[CIM] International Society for Myriapodology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology Is Still an Indispensable Discipline in Zoology: Facts and Gaps from Chilopoda
SOIL ORGANISMS Volume 81 (3) 2009 pp. 387–398 ISSN: 1864 - 6417 Morphology is still an indispensable discipline in zoology: facts and gaps from Chilopoda Carsten H. G. Müller 1* & Jörg Rosenberg 2 1Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut und Museum, Abteilung Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Str. 11–12, 17487 Greifswald; e-mail: [email protected] 2Universität Duisburg-Essen, Universitätsklinikum Essen, Zentrales Tierlaboratorium, Hufelandstr. 55, 45122 Essen, Germany; e-mail: [email protected] *Corresponding author Abstract The importance of morphology as a descent discipline of biosciences has been questioned several times in recent years, especially by molecular geneticists. The criticism ranged between an assumed already comprehensive knowledge on animals body plans resulting in no longer need for morphological research and claims that morphological data do not contribute properly to the phylogenetic reconstructions on all systematic levels or to evolutionary research based on the modern synthesis. However, at least the first assumption of an overall knowledge on animal’s outer and inner morphology at present state seems to be unjustified with respect to what is known about Myriapoda. The present paper underlines the necessity and legitimacy to carry out morphological studies in the still widely neglected subgroups of Myriapoda and among them especially in the Chilopoda. Many interesting morphological data on Chilopoda could be gained in recent years, as for instance from epidermal glands and eyes. Gaps of knowledge on the external and internal morphology of centipedes hamper the ability to compare morphological data among the five known chilopod subgroups, to conduct character conceptualisations, to draw scenarios of evolutionary transformations of certain organ systems and/or to use morphological data for reconstructing strongly disputed euarthropod interrelationships. -
ÖDÖN TÖMÖSVÁRY (1852-1884), PIONEER of HUNGARIAN MYRIAPODOLOGY Zoltán Korsós Department of Zoology, Hungarian Natural
miriapod report 20/1/04 10:04 am Page 78 BULLETIN OF THE BRITISH MYRIAPOD AND ISOPOD GROUP Volume 19 2003 ÖDÖN TÖMÖSVÁRY (1852-1884), PIONEER OF HUNGARIAN MYRIAPODOLOGY Zoltán Korsós Department of Zoology, Hungarian Natural History Museum, Baross u. 13, H-1088 Budapest, Hungary E-mail: [email protected] ABSTRACT Ödön (=Edmund) Tömösváry (1852-1884) immortalised his name in the science of myriapodology by discovering the peculiar sensory organs of the myriapods. He first described these organs in 1883 on selected species of Chilopoda, Diplopoda and Pauropoda. On the occasion of the 150th anniversary of Tömösváry’s birth, his unfortunately short though productive scientific career is overviewed, in this paper only from the myriapodological point of view. A list of the 32 new species and two new genera described by him are given and commented, together with a detailed bibliography of Tömösváry’s 24 myriapodological works and subsequent papers dealing with his taxa. INTRODUCTION Ödön Tömösváry is certainly one of the Hungarian zoologists (if not the only one) whose name is well- known worldwide. This is due to the discovery of a peculiar sensory organ which was later named after him, and it is called Tömösváry’s organ uniformly in almost all languages (French: organ de Tömösváry, German: Tömösvárysche Organ, Danish: Tömösvarys organ, Italian: organo di Tömösváry, Czech: Tömösváryho organ and Hungarian: Tömösváry-féle szerv). The organ itself is believed to be a sensory organ with some kind of chemical or olfactory function (Hopkin & Read 1992). However, although its structure was studied in many respects (Bedini & Mirolli 1967, Haupt 1971, 1973, 1979, Hennings 1904, 1906, Tichy 1972, 1973, Figures 4-6), the physiological background is still not clear today. -
[CIM] International Society for Myriapodology
Centre International de Myriapodologie [CIM] International Society for Myriapodology Newsletter n°4 (December 2019) Edited by Stylianos Simaiakis 1 New CIM Council and Board 2019-2021 The new CIM Council 2019-2021 comprises 13 members: Peter Decker (Germany) [President] Nesrine Akkari (Tunisia) [Vice-President] Stylianos Simaiakis (Greece) [General-Secretary] Jean-Jacques Geoffroy (France) [Associate-Secretary] Hans Reip (Germany) [Treasurer] Dragan Antic (Serbia) Lucio Bonato (Italy) Amazonas Chagas-Junior (Brazil) László Dányi (Hungary) Carsten Müller (Germany) Piyatida Pimvichai (Thailand) Petra Sierwald (USA) Varpu Vahtera (Finland) Cover Image: A micro-CT scan of a 100-million-year old millipede preserved in amber (offered by T. Wesener) 2 The 19TH International Congress of Myriapodology, Quindío, COLOMBIA, August 2021 FIRST MESSAGE TO THE MYRIAPODOLOGICAL COMMUNITY Warm greetings to all myriapodologists and onychophorologists of the World! We are pleased to announce that the next Congress of the International Society of Myriapodology will be held in Colombia, August 2021. First, we would like to thank the assistants to the 18th ICM in Budapest, Hungary, for their trust in our proposal for the headquarters of the 19th ICM. We have formed a Committee, that is eagerly working in organizing an event that lives up to your expectations. At the moment, we can communicate to the international myriapodological community that the event is going to take place in a country hotel located in the Colombian department of Quindío (within the coffee-producing region of Colombia), nestled in the Central Andes Mountain Range, with a pleasant mild climate throughout the year. We have selected this region for its breathtaking landscapes, its multiple tourist attractions, and because it was the location of previous international academic events, with excellent results. -
<I>Scolopocryptops</I> Species from the Fiji Islands (Chilopoda
Scolopocryptopinae from Fiji 159 International Journal of Myriapodology 3 (2010) 159-168 Sofi a–Moscow On Scolopocryptops species from the Fiji Islands (Chilopoda, Scolopendromorpha, Scolopocryptopidae) Amazonas Chagas Júnior Departamento de Invertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, s/nº, São Cristóvão, Rio de Janeiro, RJ, CEP-20940-040, Brazil. E-mail: [email protected] Abstract Th e scolopocryptopine centipedes from Fiji Islands are revised. Two species belonging to the genus Scolo- pocryptops – S. aberrans (Chamberlin, 1920) and S. melanostoma Newport, 1845 – are recorded. Scolo- pocryptops aberrans is redescribed and illustrated for the fi rst time. Scolopocryptops miersii fi jiensis is a junior subjective synonym of S. aberrans, and S. verdescens is a junior subjective synonym of S. melanostoma. An emended diagnosis for S. melanostoma is presented. Key words centipede, Scolopocryptopinae, Dinocryptops, taxonomy Introduction Th e centipedes of the subfamily Scolopocryptopinae are blind scolopendromorphs with 23 pairs of legs, the prefemur of the ultimate legs with at least one dorsomedial and one ventral “spinous process”, a trochanteroprefemoral process on the forcipules (Shelley & Mercurio 2005), and most antennal sensilla emerging from a collar or tubercle (Koch et al. 2010). Th e subfamily comprises two genera, Scolopocryptops Newport, 1845 and Dinocryptops Crabill, 1953, and 27 species and 10 subspecies (unpublished data). Th e Scolopocryptopinae occur throughout much of the New World, in West Africa, and -
11Th International Congress of Myriapodology, Białowieża, Poland, July 20-24, 1999
tglafowiexA 2 0 - 24^ul{| 1999 1999 http://rcin.org.pl FRAGMENTA FAUNISTICA An International Journal of Faunology Warsaw FRAGMENTA FAUNISTICA is a specialist journal published by the Museum and Institute of Zoology of the Polish Academy of Sciences. The journal, first published in 1930, appered under the title Fragmenta Faunistica Musei Zoologici Polonici until 1953. Now the journal is issued as a semi-annual and publishes the papers devoted to knowing fauna, its differentiation, distribution and transformation. These are the results of oiyginal studies, review articles and syntheses dealing with faunology and related sciences as zoogeography or zoocenology. By way of exchange, FRAGMENTA FAUNISTICA is sent to over 350 institutions in 80 countries. It has been cited in the Zoological Record, Biological Abstracts. Biosis, Pascal Thiema and Referativnyj Zhurnal and indexed by Polish Scientific Journal Contents - AGRIC.&BIOL.SCI. available through INTERNET under WWW address: http://saturn.ci.uw.edu.pl/psjc Editorial Office: Muzeum i Instytut Zoologii Polskiej Akademii Nauk (Museum and Institute of Zoology of Polish Academy of Sciences) Wilcza 64, 00-679 Warszawa Editor-in Chief: Prof. Dr. Regina Pisarska Editorial Secretary:Dr. Jolanta Wytwer Editorial Board:Dr. Elżbieta Chudzicka, Dr. Waldemar Mikoląjczyk, Dr. Irmina Pomianowska-Pilipiuk, Dr. Ewa Skibińska, Dr. Maria Sterzyńska Advisory Board: Prof. Dr. Józef Banaszak (Bydgoszcz) Prof. Dr. Sędzimir Klimaszewski (Katowice) Prof. Dr. Czeslaw Blaszak (Poznań) Prof. Dr. Andrzej Leśniak (Kielce) Dr. Wiesław Bogdanowicz (Warszawa) Prof. Dr. Wojciech Niedbała (Poznań) Dr. Thomas Bolger (Dublin) Dr. Bogusław Petryszak (Kraków) 1 Prof. Dr. Michał Brzeski](Skierniewice) Prof. Dr. Adolf Riedel (Warszawa) Prof. Dr. Jarosław Buszko (Toruń) Dr. -
List of Authors/Collectors/Illustrators of Virginia Spiders
Banisteria, Number 41, pages 51-58 © 2013 Virginia Natural History Society History of Araneology in Virginia Barbara J. Abraham Department of Biological Sciences Hampton University Hampton, Virginia 23668 ABSTRACT At least from the 1600s to the present, spiders have been observed, collected, and studied in Virginia. This paper endeavors to outline the history of araneology in Virginia from its inception through the first decade of the 21st century, including researchers of spiders at Virginia institutions and those who have studied Virginia spiders. Key words: araneology, history, spiders, Virginia. INTRODUCTION planning a Natural History of Virginia (Lewis, 1957). Instead, “Some Observations concerning Insects made The study of spiders in Virginia has a venerable by Mr. John Banister in Virginia, A.D. 1680” was history, beginning in the 17th century and continuing to published by Petiver (Banister & Petiver, 1701). the present. Through the efforts of natural historians, Banister was the first to systematically describe any of entomologists, and ecologists, we know much about the spiders of North America; not until between 1791 these important arachnids, but distributions and even and 1802 did John Abbot draw the spiders of Carolina the presence of some species in Virginia remain to be and Georgia (Ewan & Ewan, 1970). discovered. In the 20th and 21st centuries, quantitative, Lack of proper attribution by Martin Lister (a 17th manipulative studies have increasingly replaced century physician and natural historian), who received anecdotal observations, and spiders are used as model Banister’s specimens in 1680 and data for illustrations organisms to address ecological and evolutionary by Petiver, kept Banister’s Virginia specimens from hypotheses. -
25–31 August 2019, Budapest, Hungary
18th INTERNATIONAL CONGRESS OF MYRIAPODOLOGY 25–31 AUGUST 2019, BUDAPEST, HUNGARY PROGRAM AND ABSTRACTS Hungarian Natural History Museum 18th INTERNATIONAL CONGRESS OF MYRIAPODOLOGY 25–31 AUGUST 2019, BUDAPEST, HUNGARY PROGRAM AND ABSTRACTS Editors: László DÁNYI, Zoltán KORSÓS & Eszter LAZÁNYI Recommended citation: Dányi, L., Korsós, Z. & Lazányi, E. (eds) (2019): 18th International Congress of Myriapodology. Program and Abstracts. ‒ Hungarian Natural History Museum & Hungarian Biological Society, Budapest, 152 pp. ISBN 978-963-9877-38-2 © Hungarian Natural History Museum & Hungarian Biological Society Budapest 2019 18TH INTERNATIONAL CONGRESS OF MYRIAPODOLOGY, 2019, BUDAPEST, HUNGARY CONTENTS Centre International de Myriapodologie ........................................................ 2 Welcoming words (G. Edgecombe) .............................................................. 3 Introduction (Z. Korsós) ............................................................................... 4 General information ...................................................................................... 5 Partners’ program ......................................................................................... 6 Congress venue............................................................................................. 7 Program ........................................................................................................ 9 Program overview ...................................................................................... 10 Keynote -
Molecular Approaches to the Study of Ecdysozoan Evolution
1 Molecular approaches to the study of ecdysozoan evolution Omar Rota Stabelli Research Department of Genetics, Evolution and Environment UCL Submitted for the Degree of Doctor of Philosophy September 2009 2 This work is dedicated to… “Hurricane Pete” Pietro who did everything in his power to prevent me from writing this thesis and Maura who patiently took care of both. Max, who gave me the opportunity to study the fabulous world of arthropods and Davide, who is giving me an other opportunity. Racco and Marie which are sadly gone. Declaration I, Omar Rota Stabelli, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, this has been indicated in the thesis. Omar Rota Stabelli 3 Abstract The Ecdysozoa is a large clade of animals comprising the vast majority of living species and some of the most studied invertebrate models, including fruitflies and nematodes. Some of the relationships between major ecdysozoan groups remain uncertain, however, undermining comparative studies and impairing our understanding of their evolution. One hotly debated problem is the position of myriapods which have been recently grouped according to molecules with chelicerates and not with insects and crustaceans as predicted by morphological evidence. Other disputed problems are the position of tardigrades, the position of hexapods within the crustaceans as well as the mutual affinities of the nematodes and priapulid worms. Molecular systematics of the ecdysozoans is complicated by rapid divergence of the main lineages (possibly evidenced in the Cambrian explosion) followed by a subsequent long period of evolution. This may have resulted in a dilution of the historical phylogenetic signal and an increased likelihood of encountering systematic errors of tree reconstruction. -
1999 Annual Report to The
THE FIELD MUSEUM 1999 ANNUAL REPORT TO THE BOARD OF TRUSTEES ACADEMIC AFFAIRS Center for Evolutionary and Environmental Biology (CEEB) Center for Cultural Understanding and Change (CCUC) Office of Academic Affairs, The Field Museum 1400 South Lake Shore Drive Chicago, IL 60605-2496 USA Phone (312) 665-7811 Fax (312) 665-7806 WWW address: http://www.fmnh.org - This Report Printed on Recycled Paper - March 20, 2000 -1- CONTENTS 1999 Annual Report – Introduction.......................................................................................................3 Table of Organization........................................................................................................................8 Collections & Research Committee of the Board of Trustees.................................................................9 Academic Affairs Staff List.............................................................................................................10 Center for Cultural Understanding and Change: “Understanding Cultural Diversity”.........................15 Center for Cultural Understanding and Change: Programs and Initiatives..........................................17 Environmental and Conservation Programs........................................................................................19 The Field Museum and Chicago Wilderness......................................................................................20 The Field Museum Web Site.............................................................................................................21 -
Appendix 1. Locations and Events
Appendix 1. Locations and Events Each location at which samples were collected is listed below by the SiteCode given in the database. The column Location represents the state and county, followed by the SiteCode from the database, then a brief description of the location. The column UTMs gives the coordinates in Universal Transmercator, Datum83, UTM Zone 16 North. Column Lat/Lon gives the geographic coordinates in decimal degree format. The final column Elevation provides the elevation above sea level in meters (m). Each location was sampled at least once, and several locations were sampled multiple times. Each sampling occasion is called an event and is distinguished from every other event at the same location by its date, or the collection methods used, and/or by the collectors who took the sample. Following each Location record events are listed by date, collection method, and by collector(s). Where additional qualifiers are included in the database field, SampleCode, that information is included in parentheses as Sample ID. Please note that during the study, STRI experienced a drought that strongly limited the surface water levels of the park. This resulted in a small number of sites we could sample and a very limited number of specimens collected. Stones River National Battlefield Location UTMs Lat\Lon Elevation 3967928N 35.85412°N TN:Rutherford Co., STRI Lytle Creek, Lytle Creek at Fortress Rosencrans 553032E 86.41267°W 170 m Event 01: 30 Jun-1 Jul 2005, black light trap, CRParker & JLRobinson Event 02: 1 Jul 2005, sweeping, CRParker -
SOMA Newsletter
Society of Medical Arthropodology SOMA Newsletter SOMA Newslett. Vol. 1 No. 1 June 1, 2020 pp. 1- 27 SOCIETY OF MEDICAL ARTHROPODOLOGY: PHILOSOPHY AND OBJECTIVES, AND THE SCIENCE OF MEDICAL ARTHROPODOLOGY Prof. Dr B.K. Tyagi President SOMA & Advisor, SpoRIC, VIT Univ., Vellore, TN, India Email: [email protected] This is an irony that even after more-than-a century of birth the science of medical arthropodology continues to be appreciated and taught in universities all over the world under a wider umbrella of globally recognized discipline of Medical Entomology, albeit the latter being only a branch of the mother science, Medical Arthropodology which comprises, besides medical entomology, also medical acariology, medical myriapodology and medical carcinology. Despite the fact that vectors of human and animal diseases and pests of varied distresses are distributed among all four major classes of Arthropoda, it is however generally the discipline of medical entomology which grabs the centerstage of attention in both university and medical college syllabi, and the non-insectan arthropods such as mites and ticks (medical acariology), which are often serious disease transmitters, are but marginally explained. Medical arthropodology, the mother science at the phylum level, originated when Manson (1878), serving as a medical officer in Taiwan, first hypothesized about the relationship between human lymphatic filariasis and the mosquito, Culex pipiens, giving per se birth to the great science of ‘medical entomology’. Sooner Ross (1897; Tyagi et al., 2020), while serving in British India Medical Service in Secunderabad, discovered for the first time the inextricable link between mosquito (possibly Anopheles stephensi) and malaria, and Grassi (1898), a renowned scientist and academician in Italy, independently and unequivocally demonstrated that it was anopheline mosquitoes (Anopheles sacharovi and An. -
Dr Frank T. Krell Senior Curator of Entomology
0 1 / 2 0 2 1 Dr Frank T. Krell Senior Curator of Entomology Department of Zoology 2001 Colorado Blvd. Denver, CO 80205-5798, U.S.A. Tel. (+1)-303.370.8244 Fax (+1)-303.331.6492 [email protected] Publications Electronic publications, Abstracts and reports in the appendix. in press 235. KRELL, F.-T. (in press). Cockerell, Douglas Bennett. In: Grant, S. (ed.): Mainly about Bedford Park People. Bedford Park, UK. 234. KRELL, F.-T. (in press). Cockerell, Leslie Maurice. In: Grant, S. (ed.): Mainly about Bedford Park People. Bedford Park, UK. 233. KRELL, F.-T. (in press). Cockerell, Olive Juliet. In: Grant, S. (ed.): Mainly about Bedford Park People. Bedford Park, UK. 232. KRELL, F.-T. (in press). Cockerell, Una Agnes. In: Grant, S. (ed.): Mainly about Bedford Park People. Bedford Park, UK. 231. KRELL, F.-T. (in press). Cockerell, Theodore Dru Allison. In: Grant, S. (ed.): Mainly about Bedford Park People. Bedford Park, UK. 230. KRELL, F.-T. (in press, 2021). Suppressing works of contemporary authors using the Code’s publication requirements is neither easy nor advisable. Bulletin of Zoological Nomenclature 78. Singapore. 2020 229. Rheindt, F.E., Ahyong, S.T., Azevedo-Santos, V.M., Bertling, M., Bouchard, P., Evenhuis, N., Harvey, M., Irham, M., KRELL, F.-T., Pape, T., Peterson, A.T., Prawiradilaga, D.M., Pyle, R., Rasmussen, P., Sheldon, F.H., Welter-Schultes, F. & Winker, K. 2020. Response to ‘O’Connell et al. (2020): There are multiple ways to adapt taxonomy to conservation goals. Biodiversity & Conservation 30: 249–251. [19.ix.2020] 0 1 / 2 0 2 1 228.