Glenn T. Seaborg Papers [Finding Aid]. Library of Congress
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
People and Things
People and things John Cumalat and David Neuffer, first Robert R. Wilson Fellows at Fermilab. The Wilson fellowships are special three year appointments awarded annually at Fermilab to outstanding young physicists in the fields of accelerators and particle physics. On people Accelerator specialist Ernie Courant is the recipient of the 1979 Boris Pregel A ward for Applied Science and Technology. The presentation was made at the annual meeting of the New York Academy of Sciences on 6 December. Giving cancer treatments at TRIUMF The first treatment of cancer patients began at TRIUMF in Nov ember using the negative pion beam from the biomedical channel. In this first series, patients with multiple skin tumour nodules are receiving ten daily treatments. In order to assess the effect of negative pions on human tissue, some of the nodules are being treated with pions and others with X-rays. Only when this is known can treatment of larger, deep-seated tumours com mence. The treatments at TRIUMF have been preceded by comprehen sive pre-clinical investigations in cluding both physical and radiobio logical studies, the latter including cultured cells, mice and pigs. Conferences on the horizon The Sixth International Conference on Experimental Meson Spectro scopy will be held at Brookhaven on 24-25 April. The Conference will cover experimental results in light and heavy quark spectroscopy, rele vant theory and spectrometer sys tems. For further information please contact CU. Chung or S.J. Linden- baum, Brookhaven National Labo ratory, Upton, New York 11973. The Mark II detector, previously used in experiments at SPEAR, seen here being installed in one of the experimental areas of the new PEP electron-positron collider. -
Iowa State University Department Codes
Iowa State University Department Codes August 09, 2021 RMM RESOURCE PARENT CROSS- NUMERIC ALPHA UNIT DEPT DISCIPLINARY CODE CODE DIRECTORY NAME FULL NAME ADDRESS PHONE NUMBER NUMBER DEPT NUMBER 30141 4HFDN 4-H FOUNDATION 4-H FOUNDATION 2150 BDSHR (515) 294-5390 030 01130 A B E AG/BIOSYS ENG AGRICULTURAL & BIOSYSTEMS ENGINEERING 1201 SUKUP (515) 294-1434 001 01132 A E AG ENGINEERING AGRICULTURAL ENGINEERING 100 DAVIDSON (515) 294-1434 01130 01581 A ECL ANIMAL ECOLOGY ANIMAL ECOLOGY 253 BESSEY (515) 294-1458 01580 92290 A I C ACUMEN IND CORP ACUMEN INDUSTRIES CORPORATION 1613 RSRC PARK (515) 296-5366 999 45000 A LAB AMES LABORATORY AMES LABORATORY OF US DOE 151 TASF (515) 294-2680 020 10106 A M D APPAREL MERCH D APPAREL MERCHANDISING AND DESIGN 31 MACKAY (515) 294-7474 10100 80620 A S C APPL SCI COMPUT APPLIED SCIENTIFIC COMPUTING (515) 294-2694 999 10706 A TR ATH TRAIN ATHLETIC TRAINING 235 FORKER BLDG (515) 294-8009 10700 07040 A V C ART/VISUAL CULT ART AND VISUAL CULTURE 146 DESIGN (515) 294-5676 007 70060 A&BE AG & BIOSYS ENG AGRICULTURAL AND BIOSYSTEMS ENGINEERING (515) 294-1434 999 92100 AAT ADV ANAL TCH ADVANCED ANALYTICAL TECHNOLOGIES INC ISU RSRC PARK (515) 296-6600 999 02010 ABE AG/BIOSYS ENG-E AGRICULTURAL & BIOSYSTEMS ENGR - ENGR 1201 SUKUP (515) 294-1434 002 01136 ABE A AG/BIOSYS ENG-A AGRICULTURAL & BIOSYSTEMS ENGR - AGLS 1201 SUKUP (515) 294-1434 01130 08100 ACCT ACCOUNTING ACCOUNTING 2330 GERDIN (515) 294-8106 008 08301 ACSCI ACTUARIAL SCI ACTUARIAL SCIENCE (515) 294-4668 008 10501 AD ED ADULT ED ADULT EDUCATION N131 LAGOMAR -
Marie Curie and Her Time
Marie Curie and Her Time by Hélène Langevin-Joliot to pass our lives near each other hypnotized by our dreams, your patriotic dream, our humanitarian dream, arie Curie (1867–1934) belongs to that exclu- and our scientific dream.” sive group of women whose worldwide rec- Frederick Soddy wrote about Marie that she was Mognition and fame have endured for a century “the most beautiful discovery of Pierre Curie.” Of or more. She was indeed one of the major agents of course, it might also be said that Pierre Curie was the scientific revolution which allowed experimen- “the most beautiful discovery of Marie Skłodowska.” tal investigation to extend beyond the macroscopic It is difficult to imagine more contrasting personali- world. Her work placed the first stone in the founda- ties than those of Pierre and of Marie. In spite of that, tion of a new discipline: radiochemistry. And Curie’s or because of that, they complemented each other achievements are even more remarkable since they astonishingly well. Pierre was as dreamy as Marie was occurred in the field of science, an intellectual activ- organized. At the same time, they shared similar ideas ity traditionally forbidden to women. However, these about family and society. accomplishments alone don’t seem to fully explain the near mythic status of Marie Curie today. One hundred years ago, she was often considered to be just an assistant to her husband. Perhaps the reason her name still resonates is because of the compelling story of her life and her intriguing personality. The Most Beautiful Discovery of Pierre Curie The story of the young Maria Skłodowska leaving In this iconic photograph of participants at the Fifth her native Poland to pursue upper-level studies in Solvay Conference in 1927, Marie Curie is third from Paris sounds like something out of a novel. -
The United States Nuclear Weapon Program
/.i. - y _-. --_- -. : _ - . i - DOE/ES4005 (Draft) I _ __ _ _ _____-. 67521 - __ __-. -- -- .-- THE UNITED STATES NUCLEAR - %”WEAPQN PROGRA,hik ..I .La;*I* . , ASUMMARYHISTORY \ ;4 h : . ,‘f . March 1983 \ .;_ U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division -. DOE/ES4005 (Draft) THE UNITED STATES NUCLEAR WEAPON PROG.RAM: ASUMMARYHISTORY .' . c *. By: . Roger M. Anders Archivist With: Jack M. Hall Alice L. Buck Prentice C. Dean March 1983 ‘ .I \ . U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division Washington, D. C. 20585 ‘Thelkpaemlt of Energy OqanizationAct of 1977 b-mughttcgether for the first tim in one departxrmtrmst of the Federal GovenmTle?t’s - Programs-With these programs cam a score of organizational ‘ . ? entities,eachwithi+ccxmhistoryandtraditions,frmadozendepart- . .‘I w ’ mnts and independentagencies. The EIistoryDivision,- prepareda . seriesof paqhlets on The Institutional Originsof the De-t of v Eachpamphletexplainsthehistory,goals,and achievemzntsof a predecessoragency or a major prqrm of the -to=-TY* This parquet, which replacesF&ger M. Anders'previous booklet on "The Office of MilitaxxApplication," traces the histoe of the UrL+& Statesnuclearweapx prcgramfrmits inceptionduring World War II to the present. Nuclear weqons form the core of America's m&z defenses. Anders'history describes the truly fo&idable effortscf 5e Atanic Energy Cmmission, the F;nergy Rfzsearch and Develqmlt z4dmCstratian,andtheDep&m- to create adiverse a* sophistica~arsenzl ofnucleaz ~accctqli&mentsofL~se agenciesandtheirplants andlabc J zrsatedan "atanic shie2 WMchp- Psrrericatoday. r kger M. Anders is a trained historianworking in the Eistzq Divisbn. -
Department of Energy National Laboratories and Plants: Leadership in Cloud Computing (Brochure), U.S. Department of Energy (DOE)
Department of Energy National Laboratories and Plants Leadership in Cloud Computing Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NREL is operated by the Alliance for Sustainable Energy, LLC. JJJTABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY NEVADA NATIONAL SECURITY SITE ........................................34 LABORATORIES AND PLANTS ......................................................4 Current State ...............................................................................34 Cloud Vision .................................................................................34 ABOUT THIS REPORT .....................................................................8 Key Initiatives ..............................................................................34 History of Computing ...............................................................9 Evolution of Computing Models ...........................................9 OAK RIDGE NATIONAL LABORATORY ....................................36 What is Cloud Computing? ....................................................9 Current State and Future Work ............................................36 Cloud Security .............................................................................10 RightPath – DOE/NNSA Cloud Strategy ...........................11 PACIFIC NORTHWEST NATIONAL LABORATORY ..............38 Vision ..............................................................................................38 -
Nobel Prizewinner Seaborg Went Ahead with Mcmillan's Research Project and Within a Few Months He and His Associates Produced EDWITM
Nobel Prizewinner Seaborg went ahead with McMillan's research project and within a few months he and his associates produced EDWITM. MCMILL\N, co-winner of the 1951 Nobel plutonium. which proved to be a vital element in the Prize for Chemistry. is the fourth Caltech scientist to construction of the atomic bomb. While working on the be awarded this highest of all scientific honors. The atom bomb project during the war. and after his return otheis: R. A. Millikan, who received the award in physics to the University of California, Seaborg produced, one in 1923; Thomas Hunt Morgan, honored in 1933 for his after another, elements 95 (americium), 96 ( curium), research in heredity: and Carl Anderson, whose discov- 97 (berkelium) and 98 (californium). ery of the positron won him a physics award in 1936. During the war Dr. McMillan not only worked on Dr. McMillan graduated from Caltech in 1928, re- microwave radar, but assisted in the development of ceived his M.S. here in 1929. and his Ph.D. from Prince- sonar a~ the Navy Radio and Sound Laboratory in San Ion iii 19:32. In that same year he went LO the [Tniversity Diego, California. and later joined the Los Alamos of California JLBerkeley as a National Research Fellow. Scientific Laboratory. McMillan helped Prof. J. Robert He has been on the faculty at Cal ever since. and has Oppenheirner organize the lab foi ihe development of lieen Professor of Physics there since 1946. the atomic bomb. He was in charge of early development Dr. McMillan shares this year's Nobel Chemistry of the Hiroshima bomb and later worked on the Naga- Award with his colleague at the University of California, saki type bomb. -
Acceptance Speech by Professor Omar M. Yaghi
Omar Yaghi’s Speech for 2017 Albert Einstein Science Award I want to thank the principals of the World Cultural Council, organizers of the Einstein World Award of Science Prize, and the generous hospitality of our hosts, Leiden University’s executive body, faculty, staff, and students. Please allow me to express my deepest appreciation to Lily Hernandez for her thoughtfulness and dedication to help bring all this together. I am deeply honored to join the ranks of distinguished scholars who were awarded this prize in years past. Ladies and Gentlemen, allow me to make the following brief remarks: As a child born to a refugee family, I firmly believe that each one of us is blessed with having an opportunity, a chance, a probability, to succeed in our chosen endeavor. I believe we are born with this opportunity and that we as individuals can work towards capturing it and, if we make the right decisions, we can grow and thrive. In other words, our ability to transform ourselves lies within us. I sincerely believe that this opportunity and the chance to succeed live in all of us. It is part of our DNA no matter who we are and where we come from. In my remarks here today, I wish to say something to those who may face at some point slim odds of success in their life, those who start at the lower rungs of the ladder, and those who experience difficulty and may feel sidelined by life’s twists and turns. I stand before you as a product of those slim odds and of a life of hardship such odds entail. -
*Revelle, Roger Baltimore 18, Maryland
NATIONAL ACADEMY OF SCIENCES July 1, 1962 OFFICERS Term expires President-Frederick Seitz June 30, 1966 Vice President-J. A. Stratton June 30, 1965 Home Secretary-Hugh L. Dryden June 30, 1963 Foreign Secretary-Harrison Brown June 30, 1966 Treasurer-L. V. Berkner June 30, 1964 Executive Officer Business Manager S. D. Cornell G. D. Meid COUNCIL *Berkner L. V. (1964) *Revelle, Roger (1965) *Brown, Harrison (1966) *Seitz, Frederick (1966) *Dryden, Hugh L. (1963) *Stratton, J. A. (1965) Hutchinson, G. Evelyn (1963) Williams, Robley C. (1963) *Kistiakowsky, G. B. (1964) Wood, W. Barry, Jr. (1965) Raper, Kenneth B. (1964) MEMBERS The number in parentheses, following year of election, indicates the Section to which the member belongs, as follows: (1) Mathematics (8) Zoology and Anatomy (2) Astronomy (9) Physiology (3) Physics (10) Pathology and Microbiology (4) Engineering (11) Anthropology (5) Chemistry (12) Psychology (6) Geology (13) Geophysics (7) Botany (14) Biochemistry Abbot, Charles Greeley, 1915 (2), Smithsonian Institution, Washington 25, D. C. Abelson, Philip Hauge, 1959 (6), Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton Street, N. W., Washington 8, D. C. Adams, Leason Heberling, 1943 (13), Institute of Geophysics, University of Cali- fornia, Los Angeles 24, California Adams, Roger, 1929 (5), Department of Chemistry and Chemical Engineering, University of Illinois, Urbana, Illinois Ahlfors, Lars Valerian, 1953 (1), Department of Mathematics, Harvard University, 2 Divinity Avenue, Cambridge 38, Massachusetts Albert, Abraham Adrian, 1943 (1), 111 Eckhart Hall, University of Chicago, 1118 East 58th Street, Chicago 37, Illinois Albright, William Foxwell, 1955 (11), Oriental Seminary, Johns Hopkins University, Baltimore 18, Maryland * Members of the Executive Committee of the Council of the Academy. -
The Grand Challenges in the Chemical Sciences
The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Jerusalem, June 3-7 2018 Biographies and Abstracts The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Participants: Jacob Klein Dan Shechtman Dorit Aharonov Roger Kornberg Yaron Silberberg Takuzo Aida Ferenc Krausz Gabor A. Somorjai Yitzhak Apeloig Leeor Kronik Amiel Sternberg Frances Arnold Richard A. Lerner Sir Fraser Stoddart Ruth Arnon Raphael D. Levine Albert Stolow Avinoam Ben-Shaul Rudolph A. Marcus Zehev Tadmor Paul Brumer Todd Martínez Reshef Tenne Wah Chiu Raphael Mechoulam Mark H. Thiemens Nili Cohen David Milstein Naftali Tishby Nir Davidson Shaul Mukamel Knut Wolf Urban Ronnie Ellenblum Edvardas Narevicius Arieh Warshel Greg Engel Nathan Nelson Ira A. Weinstock Makoto Fujita Hagai Netzer Paul Weiss Oleg Gang Abraham Nitzan Shimon Weiss Leticia González Geraldine L. Richmond George M. Whitesides Hardy Gross William Schopf Itamar Willner David Harel Helmut Schwarz Xiaoliang Sunney Xie Jim Heath Mordechai (Moti) Segev Omar M. Yaghi Joshua Jortner Michael Sela Ada Yonath Biographies and Abstracts (Arranged in alphabetic order) The Grand Challenges in the Chemical Sciences Dorit Aharonov The Hebrew University of Jerusalem Quantum Physics through the Computational Lens While the jury is still out as to when and where the impressive experimental progress on quantum gates and qubits will indeed lead one day to a full scale quantum computing machine, a new and not-less exciting development had been taking place over the past decade. -
Facing Our Future
ABOUT THE COVER ART Get ready for the end of our world as we know it. How can we not despair at such a prospect? Roll up the sleeves on imagination, compassion, and science and let’s get ready for our new world. The poster for Gustavus Adolphus College’s Nobel Conference “Climate Changed” illustrates some of the solutions for living in a changed climate, as well as the attendant reality of mass migrations. Sharon Stevenson, Designer CLIMATE CHANGEDFACING OUR FUTURE 800 West College Avenue | Saint Peter, MN 56082 | gustavus.edu/nobelconference NOBEL CONFERENCE 55 | SEPTEMBER 24 & 25, 2019 | GUSTAVUS ADOLPHUS COLLEGE NOBEL CONFERENCE 55 I love being in nature, whether it is time at our family cabin WELCOin northern Minnesota, a walk in the Linnaeus Arboretum at ME Gustavus, or the trip I took this summer with my husband to camp and hike in the western national parks. Like many people, I find nature to be a source of renewal, a connection to the Earth and the Divine, and a reminder of the interconnectedness of creation. Also, like many people, I am concerned about our world. As scientific evidence of human-caused climate change is mounting, members of the Gustavus community are working to understand this crisis and its local and Alfred Nobel had a vision of global effects. On campus, several groups are working on this great challenge a better world. He believed of our time. For example, the President’s Environmental Sustainability Council that people were capable of and the student-led Environmental Action Coalition are leading campus initiatives to reduce our helping to improve society campus energy use by 25 percent in the next five years and make improvements in recycling and through knowledge, science, and waste management with the goal of becoming a zero-waste campus, with 90 percent of solid waste humanism. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
ARIE SKLODOWSKA CURIE Opened up the Science of Radioactivity
ARIE SKLODOWSKA CURIE opened up the science of radioactivity. She is best known as the discoverer of the radioactive elements polonium and radium and as the first person to win two Nobel prizes. For scientists and the public, her radium was a key to a basic change in our understanding of matter and energy. Her work not only influenced the development of fundamental science but also ushered in a new era in medical research and treatment. This file contains most of the text of the Web exhibit “Marie Curie and the Science of Radioactivity” at http://www.aip.org/history/curie/contents.htm. You must visit the Web exhibit to explore hyperlinks within the exhibit and to other exhibits. Material in this document is copyright © American Institute of Physics and Naomi Pasachoff and is based on the book Marie Curie and the Science of Radioactivity by Naomi Pasachoff, Oxford University Press, copyright © 1996 by Naomi Pasachoff. Site created 2000, revised May 2005 http://www.aip.org/history/curie/contents.htm Page 1 of 79 Table of Contents Polish Girlhood (1867-1891) 3 Nation and Family 3 The Floating University 6 The Governess 6 The Periodic Table of Elements 10 Dmitri Ivanovich Mendeleev (1834-1907) 10 Elements and Their Properties 10 Classifying the Elements 12 A Student in Paris (1891-1897) 13 Years of Study 13 Love and Marriage 15 Working Wife and Mother 18 Work and Family 20 Pierre Curie (1859-1906) 21 Radioactivity: The Unstable Nucleus and its Uses 23 Uses of Radioactivity 25 Radium and Radioactivity 26 On a New, Strongly Radio-active Substance