Higgs Boson Phenomenology Beyond the Standard Model Solen Le Corre

Total Page:16

File Type:pdf, Size:1020Kb

Higgs Boson Phenomenology Beyond the Standard Model Solen Le Corre Higgs boson phenomenology beyond the Standard Model Solen Le Corre To cite this version: Solen Le Corre. Higgs boson phenomenology beyond the Standard Model. Nuclear Theory [nucl-th]. Université de Lyon, 2018. English. NNT : 2018LYSE1028. tel-01983201 HAL Id: tel-01983201 https://tel.archives-ouvertes.fr/tel-01983201 Submitted on 26 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre NNT : 2018LYSE1028 THÈSEDEDOCTORATDEL’UNIVERSITÉDELYON opérée au sein de l’Université Claude Bernard Lyon 1 École Doctorale ED52 de Physique et d’Astrophysique Spécialité de doctorat : Physique Théorique / Physique des Particules Soutenue publiquement le 13 Mars 2018, par : Solen Le Corre Higgs boson phenomenology beyond the Standard Model Devant le jury composé de : Mme G. Bélanger Rapporteure M. G. Moreau Rapporteur Mme S. Gascon Shotkin Présidente du Jury Mme F. N. Mahmoudi Examinatrice M. A. Djouadi Examinateur M. U. Ellwanger Examinateur M. A. Deandrea Directeur de thèse M. A. Arbey Co-directeur de thèse Résumé Suite à la découverte du boson de Higgs en Juin 2012 au Large Hadron Collider, l’accélérateur de particules situé à la frontière franco-suisse, l’étude du secteur scalaire des particules élémen- taires a connu un regain d’intérêt. En particulier, le boson de Higgs étant une particule clef au sein du Modèle Standard des particules, les expérimentateurs étudient ses propriétés avec beaucoup de soin. Le Modèle Standard, dont le but est de décrire les interactions entre particules élémentaires, n’est cependant pas une théorie complète. En effet, en plus de quelques problèmes d’ordre théorique, certains phénomènes observés expérimentalement ne peuvent pas être expliqués par ce modèle. Les théoriciens en physique des particules cherchent donc à établir une nouvelle théorie venant le compléter et permettant d’expliquer pleinement les observations expérimen- tales. Ma thèse est axée sur l’étude du secteur scalaire de modèles au-delà du Modèle Standard des particules. J’ai plus particulièrement travaillé sur un modèle à deux doublets de Higgs – modèle purement effectif mais qui peut être inclus dans d’autres théories plus abouties – ainsi que sur un modèle construit comme une combinaison entre les théories déjà très proches de techicouleur et de Higgs composites, et ce dans le cas particulier d’une brisure de symétrie SU(4) → Sp(4). J’ai étudié ce dernier modèle d’un point de vue effectif mais la théorie complète est capable de pallier un certain nombre des limitations du Modèle Standard. Chacun de ces modèles inclut un secteur scalaire plus riche que celui du Modèle Standard et contient au moins une particule pouvant être assimilée au boson de Higgs découvert au LHC. J’ai réalisé l’étude phénoménologique de chacun de ces modèles et les ai confrontés à des contraintes tant théoriques qu’expérimentales – en particulier celles obtenues grâce aux études les plus récentes, portant sur le boson de Higgs et sur de potentielles particules scalaires ad- ditionnelles, réalisées par les équipes du LHC. Cela m’a permis de contraindre les paramètres libres des modèles et en particulier de restreindre les valeurs possibles pour la masse des autres particules scalaires, permettant de mieux cibler les zones où ces nouvelles particules, si elles existent, pourraient être détectées au LHC. Notons également que les deux théories sur lesquelles j’ai travaillé ne sont toujours pas exclues par les contraintes expérimentales les plus récentes. Mots clefs : Boson de Higgs, phénoménologie, LHC, scalaire, Higgs lourd, Higgs léger, Higgs chargé. III Summary Following the discovery of the Higgs boson in June 2012 at the Large Hadron Collider, the particle collider located beneath the France-Switzerland border, interest in the study of the scalar sector in elementary particle physics significantly increased. In particular, as the Higgs boson plays a very special role in the Standard Model of particle physics, experimentalists study its properties with great care. The goal of the Standard Model is to describe the interactions between elementary parti- cles. However the theory is not quite complete. Indeed, in addition to some purely theoretical problems, a number of experimental observations cannot be explained by the Standard Model. Theorists are therefore looking for a more comprehensive theory able to fully explain the ob- servations. This thesis is based on the study of the scalar sector of two different extensions of the Stan- dard Model of particle physics. I have worked on the Two-Higgs Doublet Model – this model is purely effective but can be included in more comprehensive theories – as well as on a model based on a combination of Technicolor and Composite Higgs theories in the framework of the SU(4) → Sp(4) symmetry breaking pattern. I studied the latter via an effective approach but the full theory is able to get rid of some of the pitfalls of the Standard Model. These two models include a scalar sector that is richer than the one found in the Standard Model and contain at least one particle which can be assimilated to the Higgs boson discovered at the LHC. I performed a phenomenological study for these two models and tested them against both theoretical and experimental constraints. In particular I used the latest studies on the 125 GeV Higgs boson and on possible additional scalars performed by the ATLAS and CMS collabora- tions. The application of all these constraints drastically reduced the available parameter space of the two models. In particular it narrowed the possible mass range of the additional scalars, allowing to know more accurately where to search them experimentally in order to prove or rule out their possible existence. As of today the two theories I worked on are still not excluded by the latest experimental data. Key words: Higgs boson, phenomenology, LHC, scalar particle, heavy Higgs, light Higgs, charged Higgs. V Remerciements J’aimerais remercier l’équipe de physique théorique de l’IPNL, tout d’abord Aldo Deandrea et Alexandre Arbey pour m’avoir accepté en thèse sous leur direction, Giacomo Cacciapaglia pour son aide discrète mais efficace durant ces trois années et Dany Davesne pour son humour défrisant et toute l’aide administrative qu’il m’a apportée. J’aimerais également remercier Suzanne Gascon et Morgan Lethuillier de l’équipe CMS pour m’avoir proposé un projet commun entre nos deux groupes qui m’a permis d’amorcer vérita- blement ma thèse. Je remercie également les autres doctorants sans qui ces trois années de thèse auraient été bien moins agréables : Pierre, Bertrand, Glenn, Lucille et les autres de l’équipe du midi, Eme- line pour les pauses thé trop vite avortées, ainsi qu’Anne-Laure, notamment pour son aide sur le déchiffrage de codes. Et, enfin et surtout, Nicolas qui, outre son humour particulier qui a bien souvent su me dérider, m’a tant de fois débloqué durant ma thèse grâce à ses explications lumineuses et ses références bibliographiques pertinentes que je ne saurais lui dire suffisamment merci. Je remercie également l’équipe enseignante avec qui j’ai travaillé durant ces trois ans : Houmani El Mamouni pour m’avoir, année après année, laissé la liberté de prendre plus de re- sponsabilités au sein de son UE, Floriane Poignant pour l’aide et la collaboration lors de notre toute première année d’enseignement, Sonia Fleck, d’une aide inestimable et qui abat un travail titanesque pour l’UE, Sylvain Monnier avec qui j’ai eu le plaisir de construire et développer les "mini-projets", ainsi que toute l’équipe du café pédagogique pour les discussions animées des vendredis après-midi. Un grand merci également à mon frère Julien qui a sacrifié ses vacances de Noël pour relire consciencieusement mon manuscrit et traquer les fautes d’anglais et les tournures de phrases trop "à la française". Je remercie également mes jury, en particulier mes rapporteurs Geneviève Bélanger et Gré- gory Moreau pour avoir accepté de lire et corriger mon manuscrit, et Suzanne Gascon pour avoir présidé le jury lors de ma soutenance. Je remercie enfin Romain, pour avoir été présent durant ces trois ans, et pour m’avoir soutenu, supporté et, surtout, attendu. VII Contents Introduction 1 I Introduction to particle and Higgs physics 3 1 The Standard Model of particle physics 5 1.1 Historical introduction ............................... 5 1.1.1 The beginning of particle physics ........................ 5 1.1.2Thephoton................................... 6 1.1.3 Antiparticles and the beginning of QED .................... 6 1.1.4Thecosmicrayturmoilandthedevelopmentofthequarkmodel...... 7 1.1.5 Beta decays and electroweak unification .................... 9 1.1.6Quarkmodel:theNovemberrevolution.................... 9 1.1.7 Final piece: the Higgs boson .......................... 10 1.2 Structure of the Standard Model ........................ 11 1.2.1Particlecontentandsymmetries........................ 11 1.2.2Lagrangianformulation............................. 13 1.3 The limitations of the Standard Model ..................... 26 2 The Higgs boson 31 2.1 History of the Higgs boson discovery ...................... 31 2.1.1 The beginning of the hunt – 1980s ....................... 31 2.1.2 The Large Electron Positron (LEP) – 1989-2000 ............... 32 2.1.3 The Tevatron – 1987-2011 ........................... 33 2.1.4 The Large Hadron Collider (LHC) – 2008-2035? ............... 33 2.2 Higgs boson production and decay at the LHC ................ 37 2.2.1ProductionattheLHC............................. 37 2.2.2SMHiggsbosondecays............................. 38 2.2.3 LHC results: signal strength and upper limits ................. 39 2.3 Consequences of LHC results on the 125 GeV Higgs boson .......
Recommended publications
  • Higgs Bosons and Supersymmetry
    Higgs bosons and Supersymmetry 1. The Higgs mechanism in the Standard Model | The story so far | The SM Higgs boson at the LHC | Problems with the SM Higgs boson 2. Supersymmetry | Surpassing Poincar´e | Supersymmetry motivations | The MSSM 3. Conclusions & Summary D.J. Miller, Edinburgh, July 2, 2004 page 1 of 25 1. Electroweak Symmetry Breaking in the Standard Model 1. Electroweak Symmetry Breaking in the Standard Model Observation: Weak nuclear force mediated by W and Z bosons • M = 80:423 0:039GeV M = 91:1876 0:0021GeV W Z W couples only to left{handed fermions • Fermions have non-zero masses • Theory: We would like to describe electroweak physics by an SU(2) U(1) gauge theory. L ⊗ Y Left{handed fermions are SU(2) doublets Chiral theory ) right{handed fermions are SU(2) singlets f There are two problems with this, both concerning mass: gauge symmetry massless gauge bosons • SU(2) forbids m)( ¯ + ¯ ) terms massless fermions • L L R R L ) D.J. Miller, Edinburgh, July 2, 2004 page 2 of 25 1. Electroweak Symmetry Breaking in the Standard Model Higgs Mechanism Introduce new SU(2) doublet scalar field (φ) with potential V (φ) = λ φ 4 µ2 φ 2 j j − j j Minimum of the potential is not at zero 1 0 µ2 φ = with v = h i p2 v r λ Electroweak symmetry is broken Interactions with scalar field provide: Gauge boson masses • 1 1 2 2 MW = gv MZ = g + g0 v 2 2q Fermion masses • Y ¯ φ m = Y v=p2 f R L −! f f 4 degrees of freedom., 3 become longitudinal components of W and Z, one left over the Higgs boson D.J.
    [Show full text]
  • Mesons Modeled Using Only Electrons and Positrons with Relativistic Onium Theory Ray Fleming [email protected]
    All mesons modeled using only electrons and positrons with relativistic onium theory Ray Fleming [email protected] All mesons were investigated to determine if they can be modeled with the onium model discovered by Milne, Feynman, and Sternglass with only electrons and positrons. They discovered the relativistic positronium solution has the mass of a neutral pion and the relativistic onium mass increases in steps of me/α and me/2α per particle which is consistent with known mass quantization. Any pair of particles or resonances can orbit relativistically and particles and resonances can collocate to form increasingly complex resonances. Pions are positronium, kaons are pionium, D mesons are kaonium, and B mesons are Donium in the onium model. Baryons, which are addressed in another paper, have a non-relativistic nucleon combined with mesons. The results of this meson analysis shows that the compo- sition, charge, and mass of all mesons can be accurately modeled. Of the 220 mesons mod- eled, 170 mass estimates are within 5 MeV/c2 and masses of 111 of 121 D, B, charmonium, and bottomonium mesons are estimated to within 0.2% relative error. Since all mesons can be modeled using only electrons and positrons, quarks and quark theory are unnecessary. 1. Introduction 2. Method This paper is a report on an investigation to find Sternglass and Browne realized that a neutral pion whether mesons can be modeled as combinations of (π0), as a relativistic electron-positron pair, can orbit a only electrons and positrons using onium theory. A non-relativistic particle or resonance in what Browne companion paper on baryons is also available.
    [Show full text]
  • B2.IV Nuclear and Particle Physics
    B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ......................
    [Show full text]
  • Ions, Protons, and Photons As Signatures of Monopoles
    universe Article Ions, Protons, and Photons as Signatures of Monopoles Vicente Vento Departamento de Física Teórica-IFIC, Universidad de Valencia-CSIC, 46100 Burjassot (Valencia), Spain; [email protected] Received: 8 October 2018; Accepted: 1 November 2018; Published: 7 November 2018 Abstract: Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays. 1. Introduction The theoretical justification for the existence of classical magnetic poles, hereafter called monopoles, is that they add symmetry to Maxwell’s equations and explain charge quantization. Dirac showed that the mere existence of a monopole in the universe could offer an explanation of the discrete nature of the electric charge. His analysis leads to the Dirac Quantization Condition (DQC) [1,2] eg = N/2, N = 1, 2, ..., (1) where e is the electron charge, g the monopole magnetic charge, and we use natural units h¯ = c = 1 = 4p#0. Monopoles have been a subject of experimental interest since Dirac first proposed them in 1931. In Dirac’s formulation, monopoles are assumed to exist as point-like particles and quantum mechanical consistency conditions lead to establish the value of their magnetic charge. Because of of the large magnetic charge as a consequence of Equation (1), monopoles can bind in matter [3].
    [Show full text]
  • A Generalization of the One-Dimensional Boson-Fermion Duality Through the Path-Integral Formalsim
    A Generalization of the One-Dimensional Boson-Fermion Duality Through the Path-Integral Formalism Satoshi Ohya Institute of Quantum Science, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda, Tokyo 101-8308, Japan [email protected] (Dated: May 11, 2021) Abstract We study boson-fermion dualities in one-dimensional many-body problems of identical parti- cles interacting only through two-body contacts. By using the path-integral formalism as well as the configuration-space approach to indistinguishable particles, we find a generalization of the boson-fermion duality between the Lieb-Liniger model and the Cheon-Shigehara model. We present an explicit construction of n-boson and n-fermion models which are dual to each other and characterized by n−1 distinct (coordinate-dependent) coupling constants. These models enjoy the spectral equivalence, the boson-fermion mapping, and the strong-weak duality. We also discuss a scale-invariant generalization of the boson-fermion duality. arXiv:2105.04288v1 [quant-ph] 10 May 2021 1 1 Introduction Inhisseminalpaper[1] in 1960, Girardeau proved the one-to-one correspondence—the duality—between one-dimensional spinless bosons and fermions with hard-core interparticle interactions. By using this duality, he presented a celebrated example of the spectral equivalence between impenetrable bosons and free fermions. Since then, the one-dimensional boson-fermion duality has been a testing ground for studying strongly-interacting many-body problems, especially in the field of integrable models. So far there have been proposed several generalizations of the Girardeau’s finding, the most promi- nent of which was given by Cheon and Shigehara in 1998 [2]: they discovered the fermionic dual of the Lieb-Liniger model [3] by using the generalized pointlike interactions.
    [Show full text]
  • 1 Standard Model: Successes and Problems
    Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles.
    [Show full text]
  • Pion and Kaon Structure at 12 Gev Jlab and EIC
    Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real.
    [Show full text]
  • An Introduction to the Quark Model
    An Introduction to the Quark Model Garth Huber Prairie Universities Physics Seminar Series, November, 2009. Particles in Atomic Physics • View of the particle world as of early 20th Century. • Particles found in atoms: –Electron – Nucleons: •Proton(nucleus of hydrogen) •Neutron(e.g. nucleus of helium – α-particle - has two protons and two neutrons) • Related particle mediating electromagnetic interactions between electrons and protons: Particle Electric charge Mass – Photon (light!) (x 1.6 10-19 C) (GeV=x 1.86 10-27 kg) e −1 0.0005 p +1 0.938 n 0 0.940 γ 0 0 Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada. 2 Early Evidence for Nucleon Internal Structure • Apply the Correspondence Principle to the Classical relation for q magnetic moment: µ = L 2m • Obtain for a point-like spin-½ particle of mass mp: qqeq⎛⎞⎛⎞ µ == =µ ⎜⎟ ⎜⎟ N 2222memepp⎝⎠ ⎝⎠ 2 Experimental values: µp=2.79 µN (p) µn= -1.91 µN (n) • Experimental values inconsistent with point-like assumption. • In particular, the neutron’s magnetic moment does not vanish, as expected for a point-like electrically neutral particle. This is unequivocal evidence that the neutron (and proton) has an internal structure involving a distribution of charges. Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada. 3 The Particle Zoo • Circa 1950, the first particle accelerators began to uncover many new particles. • Most of these particles are unstable and decay very quickly, and hence had not been seen in cosmic ray experiments. • Could all these particles be fundamental? Dr. Garth Huber, Dept.
    [Show full text]
  • A Young Physicist's Guide to the Higgs Boson
    A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with..
    [Show full text]
  • 1 Quark Model of Hadrons
    1 QUARK MODEL OF HADRONS 1 Quark model of hadrons 1.1 Symmetries and evidence for quarks 1 Hadrons as bound states of quarks – point-like spin- 2 objects, charged (‘coloured’) under the strong force. Baryons as qqq combinations. Mesons as qq¯ combinations. 1 Baryon number = 3 (N(q) − N(¯q)) and its conservation. You are not expected to know all of the names of the particles in the baryon and meson multiplets, but you are expected to know that such multiplets exist, and to be able to interpret them if presented with them. You should also know the quark contents of the simple light baryons and mesons (and their anti-particles): p = (uud) n = (udd) π0 = (mixture of uu¯ and dd¯) π+ = (ud¯) K0 = (ds¯) K+ = (us¯). and be able to work out others with some hints. P 1 + Lowest-lying baryons as L = 0 and J = 2 states of qqq. P 3 + Excited versions have L = 0 and J = 2 . Pauli exclusion and non existence of uuu, ddd, sss states in lowest lying multiplet. Lowest-lying mesons as qq¯0 states with L = 0 and J P = 0−. First excited levels (particles) with same quark content have L = 0 and J P = 1−. Ability to explain contents of these multiplets in terms of quarks. J/Ψ as a bound state of cc¯ Υ (upsilon) as a bound state of b¯b. Realization that these are hydrogenic-like states with suitable reduced mass (c.f. positronium), and subject to the strong force, so with energy levels paramaterized by αs rather than αEM Top is very heavy and decays before it can form hadrons, so no top hadrons exist.
    [Show full text]
  • The Structure of Quarks and Leptons
    The Structure of Quarks and Leptons They have been , considered the elementary particles ofmatter, but instead they may consist of still smaller entities confjned within a volume less than a thousandth the size of a proton by Haim Harari n the past 100 years the search for the the quark model that brought relief. In imagination: they suggest a way of I ultimate constituents of matter has the initial formulation of the model all building a complex world out of a few penetrated four layers of structure. hadrons could be explained as combina­ simple parts. All matter has been shown to consist of tions of just three kinds of quarks. atoms. The atom itself has been found Now it is the quarks and leptons Any theory of the elementary particles to have a dense nucleus surrounded by a themselves whose proliferation is begin­ fl. of matter must also take into ac­ cloud of electrons. The nucleus in turn ning to stir interest in the possibility of a count the forces that act between them has been broken down into its compo­ simpler-scheme. Whereas the original and the laws of nature that govern the nent protons and neutrons. More recent­ model had three quarks, there are now forces. Little would be gained in simpli­ ly it has become apparent that the pro­ thought to be at least 18, as well as six fying the spectrum of particles if the ton and the neutron are also composite leptons and a dozen other particles that number of forces and laws were thereby particles; they are made up of the small­ act as carriers of forces.
    [Show full text]
  • Glueball Searches Using Electron-Positron Annihilations with BESIII
    FAIRNESS2019 IOP Publishing Journal of Physics: Conference Series 1667 (2020) 012019 doi:10.1088/1742-6596/1667/1/012019 Glueball searches using electron-positron annihilations with BESIII R Kappert and J G Messchendorp, for the BESIII collaboration KVI-CART, University of Groningen, Groningen, The Netherlands E-mail: [email protected] Abstract. Using a BESIII-data sample of 1:31 × 109 J= events collected in 2009 and 2012, the glueball-sensitive decay J= ! γpp¯ is analyzed. In the past, an exciting near-threshold enhancement X(pp¯) showed up. Furthermore, the poorly-understood properties of the ηc resonance, its radiative production, and many other interesting dynamics can be studied via this decay. The high statistics provided by BESIII enables to perform a partial-wave analysis (PWA) of the reaction channel. With a PWA, the spin-parity of the possible intermediate glueball state can be determined unambiguously and more information can be gained about the dynamics of other resonances, such as the ηc. The main background contributions are from final-state radiation and from the J= ! π0(γγ)pp¯ channel. In a follow-up study, we will investigate the possibilities to further suppress the background and to use data-driven methods to control them. 1. Introduction The discovery of the Higgs boson has been a breakthrough in the understanding of the origin of mass. However, this boson only explains 1% of the total mass of baryons. The remaining 99% originates, according to quantum chromodynamics (QCD), from the self-interaction of the gluons. The nature of gluons gives rise to the formation of exotic hadronic matter.
    [Show full text]