Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells
Total Page:16
File Type:pdf, Size:1020Kb
antioxidants Article The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells Agnieszka G˛egotek,Anna Jastrz ˛ab,Iwona Jarocka-Karpowicz, Marta Muszy ´nska and Elzbieta˙ Skrzydlewska * ID Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok 15-089, Poland; [email protected] (A.G.); [email protected] (A.J.); [email protected] (I.J.-K.); [email protected] (M.M.) * Correspondence: [email protected]; Tel./Fax: +48-857-485-882 Received: 9 July 2018; Accepted: 20 August 2018; Published: 23 August 2018 Abstract: Lipids and proteins of skin cells are the most exposed to harmful ultraviolet (UV) radiation contained in sunlight. There is a growing need for natural compounds that will protect these sensitive molecules from damage, without harmful side effects. The aim of this study was to investigate the effect of sea buckthorn seed oil on the redox balance and lipid metabolism in UV irradiated cells formed different skin layers to examine whether it had a protective effect. Human keratinocytes and fibroblasts were subjected to UVA (ultraviolet type A; 30 J/cm2 and 20 J/cm2) or UVB (ultraviolet type B; 60 mJ/cm2 and 200 mJ/cm2, respectively) radiation and treated with sea buckthorn seed oil (500 ng/mL), and the redox activity was estimated by reactive oxygen species (ROS) generation and enzymatic/non-enzymatic antioxidants activity/level (using electron spin resonance (ESR), high-performance liquid chromatography (HPLC), and spectrophotometry). Lipid metabolism was measured by the level of fatty acids, lipid peroxidation products, endocannabinoids and phospholipase A2 activity (GC/MS (gas chromatography/mass spectrometry), LC/MS (liquid chromatography/mass spectrometry), and spectrophotometry). Also, transcription factor Nrf2 (nuclear erythroid 2-related factor) and its activators/inhibitors, peroxisome proliferator-activated receptors (PPAR) and cannabinoid receptor levels were measured (Western blot). Sea buckthorn oil partially prevents UV-induced ROS generation and enhances the level of non-enzymatic antioxidants such as glutathione (GSH), thioredoxin (Trx) and vitamins E and A. Moreover, it stimulates the activity of Nrf2 leading to enhanced antioxidant enzyme activity. As a result, decreases in lipid peroxidation products (4-hydroxynonenal, 8-isoprostaglandin) and increases in the endocannabinoid receptor levels were observed. Moreover, sea buckthorn oil treatment enhanced the level of phospholipid and free fatty acids, while simultaneously decreasing the cannabinoid receptor expression in UV irradiated keratinocytes and fibroblasts. The main differences in sea buckthorn oil on various skin cell types was observed in the case of PPARs—in keratinocytes following UV radiation PPAR expression was decreased by sea buckthorn oil treatment, while in fibroblasts the reverse effect was observed, indicating an anti-inflammatory effect. With these results, sea buckthorn seed oil exhibited prevention of UV-induced disturbances in redox balance as well as lipid metabolism in skin fibroblasts and keratinocytes, which indicates it is a promising natural compound in skin photo-protection. Keywords: fibroblasts; keratinocytes; sea buckthorn seeds oil; UV radiation; lipid metabolism 1. Introduction Skin has been recognized as an organ that performs synthesis and processing of an astounding range of structural proteins, lipids, and signaling molecules. Moreover, skin is an integral component Antioxidants 2018, 7, 110; doi:10.3390/antiox7090110 www.mdpi.com/journal/antioxidants Antioxidants 2018, 7, 110 2 of 21 of the immune, nervous and endocrine systems, and therefore is also responsible for the first line of information and defense in the immunity process [1]. However, skin also protects the organism against the influence of the environment and is well-known as crucial for the maintenance of temperature, electrolyte and fluid balance [2]. As a natural biological barrier, skin is constantly exposed to numerous external factors that can impair the functioning of this barrier, including ultraviolet (UV) radiation contained in sunlight. High energy UVB (ultraviolet type B; 280–320 nm) and UVA (ultraviolet type A; 320–400 nm) radiation absorption by the skin may trigger mechanisms that defend skin integrity and also induces skin pathology, such as cancer [3]. These effects occurs as a result of the UV electromagnetic energy transduction into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. However, despite of the wavelength differences, both of them are characterized by high penetration into the deep layers of the epidermis and dermis [4]. UV radiation can upregulate local cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin peptides expression, however, they can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression [5]. Similar effects of UV radiation on human organism are seen after exposure of the eyes and skin to UV, through which UV exerts very rapid stimulatory effects on the brain and central neuroendocrine system and impairs body homeostasis [5]. Moreover, UV radiation promotes the generation of reactive oxygen species (ROS) as well as impairs the antioxidant capacity of skin cells [6]. As a result, the redox imbalance leading to oxidative stress is increased. UV-induced oxidative stress in skin enhances the collagen degradation and elastin modification causes premature skin aging [7,8]. Moreover, increased oxidative phospholipid metabolism disturbs the function of cellular membranes, and promotes the generaton of reactive electrophiles, such as 4-hydroxyalkenals [9]. These reactive electrophiles interact with membrane phospholipids and proteins, including receptors, causing irreparable skin damage. Additionally, UV-induced oxidative stress affects phospholipid metabolism which influences the endocannabinoid system [10]. The main endocannabinoids, such as anandamide and 2-arachidonoylglycerol (2-AG), participate in cell signalling and are ligands for transmembrane receptors-CB1 and CB2 (cannabinoid receptor type 1 and 2) [11]. Activation of CB1 is responsible for ROS generation, whereas CB2 prevents ROS generation and inflammation, while also stimulating the MAP kinase (mitogen-activated protein kinase) pathway [12]. In connection with the permanent exposure to harmful UV radiation, cells from different skin layers-epidermal keratinocytes and dermal fibroblasts create a number of defense mechanisms that protect against UV-induced oxidative stress. Examples of such mechanisms are the high activity of repair and antioxidant enzymes, a large pool of non-enzymatic antioxidants, and redox-sensitive transcription factors including Nrf2 that is responsible for cytoprotective protein expression [13]. Despite the above well-developed mechanisms, skin cells exposed to long-lasting UV radiation are vulnerable to the depletion of the natural antioxidants present and therefore there is still a need for compounds with cytoprotective properties against UV-induced changes. One potential source are seed oils, the main source of phospholipids and triacylglycerols, which are solvents for other lipophilic compounds, i.e., sterols, fat-soluble vitamins (vitamin A and E), carotenoids, phenolic compounds, and free fatty acids [14]. One good source of seed oil is sea buckthorn (Hippophae rhamnoides L.) [15], which is increasingly appearing in skin care preparations. Its antioxidant potential is based on high content of polyphenols, vitamins (C and E), carotenoids as well as sterols [16–18]. In addition to the antioxidant activity, sea buckthorn also shows antibacterial and antifungal activity [19]. Carotenoids contained in the oil stimulate collagen synthesis, while phytosterols regulate inflammatory processes and have anticancer effects [20]. Because of the high concentration of these compounds sea buckthorn seed oil has been found as a promising therapeutic agent in the treatment of dermatitis [21]. However, there is no research on the effect of sea buckthorn seed oil on the UV-induced oxidative lipid metabolism of skin cells. Antioxidants 2018, 7, 110 3 of 21 The aim of this study was to estimate the effect of sea buckthorn seed oil on the correlation between redox balance, lipid metabolism and endocannabinoid system in in vitro cultured human keratinocytes and fibroblasts exposed to the UV-radiation. 2. Materials and Methods 2.1. Examination of Sea Buckthorn Seed Oil Composition Sea buckthorn (Hippophae rhamnoides L.) seed oil fatty acids levels as well as vitamins A and E were described below in the paragraphs Determination of fatty acids levels and Determination of non-enzymatic antioxidant levels. 2.1.1. Determination of Squalene Levels Squalene level was analyzed with separation on HP-5ms capillary column (0.25 mm; 0.25 µm, 30 m) of GC/MS system (Agilent Technologies, Palo Alto, CA, USA) with 7890A GC–7000 quadrupole MS/MS (Agilent Technologies, Palo Alto, CA, USA). Operating conditions were as follows: Oven programming −50 ◦C (10 min), rate 2 ◦C/min to 310 ◦C (30 min); ion source (EI) −230 ◦C; electron energy −70 eV [22]. The mass spectrometer source was run in selective ion monitoring (SIM) mode for the following ions: 191 and 81 m/z. 2.1.2. Phytosterols Profile The content