1 Pharmacogenomic and Structural Analysis of Constitutive G-Protein
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Inverse Agonism to 'Paradoxical Pharmacology' Richard A
International Congress Series 1249 (2003) 27-37 From inverse agonism to 'Paradoxical Pharmacology' Richard A. Bond*, Kenda L.J. Evans, Zsirzsanna Callaerts-Vegh Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 521 Science and Research Bldg 2, 4800 Caltioun, Houston, TX 77204-5037, USA Received 16 April 2003; accepted 16 April 2003 Abstract The constitutive or spontaneous activity of G protein-coupled receptors (GPCRs) and compounds acting as inverse agonists is a recent but well-established phenomenon. Dozens of receptor subtypes for numerous neurotransmitters and hormones have been shown to posses this property. However, do to the apparently low percentage of receptors in the spontaneously active state, the physiologic relevance of these findings remains questionable. The possibility that the reciprocal nature of the effects of agonists and inverse agonists may extend to cellular signaling is discussed, and that this may account for the beneficial effects of certain p-adrenoceptor inverse agonists in the treatment of heart failure. © 2003 Elsevier Science B.V. All rights reserved. Keywords. Inverse agonism; GPCR; Paradoxical pharmacology 1. Brief history of inverse agonism at G protein-coupled receptors For approximately three-quarters of a century, ligands that interacted with G protein- coupled receptors (GPCRs) were classified either as agonists or antagonists. Receptors were thought to exist in a single quiescent state that could only induce cellular signaling upon agonist binding to the receptor to produce an activated state of the receptor. In this model, antagonists had no cellular signaling ability on their own, but did bind to the receptor and prevented agonists from being able to bind and activate the receptor. -
Pharmacodynamics - I
Pharmacodynamics - I Dr. Jyoti M. Benni Dept. of Pharmacology USM-KLE, IMP Belgaum Learning outcomes • Describe the principles of pharmacodynamics with regard to the potential targets of -drug action -receptor types -dose-response relationship (curve) -therapeutic index 2 Introduction: PK & PD 3 Pharmacodynamics Pharmacodynamics is the study of actions of the drug on the body and their mechanism of action. Stimulation Depression Irritation Replacement Modify immune status Anti-infective / Cytotoxic action 4 Mechanisms of Drug Action Non-receptor mediated Receptor mediated • Physical • Receptors on the cell • Chemical membrane • Enzymes • Ion channels • Transporters • Receptors inside the cell • Antibody • Placebo 5 Non – receptor mediated mechanisms… Physical property . Physical property of the drug is responsible E.g. Adsorption: activated charcoal in treatment of poisoning Osmotic activity: magnesium sulfate for constipation Radioactivity: radioactive iodine (I131 ) for hyperthyroidism Radioopacity: barium sulfate as contrast media 6 Non – receptor mediated mechanisms… Chemical action Antacids - neutralize gastric acid Chelating agents (EDTA) Used in heavy metal (LEAD)poisoning treatment Oxidizing agents potassium permanganate as germicidal agent 7 Non – receptor mediated mechanisms… Enzymes as targets of drug action Enzymes Inhibition Stimulation Enzyme Nonspecific Specific induction Competitive Noncompetitive 8 Non – receptor mediated mechanisms… Enzyme stimulation: • Reactivation e.g. Injection pralidoxime → for treatment of Organophosphorus -
Activity Intrinsic
Vol. (Suppl. ) Intrinsic 201 Activity www.IntrinsicActivity.org Published by th ISSN 2309-8503 Austrian Pharmacological Society Dopamine 2016 Vienna, 5–8 September 2016 MAEETING BSTRACTS Intrinsic Activity is an online, open-access publication medium published by the Austrian Pharmacological Society (APHAR). The Journal welcomes contributions in the fields of Pharmacology, Pharmacotherapy and other fields in biomedicine. Contributions may be of type meeting abstracts, research articles, position papers, commentaries or similar. For submission instructions and all other information regarding publication in the journal visit: www.IntrinsicActivity.org Correspondence Intrinsic Activity c/o Institute for Experimental and Clinical Pharmacology Medical University of Graz Universitätsplatz 4 8010 Graz, Austria Tel.: +43 (316) 380-4305 Fax: +43 (316) 380-9645 E-mail: [email protected] Website: www.IntrinsicActivity.org ISSN: 2309-8503 Austrian Pharmacological Society c/o Institute of Pharmacology Centre for Physiology and Pharmacology Medical University of Vienna Währinger Straße 13a 1090 Wien, Austria E-mail: [email protected] Copyright, open access and permission to use Articles are published under a Creative Commons license (Creative Commons, attribution, non-commercial), that allows reuse subject only to the use being non-commercial and the article being fully attributed. The Publisher and Austrian Pharmacological Society retain the license that allows publishing of the articles in Intrinsic Activity, any derivative product or any other Intrinsic Activity product (present or future) and allows sub-licensing such rights and exploit all subsidiary rights. Authors retain the license to use their articles for their own non-commercial purposes, specifically: Posting a pdf of their own article on their own personal or institutional website for which no charge for access is made. -
Principle of Pharmacodynamics
Principle of pharmacodynamics Dr. M. Emamghoreishi Full Professor Department of Pharmacology Medical School Shiraz University of Medical Sciences Email:[email protected] Reference: Basic & Clinical Pharmacology: Bertrum G. Katzung and Anthony J. Treveror, 13th edition, 2015, chapter 20, p. 336-351 Learning Objectives: At the end of sessions, students should be able to: 1. Define pharmacology and explain its importance for a clinician. 2. Define ―drug receptor‖. 3. Explain the nature of drug receptors. 4. Describe other sites of drug actions. 5. Explain the drug-receptor interaction. 6. Define the terms ―affinity‖, ―intrinsic activity‖ and ―Kd‖. 7. Explain the terms ―agonist‖ and ―antagonist‖ and their different types. 8. Explain chemical and physiological antagonists. 9. Explain the differences in drug responsiveness. 10. Explain tolerance, tachyphylaxis, and overshoot. 11. Define different dose-response curves. 12. Explain the information that can be obtained from a graded dose-response curve. 13. Describe the potency and efficacy of drugs. 14. Explain shift of dose-response curves in the presence of competitive and irreversible antagonists and its importance in clinical application of antagonists. 15. Explain the information that can be obtained from a quantal dose-response curve. 16. Define the terms ED50, TD50, LD50, therapeutic index and certain safety factor. What is Pharmacology?It is defined as the study of drugs (substances used to prevent, diagnose, and treat disease). Pharmacology is the science that deals with the interactions betweena drug and the bodyor living systems. The interactions between a drug and the body are conveniently divided into two classes. The actions of the drug on the body are termed pharmacodynamicprocesses.These properties determine the group in which the drug is classified, and they play the major role in deciding whether that group is appropriate therapy for a particular symptom or disease. -
Pharmacodynamics Drug Receptor Interactions Part-2
Pharmacodynamics: (Drug Receptor Interactions, Part 2) ………………………………………………………………………………………………………………………………………………………………………………………………………………… VPT: Unit I; Lecture-22 (Dated 03.12.2020) Dr. Nirbhay Kumar Asstt. Professor & Head Deptt. of Veterinary Pharmacology & Toxicology Bihar Veterinary College, Bihar Animal Sciences University, Patna Drug Receptor Interactions Agonist It is a drug that possesses affinity for a particular receptor and causes a change in the receptor that result in an observable effect. Full agonist: Produces a maximal response by occupying all or a fraction of receptors. (Affinity=1, Efficacy=1) Partial agonist: Produces less than a maximal response even when the drug occupies all of the receptors. (Affinity=1, Efficacy= 0 to 1) Inverse agonist: Activates a receptor to produce an effect in the opposite direction to that of the well recognized agonist. (Affinity=1, Efficacy= –1 to 0). Source: Rang & Dale’s Pharmacology, Elsevier Source: Good & Gilman’s The Pharmacological Basis of Therapeutics, 13th Edn. Antagonist An antagonist is a drug that blocks the response produced by an agonist. Antagonists interact with the receptor or other components of the effector mechanism, but antagonists are devoid of intrinsic activity (Affinity=1, Efficacy=0). Antagonist contd… Competitive Antagonism: It is completely reversible; an increase in the concentration of the agonist in the bio-phase will overcome the effect of the antagonist. Example: Atropine (Antimuscarinic agent) Diphenhydramine (H1 receptor blocker) Non-competitive antagonism: The agonist has no influence upon the degree of antagonism or its reversibility. Example: Platelet inhibiting action of aspirin (The thromboxane synthase enzyme of platelets is irreversibly inhibited by aspirin, a process that is reversed only by production of new platelets). -
Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity Kelly A
International Journal of Neuropsychopharmacology (2018) 21(10): 962–977 doi:10.1093/ijnp/pyy071 Advance Access Publication: August 6, 2018 Review review Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity Kelly A. Berg and William P. Clarke Department of Pharmacology, University of Texas Health, San Antonio, Texas. Correspondence: William P. Clarke, PhD, Department of Pharmacology, Mail Stop 7764, UT Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 ([email protected]). Abstract Constitutive receptor activity/inverse agonism and functional selectivity/biased agonism are 2 concepts in contemporary pharmacology that have major implications for the use of drugs in medicine and research as well as for the processes of new drug development. Traditional receptor theory postulated that receptors in a population are quiescent unless activated by a ligand. Within this framework ligands could act as agonists with various degrees of intrinsic efficacy, or as antagonists with zero intrinsic efficacy. We now know that receptors can be active without an activating ligand and thus display “constitutive” activity. As a result, a new class of ligand was discovered that can reduce the constitutive activity of a receptor. These ligands produce the opposite effect of an agonist and are called inverse agonists. The second topic discussed is functional selectivity, also commonly referred to as biased agonism. Traditional receptor theory also posited that intrinsic efficacy is a single drug property independent of the system in which the drug acts. However, we now know that a drug, acting at a single receptor subtype, can have multiple intrinsic efficacies that differ depending on which of the multiple responses coupled to a receptor is measured. -
Pharmacogenomic and Structural Analysis of Constitutive G Protein–Coupled Receptor Activity
ANRV298-PA47-02 ARI 4 December 2006 20:18 Pharmacogenomic and Structural Analysis of Constitutive G Protein–Coupled Receptor Activity Martine J. Smit,1 Henry F. Vischer,1 Remko A. Bakker,1 Aldo Jongejan,1 Henk Timmerman,1 Leonardo Pardo,2 and Rob Leurs1 1Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit, Faculty of Sciences, Department of Chemistry, 1081 HV Amsterdam, The Netherlands; email: [email protected] 2Laboratorio de Medicina Computacional, Unidad de Bioestadistica, Facultad de Medicina, Universidad Autonoma de Barcelona, Barcelona, Spain Annu. Rev. Pharmacol. Toxicol. 2007. 47:53–87 Key Words First published online as a Review in Advance on constitutive activity; inverse agonism, receptor structure, receptor October 9, 2006 motifs The Annual Review of Pharmacology and Toxicology is online at http://pharmtox.annualreviews.org Abstract This article’s doi: G protein–coupled receptors (GPCRs) respond to a chemically di- 10.1146/annurev.pharmtox.47.120505.105126 verse plethora of signal transduction molecules. The notion that Copyright c 2007 by Annual Reviews. GPCRs also signal without an external chemical trigger, i.e., in a All rights reserved constitutive or spontaneous manner, resulted in a paradigm shift by Universitat Autonoma de Barcelona on 01/09/07. For personal use only. 0362-1642/07/0210-0053$20.00 in the field of GPCR pharmacology. The discovery of constitutive GPCR activity and the fact that GPCR binding and signaling can be strongly affected by a single point mutation drew attention to Annu. Rev. Pharmacol. Toxicol. 2007.47:53-87. Downloaded from arjournals.annualreviews.org the evolving area of GPCR pharmacogenomics. -
Cannabinoid-1 Receptor Inverse Agonists: Current Understanding of Mechanism of Action and Unanswered Questions
International Journal of Obesity (2009) 33, 947–955 & 2009 Macmillan Publishers Limited All rights reserved 0307-0565/09 $32.00 www.nature.com/ijo REVIEW Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions TM Fong1 and SB Heymsfield2 1Merck Research Laboratories, Department of Metabolic Disorders, Rahway, NJ, USA and 2Merck Research Laboratories, Global Center of Scientific Affairs, Rahway, NJ, USA Rimonabant and taranabant are two extensively studied cannabinoid-1 receptor (CB1R) inverse agonists. Their effects on in vivo peripheral tissue metabolism are generally well replicated. The central nervous system site of action of taranabant or rimonabant is firmly established based on brain receptor occupancy studies. At the whole-body level, the mechanism of action of CB1R inverse agonists includes a reduction in food intake and an increase in energy expenditure. At the tissue level, fat mass reduction, liver lipid reduction and improved insulin sensitivity have been shown. These effects on tissue metabolism are readily explained by CB1R inverse agonist acting on brain CB1R and indirectly influencing the tissue metabolism through the autonomic nervous system. It has also been hypothesized that rimonabant acts directly on adipocytes, hepatocytes, pancreatic islets or skeletal muscle in addition to acting on brain CB1R, although strong support for the contribution of peripherally located CB1R to in vivo efficacy is still lacking. This review will carefully examine the published literature -
Different Inverse Agonist Activities of P»-Adrenergic Receptor Antagonists—Pharmacological Characterization and Therapeutical
International Congress Series 1249 (2003) 39-53 Different inverse agonist activities of p»-adrenergic receptor antagonists—pharmacological characterization and therapeutical implications in the treatment of chronic heart failure Christoph Maack*, Michael Bòhm Medizinische Klinik und Poliklinik fiir Innere Medizin III, Universitat des Saarlandes, 66421 Homburg/Saai; Germany Received 16 April 2003; accepted 16 April 2003 Abstract The treatment of chronic heart failure with most p-adrenergic receptor (p-AR) antagonists leads to an improvement of symptoms and left ventricular function. However, only metoprolol, bisoprolol and carvedilol have been shown to reduce mortality in these patients. Bucindolol did not reduce mortality and xamoterol even increased it. These differences may be related to different inverse agonist or partial agonist activity of p-AR antagonists. This review focusses on the determination of different intrinsic activity of the mentioned p-AR antagonists in the human myocardium. Furthermore, the clinical impact of these differences is examined. In this regard, the effect of the different p-AR antagonists on p-AR regulation, minimum heart rate and exercise tolerance, as well as prognosis, is highlighted. It is concluded that the degree of inverse agonism of a p-AR antagonist determines the degree of p-AR resensitization, reduction of minimum heart rate, improvement of exercise tolerance and possibly also improvement of prognosis of patients with chronic heart failure. © 2003 Elsevier Science B.V. All rights reserved. Key\vords: Inverse agonism; p-adrenergic receptors; p-blockers, Heart faitee * Corresponding author. Current address: The Johns Hopkins University, Institute of Molecular Cardio- biology, Division of Cardiology, 720 Rutland Ave., 844 Ross Bldg., Baltimore, MD 21205-2195, USA. -
The Pharmacological Studies on Intrinsic Activities of Acetylcholine, Methacholine, and Carbachol (Homologous Drugs) on Isolated Rat Ileum Preparation
Journal of Medicine and Medical Science Vol. 2(8) pp. 1047-1049, August 2011 Available online@ http://www.interesjournals.org/JMMS Copyright © 2011 International Research Journals Short Communication The pharmacological studies on intrinsic activities of acetylcholine, methacholine, and carbachol (Homologous Drugs) on isolated rat ileum preparation Peter I. Aziba* 1, Sokan J.O. 2, Ifedayo O. 2 and Kasim L.S. 2 1*Department of Pharmacology and 2Department of Pharmaceutical Chemistry Olabisi Onabanjo university, Oachs, Ago_Iwoye. Accepted 24 August, 2011 This study investigated the intrinsic activities of equimolar concentrations of three homologous drugs Actylcholine (Ach), Methacholine (Mch) and Carbachol (Cch) on isolated rat ileum preparation. Contractions were monitored on smoked drum fixed on a kymograph. Heights of contractions were measured in (mm) in order to assess their efficacies.In some experiments Ach- induced contractions were measured in the presence of atropine a competitive muscarinic antagonist. The result showed order of potencies, ranked as Cch>Mch>Ach. This result may explain the low intrinsic activities of Ach when compared to Cch, Mch, due to effect of acetylcholinesterase an enzyme which hydrolyze Ach and limit its efficacy in therapeutic use. Keywords: Intrinsic, homologous drugs, rat ileum, efficacy. INTRODUCTION Theoretically, the term intrinsic activity of a drug was first MATERIALS AND METHODS introduced by Ariens and Van Rossum (1957). The term has been used a great deal in their attempt to explain Rats between (200-305g) were used. The animals were why all drugs do not act in accordance with Clark’s theory maintained in well ventilated conditions, under constant of drug receptor interaction. -
International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification
0031-6997/03/5504-597–606$7.00 PHARMACOLOGICAL REVIEWS Vol. 55, No. 4 Copyright © 2003 by The American Society for Pharmacology and Experimental Therapeutics 30404/1114803 Pharmacol Rev 55:597–606, 2003 Printed in U.S.A International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology RICHARD R. NEUBIG, MICHAEL SPEDDING, TERRY KENAKIN, AND ARTHUR CHRISTOPOULOS Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (R.R.N.); Institute de Recherches Internationales Servier, Neuilly sur Seine, France (M.S.); Systems Research, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina (T.K.); and Department of Pharmacology, University of Melbourne, Parkville, Australia (A.C.) Abstract ............................................................................... 597 I. Introduction............................................................................ 597 II. Working definition of a receptor .......................................................... 598 III. Use of drugs in definition of receptors or of signaling pathways ............................. 598 A. The expression of amount of drug: concentration and dose ............................... 598 1. Concentration..................................................................... 598 2. Dose. ............................................................................ 598 B. General terms used to describe drug action ........................................... -
Equilibrium Assays Are Required to Accurately Characterize the Activity Profiles of Drugs
Molecular Pharmacology Fast Forward. Published on June 28, 2018 as DOI: 10.1124/mol.118.112573 This article has not been copyedited and formatted. The final version may differ from this version. MOL112573 Equilibrium Assays are Required to Accurately Characterize the Activity Profiles of Drugs Modulating Gq-Coupled GPCRs Sara Bdioui, Julien Verdi, Nicolas Pierre, Eric Trinque, Thomas Roux, Terry Kenakin SB, JV, NP, ET, TR: Cisbio Bioassays, 30200 Codolet, France TK : Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 26, 2021 1 Molecular Pharmacology Fast Forward. Published on June 28, 2018 as DOI: 10.1124/mol.118.112573 This article has not been copyedited and formatted. The final version may differ from this version. MOL112573 RUNNING (SHORT) TITLE Functional assays for Gq Protein activating Receptor Ligands Corresponding author: Terry Kenakin Ph.D. Professor, Department of Pharmacology University of North Carolina School of Medicine Downloaded from 120 Mason Farm Road Room 4042 Genetic Medicine Building, CB# 7365 molpharm.aspetjournals.org Chapel Hill, NC 27599-7365 Phone: 919-962-7863 Fax: 919-966-7242 or 5640 Email: [email protected] at ASPET Journals on September 26, 2021 Number of text pages: 56 Number of tables: 0 Number of figures: 13 Number of references: 33 Number of words in the Abstract: 233 Number of words in the Introduction: 599 Number of words in the Discussion: 1497 2 Molecular Pharmacology Fast Forward. Published on June 28, 2018 as DOI: 10.1124/mol.118.112573 This article has not been copyedited and formatted.