic bacteria. Understanding structure activity relationships between β-lactam antibiotics and β-lactamases is important for designing novel β- lactams, β-lactamase inhibitors, and β-lactam-based fluorescent probes for rapid diagnosis of β-lactam antibiotic resistant infections. The first half of this study focuses on the class A β-lactamase BlaC from Mycobacterium tuberculosis (Mtb) and addresses intermolecular interactions between BlaC and substrates, inhibitors, and biosensors that influence their kinetic parameters with BlaC and activities against Mtb. The substrate structure activity relationship explained the molecular basis for differential innate resistance of Mtb to faropenem, biapenem, and tebipenem by showing the interactions between BlaC and the lactams that govern differential acyl-intermediate stability and affinity. The inhibitor structure activity relationship revealed features of the BlaC active site that can be exploited to enhance binding and inhibition of BlaC by benzoxaboroles, and demonstrates their utility as potentiators of β-lactam antibiotic activity against Mtb.
    [Show full text]