Dual Domain Decomposition Methods in Structural Dynamics, Efficient

Total Page:16

File Type:pdf, Size:1020Kb

Dual Domain Decomposition Methods in Structural Dynamics, Efficient Fakultät für Maschinenwesen Lehrstuhl für Angewandte Mechanik Dual Domain Decomposition Methods in Structural Dynamics Efficient Strategies for Finite Element Tearing and Interconnecting Michael Christopher Dominik Leistner Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Dr.-Ing. Michael W. Gee Prüfer der Dissertation: 1. Prof. dr. ir. Daniel Rixen 2. Dr. habil. à diriger des recherches Pierre Gosselet Die Dissertation wurde am 15.11.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 15.02.2019 angenommen. Abstract Parallel iterative domain decomposition methods are an essential tool to simulate structural mechanics because modern hardware takes its computing power almost exclusively from parallelization. These methods have undergone enormous develop- ment in the last three decades but still some important issues remain to be solved. This thesis focuses on the application of dual domain decomposition to problems of linear structural dynamics and the two main issues that appear in this context. First, the properties and the performance of known a priori coarse spaces are assessed for the first time as a function of material heterogeneity and the time step size. Second, strategies for the efficient repeated solution of the same operator with multiple right- hand sides, as it appears in linear dynamics, are investigated and developed. While direct solution methods can easily reuse their factorization of the operator, it is more difficult in iterative methods to efficiently reuse the gathered information of for- mer solution steps. The ability of known recycling methods to construct tailor-made coarse spaces is assessed and improved. In particular, this work and the according preceding papers present the first highly efficient recycling strategies for the recently published adaptive multipreconditioning framework. Zusammenfassung Parallele iterative Gebietszerlegungsverfahren sind ein essenzielles Werkzeug zur Si- mulation von Strukturmechanik, denn moderne Hardware schöpft ihre Rechenleis- tung fast ausschließlich aus Parallelisierung. Diese Methoden haben in den letzten drei Jahrzehnten eine enorme Entwicklung durchlaufen, doch es gibt noch einige wichtige Probleme, die gelöst werden müssen. Diese Arbeit konzentriert sich auf die Anwendung von Gebietszerlegungsverfahren auf lineare Probleme der Strukturdy- namik und die beiden Hauptprobleme die sich in diesem Zusammenhang ergeben. Dies sind erstens die Eigenschaften und die Leistungsfähigkeit von bekannten a priori Coarse Spaces, welche erstmalig in Abhängigkeit der Material-Heterogenität und der Zeitschrittgröße untersucht werden. Der zweite Punkt ist die Untersuchung und Ent- wicklung von Strategien für die effiziente mehrfache Lösung von konstanten Opera- toren mit wechselnder rechter Seite. Während direkte Lösungsverfahren einfach die Faktorisierung des Operators wiederverwenden können, ist es in iterativen Verfahren schwieriger die gesammelten Informationen aus vorhergehenden Lösungsschritten effizient wiederzuverwenden. Die Fähigkeit bekannter Recyclingstrategien, maßge- schneiderte Coarse Spaces aufzubauen, wird untersucht und verbessert. Insbeson- dere werden in dieser Arbeit und in den entsprechenden vorangegangenen Publika- tionen die ersten hocheffizienten Recyclingstrategien für das kürzlich veröffentlichte multipreconditioning Verfahren präsentiert. Vorwort Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mit- arbeiter am Lehrstuhl für Angewandte Mechanik der Technischen Universität Mün- chen unter der Leitung meines Doktorvaters Prof. dr. ir. Daniel Rixen. An erster Stelle gilt ihm mein besonderer Dank für seine immer wohlwollende Unterstützung und für die stets exzellenten Rahmenbedingungen in fachlichen wie menschlichen Belangen. Sein mir entgegengebrachtes Vertrauen, die von ihm geförderten persönlichen Ent- wicklungsmöglichkeiten und Gestaltungsfreiräume sowie natürlich die steten fachli- chen Diskussionen und Anregungen haben maßgeblich zum Gelingen meiner Arbeit beigetragen. Ebenso danke ich Dr. habil. Pierre Gosselet für sein großes Interesse an meiner Arbeit und für seine Tätigkeit als Zweitprüfer. Prof. Dr.-Ing. Michael W. Gee danke ich für die Übernahme des Vorsitzes der Prüfungskommission. Das Gelingen meiner Arbeit und dass ich die Zeit am Lehrstuhl in besonders positiver Erinnerung behalten werde, ist auch maßgeblich den vielen aktuellen und ehema- ligen Mitarbeitern des Lehrstuhls, mit denen ich dort zusammenarbeiten durfte, zu verdanken. Viele wertvolle fachliche Diskussionen, die gemeinsame Teilnahme an Tagungen, die vielen gemeinsamen sportlichen Aktivitäten, sowie das stets freund- schaftliche und von Hilfsbereitschaft geprägte Klima haben sehr dazu beigetragen. Ganz besonderer Dank gilt meinem langjährigen Kollegen Oliver Hofmann, dessen einzigartig motivierende, positive Persönlichkeit ich sehr schätzen gelernt habe und der mich in zahlreichen Situationen in besonderer Weise unterstützt hat. Schließlich möchte ich meiner gesamten Familie und ganz besonders meinen Eltern für die stets umfassende und bedingungslose Unterstützung während meines bisheri- gen Werdegangs danken, der ohne diese Unterstützung nicht möglich gewesen wäre. München, im März 2019 Michael Leistner Contents 1 Introduction 1 1.1 Problem Statement . .2 1.2 Objective and Outline . .5 1.3 Scientific Contributions . .7 1.4 Linear Static Elasticity . .8 2 Finite Element Tearing and Interconnecting 11 2.1 Non-overlapping Domain Decomposition . 13 2.1.1 Local Problems . 14 2.1.2 Condensation on the Interface . 19 2.1.3 Primal Interface Problem . 22 2.1.4 Dual Interface Problem . 23 2.1.5 Redundant Lagrange Multipliers . 28 2.2 Iterative Solution . 30 2.2.1 Conjugate Directions . 31 2.2.2 Conjugate Gradients . 33 2.2.3 Projected Preconditioned Conjugate Gradient . 34 2.3 Preconditioning . 40 2.3.1 Basic Preconditioners . 40 2.3.2 Scaling . 41 2.4 Deflation by Auxiliary Coarse Spaces . 43 2.5 Convergence and spectral properties. 46 2.5.1 General Spectral Properties of the Conjugate Gradient Algorithm 46 2.5.2 Spectral properties of the FETI operator. 48 2.5.3 Desireable Coarse Spaces . 51 2.6 Generalized Eigenvalues in the Overlaps . 51 3 Application to Dynamic Elasticity 53 3.1 Linear Dynamic Elasticity . 54 3.2 Time Integration of Constrained Dynamical Problems . 54 3.2.1 Overview and Classification . 55 3.2.2 Requirements . 56 3.2.3 Generalized-α ............................... 58 3.2.4 Constrained dynamics . 62 3.3 Construction of the Interface Problem and Iterative Solution . 63 3.3.1 Preconditioning and Scaling . 63 3.3.2 Initial Acceleration . 64 vii viii Contents 3.3.3 Spectral Properties . 65 3.3.4 Iterative Solution . 66 3.4 Fundamental Concepts for Improving Convergence . 67 3.4.1 Preconditioner Based Methods . 69 3.4.2 Deflation by a Priori Spaces . 69 3.4.3 Deflation by Recycled Spaces . 71 4 Deflation Strategies on Different Scales of Time 73 4.1 Spectral Properties of the Interface Problem . 75 4.1.1 Relation to the Equivalent Static Problem . 75 4.1.2 Conditioning and Convergence on Relevant Time Scales . 78 4.2 A Priori Coarse Spaces . 80 4.2.1 Rigid Body Modes . 81 4.2.2 Generalized Eigenvalues in the Overlaps . 81 4.2.3 Local Mode Shapes and Subspace Angles . 84 4.2.4 Spectral Efficiency . 92 4.2.5 Computational Efficiency . 95 4.2.6 Conclusions . 97 4.3 Recycling Strategies . 98 4.3.1 Plain Reuse . 99 4.3.2 Global Ritz Approximation . 100 4.3.3 Accuracy of Ritz Approximation . 103 4.3.4 Appropriate Coarse Space Sizes . 107 4.4 Conclusion . 110 5 Multipreconditioning 113 5.1 Adaptive Multipreconditioning . 115 5.2 Degeneration of the Search Space . 117 5.2.1 Minimization by a Rank Revealing Matrix Factorization . 117 5.2.2 Zero Contributions due to Inactive Parts . 118 5.2.3 Activation Strategies . 121 5.3 Recycling Strategies . 125 5.3.1 Plain Reuse . 126 5.3.2 Local Ritz Approximation . 127 5.3.3 Computational and Spectral Efficiency . 130 5.3.4 Effect of Increasing the Ritz Space Size . 136 5.3.5 Direct Employment of Ritz Spaces as Coarse Space . 137 5.4 Conclusion . 139 6 Closure 143 6.1 Conclusion . 143 6.2 Outlook . 145 A Example Structures and Further Results 149 Bibliography 157 Nomenclature Acronyms FEM Finite element method dof Degree of freedom BDD Balancing domain decomposition FETI Finite element tearing and interconnecting AMP-FETI Adaptive multipreconditioned FETI FETI-DP FETI dual-primal GenEO Generalized eigenvalues in the overlaps TRKS Total reuse of Krylov subspaces SRKS Selective reuse of Krylov subspaces CG Conjugate gradient PPCG Projected preconditioned conjugate gradient GMRES Generalized minimal residual LMS Linear multistep GSSSS Generalized single-step single-solve RK Runge-Kutta Gmsh A finite element mesh generator software METIS A mesh partitioning algorithm ix x Nomenclature Continuum Mechanics F Deformation gradient S Second Piola-Kirchhoff stresses E Green-Lagrange strain W Strain energy N Normal vector of the surface u Exact continuous displacements u¨ Exact continuous accelerations uh Approximated continuous displacements ¨ uh Approximated continuous accelerations v Continuous virtual displacements ρ0 Density in initial configuration ρ Density ν Poisson ratio E Young’s modulus b Body forces t Traction forces Ω Computational domain in inital configuration Γ Boundary of the computational domain ΓN Neumann
Recommended publications
  • 38. a Preconditioner for the Schur Complement Domain Decomposition Method J.-M
    Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c 2003 DDM.org 38. A preconditioner for the Schur complement domain decomposition method J.-M. Cros 1 1. Introduction. This paper presents a preconditioner for the Schur complement domain decomposition method inspired by the dual-primal FETI method [4]. Indeed the proposed method enforces the continuity of the preconditioned gradient at cross-points di- rectly by a reformulation of the classical Neumann-Neumann preconditioner. In the case of elasticity problems discretized by finite elements, the degrees of freedom corresponding to the cross-points coming from domain decomposition, in the stiffness matrix, are separated from the rest. Elimination of the remaining degrees of freedom results in a Schur complement ma- trix for the cross-points. This assembled matrix represents the coarse problem. The method is not mathematically optimal as shown by numerical results but its use is rather economical. The paper is organized as follows: in sections 2 and 3, the Schur complement method and the formulation of the Neumann-Neumann preconditioner are briefly recalled to introduce the notations. Section 4 is devoted to the reformulation of the Neumann-Neumann precon- ditioner. In section 5, the proposed method is compared with other domain decomposition methods such as generalized Neumann-Neumann algorithm [7][9], one-level FETI method [5] and dual-primal FETI method. Performances on a parallel machine are also given for structural analysis problems. 2. The Schur complement domain decomposition method. Let Ω denote the computational domain of an elasticity problem.
    [Show full text]
  • Domain Decomposition Solvers (FETI) Divide Et Impera
    Domain Decomposition solvers (FETI) a random walk in history and some current trends Daniel J. Rixen Technische Universität München Institute of Applied Mechanics www.amm.mw.tum.de [email protected] 8-10 October 2014 39th Woudschoten Conference, organised by the Werkgemeenschap Scientific Computing (WSC) 1 Divide et impera Center for Aerospace Structures CU, Boulder wikipedia When splitting the problem in parts and asking different cpu‘s (or threads) to take care of subproblems, will the problem be solved faster ? FETI, Primal Schur (Balancing) method around 1990 …….. basic methods, mesh decomposer technology 1990-2001 .…….. improvements •! preconditioners, coarse grids •! application to Helmholtz, dynamics, non-linear ... Here the concepts are outlined using some mechanical interpretation. For mathematical details, see lecture of Axel Klawonn. !"!! !"#$%&'()$&'(*+*',-%-.&$(*&$-%'#$%-'(*-/$0%1*()%-).1*,2%()'(%()$%,.,3$4*-($,+$% .5%'%-.6"(*.,%*&76*$-%'%6.2*+'6%+.,(8'0*+(*.,9%1)*6$%$,2*,$$#-%&*2)(%+.,-*0$#%'% ,"&$#*+'6%#$-"6(%'-%()$%.,6:%#$'-.,';6$%2.'6<%% ="+)%.,$%-*0$0%>*$1-%-$$&%(.%#$?$+(%)"&',%6*&*('(*.,-%#'()$#%()',%.;@$+(*>$%>'6"$-<%% A,%*(-$65%&'()$&'(*+-%*-%',%*,0*>*-*;6$%.#2',*-&%",*(*,2%()$.#$(*+'6%+.,($&76'(*.,% ',0%'+(*>$%'776*+'(*.,<%%%%% %%%%%%% R. Courant %B % in Variational! Methods for the solution of problems of equilibrium and vibrations Bulletin of American Mathematical Society, 49, pp.1-23, 1943 Here the concepts are outlined using some mechanical interpretation. For mathematical details, see lecture of Axel Klawonn. Content
    [Show full text]
  • Numerical Solution of Saddle Point Problems
    Acta Numerica (2005), pp. 1–137 c Cambridge University Press, 2005 DOI: 10.1017/S0962492904000212 Printed in the United Kingdom Numerical solution of saddle point problems Michele Benzi∗ Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322, USA E-mail: [email protected] Gene H. Golub† Scientific Computing and Computational Mathematics Program, Stanford University, Stanford, California 94305-9025, USA E-mail: [email protected] J¨org Liesen‡ Institut f¨ur Mathematik, Technische Universit¨at Berlin, D-10623 Berlin, Germany E-mail: [email protected] We dedicate this paper to Gil Strang on the occasion of his 70th birthday Large linear systems of saddle point type arise in a wide variety of applica- tions throughout computational science and engineering. Due to their indef- initeness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of system. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems. ∗ Supported in part by the National Science Foundation grant DMS-0207599. † Supported in part by the Department of Energy of the United States Government. ‡ Supported in part by the Emmy Noether Programm of the Deutsche Forschungs- gemeinschaft. 2 M. Benzi, G. H. Golub and J. Liesen CONTENTS 1 Introduction 2 2 Applications leading to saddle point problems 5 3 Properties of saddle point matrices 14 4 Overview of solution algorithms 29 5 Schur complement reduction 30 6 Null space methods 32 7 Coupled direct solvers 40 8 Stationary iterations 43 9 Krylov subspace methods 49 10 Preconditioners 59 11 Multilevel methods 96 12 Available software 105 13 Concluding remarks 107 References 109 1.
    [Show full text]
  • Facts from Linear Algebra
    Appendix A Facts from Linear Algebra Abstract We introduce the notation of vector and matrices (cf. Section A.1), and recall the solvability of linear systems (cf. Section A.2). Section A.3 introduces the spectrum σ(A), matrix polynomials P (A) and their spectra, the spectral radius ρ(A), and its properties. Block structures are introduced in Section A.4. Subjects of Section A.5 are orthogonal and orthonormal vectors, orthogonalisation, the QR method, and orthogonal projections. Section A.6 is devoted to the Schur normal form (§A.6.1) and the Jordan normal form (§A.6.2). Diagonalisability is discussed in §A.6.3. Finally, in §A.6.4, the singular value decomposition is explained. A.1 Notation for Vectors and Matrices We recall that the field K denotes either R or C. Given a finite index set I, the linear I space of all vectors x =(xi)i∈I with xi ∈ K is denoted by K . The corresponding square matrices form the space KI×I . KI×J with another index set J describes rectangular matrices mapping KJ into KI . The linear subspace of a vector space V spanned by the vectors {xα ∈V : α ∈ I} is denoted and defined by α α span{x : α ∈ I} := aαx : aα ∈ K . α∈I I×I T Let A =(aαβ)α,β∈I ∈ K . Then A =(aβα)α,β∈I denotes the transposed H matrix, while A =(aβα)α,β∈I is the adjoint (or Hermitian transposed) matrix. T H Note that A = A holds if K = R . Since (x1,x2,...) indicates a row vector, T (x1,x2,...) is used for a column vector.
    [Show full text]
  • A Local Hybrid Surrogate‐Based Finite Element Tearing Interconnecting
    Received: 6 January 2020 Revised: 5 October 2020 Accepted: 17 October 2020 DOI: 10.1002/nme.6571 RESEARCH ARTICLE A local hybrid surrogate-based finite element tearing interconnecting dual-primal method for nonsmooth random partial differential equations Martin Eigel Robert Gruhlke Research Group “Nonlinear Optimization and Inverse Problems”, Weierstrass Abstract Institute, Berlin, Germany A domain decomposition approach for high-dimensional random partial differ- ential equations exploiting the localization of random parameters is presented. Correspondence Robert Gruhlke, Weierstrass Institute, To obtain high efficiency, surrogate models in multielement representations Mohrenstrasse 39 D-10117, Berlin, in the parameter space are constructed locally when possible. The method Germany. makes use of a stochastic Galerkin finite element tearing interconnecting Email: [email protected] dual-primal formulation of the underlying problem with localized representa- Funding information tions of involved input random fields. Each local parameter space associated to Deutsche Forschungsgemeinschaft, Grant/Award Number: DFGHO1947/10-1 a subdomain is explored by a subdivision into regions where either the para- metric surrogate accuracy can be trusted or where instead one has to resort to Monte Carlo. A heuristic adaptive algorithm carries out a problem-dependent hp-refinement in a stochastic multielement sense, anisotropically enlarging the trusted surrogate region as far as possible. This results in an efficient global parameter to solution sampling scheme making use of local parametric smooth- ness exploration for the surrogate construction. Adequately structured problems for this scheme occur naturally when uncertainties are defined on subdomains, for example, in a multiphysics setting, or when the Karhunen–Loève expan- sion of a random field can be localized.
    [Show full text]
  • Energy-Preserving Integrators for Fluid Animation
    Energy-Preserving Integrators for Fluid Animation Patrick Mullen Keenan Crane Dmitry Pavlov Yiying Tong Mathieu Desbrun Caltech Caltech Caltech MSU Caltech Figure 1: By developing an integration scheme that exhibits zero numerical dissipation, we can achieve more predictable control over viscosity in fluid animation. Dissipation can then be modeled explicitly to taste, allowing for very low (left) or high (right) viscosities. A significant numerical difficulty in all CFD techniques is avoiding numerical viscosity, which gives the illusion that a simulated fluid is Abstract more viscous than intended. It is widely recognized that numerical Numerical viscosity has long been a problem in fluid animation. viscosity has substantial visual consequences, hence several mecha- Existing methods suffer from intrinsic artificial dissipation and of- nisms (such as vorticity confinement and Lagrangian particles) have ten apply complicated computational mechanisms to combat such been devised to help cope with the loss of fine scale details. Com- effects. Consequently, dissipative behavior cannot be controlled mon to all such methods, however, is the fact that the amount of or modeled explicitly in a manner independent of time step size, energy lost is not purely a function of simulation duration, but also complicating the use of coarse previews and adaptive-time step- depends on the grid size and number of time steps performed over ping methods. This paper proposes simple, unconditionally stable, the course of the simulation. As a result, changing the time step size fully Eulerian integration schemes with no numerical viscosity that and/or spatial sampling of a simulation can significantly change its are capable of maintaining the liveliness of fluid motion without qualitative appearance.
    [Show full text]
  • Non-Overlapping Domain Decomposition Methods in Structural Mechanics 3 Been Extensively Studied
    (2007) Non-overlapping domain decomposition methods in structural mechanics Pierre Gosselet LMT Cachan ENS Cachan / Universit´ePierre et Marie Curie / CNRS UMR 8535 61 Av. Pr´esident Wilson 94235 Cachan FRANCE Email: [email protected] Christian Rey LMT Cachan ENS Cachan / Universit´ePierre et Marie Curie / CNRS UMR 8535 61 Av. Pr´esident Wilson 94235 Cachan FRANCE Email: [email protected] Summary The modern design of industrial structures leads to very complex simulations characterized by nonlinearities, high heterogeneities, tortuous geometries... Whatever the modelization may be, such an analysis leads to the solution to a family of large ill-conditioned linear systems. In this paper we study strategies to efficiently solve to linear system based on non-overlapping domain decomposition methods. We present a review of most employed approaches and their strong connections. We outline their mechanical interpretations as well as the practical issues when willing to implement and use them. Numerical properties are illustrated by various assessments from academic to industrial problems. An hybrid approach, mainly designed for multifield problems, is also introduced as it provides a general framework of such approaches. 1 INTRODUCTION Hermann Schwarz (1843-1921) is often referred to as the father of domain decomposition methods. In a 1869-paper he proposed an alternating method to solve a PDE equation set on a complex domain composed the overlapping union of a disk and a square (fig. 1), giving the mathematical basis of what is nowadays one of the most natural ways to benefit the modern hardware architecture of scientific computers. In fact the growing importance of domain decomposition methods in scientific compu- tation is deeply linked to the growth of parallel processing capabilities (in terms of number of processors, data exchange bandwidth between processors, parallel library efficiency, and arXiv:1208.4209v1 [math.NA] 21 Aug 2012 of course performance of each processor).
    [Show full text]
  • Schur Complement Domain Decomposition in Conjunction with Algebraic Multigrid Methods Based on Generic Approximate Inverses
    Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 487–493 Schur Complement Domain Decomposition in conjunction with Algebraic Multigrid methods based on Generic Approximate Inverses P.I. Matskanidis G.A. Gravvanis Department of Electrical and Computer Engineering, Department of Electrical and Computer Engineering, School of Engineering, Democritus University of School of Engineering, Democritus University of Thrace, University Campus, Kimmeria, Thrace, University Campus, Kimmeria, GR 67100 Xanthi, Greece GR 67100 Xanthi, Greece Email: [email protected] Email: [email protected] In non-overlapping DD methods, also referred to as itera- Abstract—For decades, Domain Decomposition (DD) tech- tive substructuring methods, the subdomains intersect only niques have been used for the numerical solution of boundary on their interface. Non-overlapping methods can further- value problems. In recent years, the Algebraic Multigrid more be distinguished in primal and dual methods. Primal (AMG) method has also seen significant rise in popularity as well as rapid evolution. In this article, a Domain Decomposition methods, such as BDDC [7], enforce the continuity of the method is presented, based on the Schur complement system solution across the subdomain interface by representing the and an AMG solver, using generic approximate banded in- value of the solution on all neighbouring subdomains by the verses based on incomplete LU factorization. Finally, the appli- same unknown. In dual methods, such as FETI [10], the cability and effectiveness of the proposed method on character- continuity is further enforced by the use of Lagrange multi- istic two dimensional boundary value problems is demonstrated pliers. Hybrid methods, such as FETI-DP [8],[9],[16], have and numerical results on the convergence behavior are given.
    [Show full text]
  • Thesis Manuscript
    N o D’ORDRE 2623 THÈSE présenté en vue de l’obtention du titre de DOCTEUR DE L’INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE Spécialité: Mathématiques, Informatique et Télécommunications par Azzam HAIDAR CERFACS Sur l’extensibilité parallèle de solveurs linéaires hybrides pour des problèmes tridimensionels de grandes tailles On the parallel scalability of hybrid linear solvers for large 3D problems Thèse présentée le 23 Juin 2008 à Toulouse devant le jury composé de: Fréderic Nataf Directeur de Recherche CNRS, Lab Jacques-Louis Lions France Rapporteur Ray Tuminaro Chercheur senior, Sandia National Laboratories USA Rapporteur Iain Duff Directeur de Recherche RAL et CERFACS Royaume-Uni Examinateur Luc Giraud Professeur, INPT-ENSEEIHT France Directeur Stéphane Lanteri Directeur de Recherche INRIA France Examinateur Gérard Meurant Directeur de Recherche CEA France Examinateur Jean Roman Professeur, ENSEIRB-INRIA France Examinateur Thèse préparée au Cerfacs, Report Ref:TH/PA/08/93 Résumé La résolution de très grands systèmes linéaires creux est une composante de base algorithmique fondamentale dans de nombreuses applications scientifiques en calcul intensif. La résolution per- formante de ces systèmes passe par la conception, le développement et l’utilisation d’algorithmes parallèles performants. Dans nos travaux, nous nous intéressons au développement et l’évaluation d’une méthode hybride (directe/itérative) basée sur des techniques de décomposition de domaine sans recouvrement. La stratégie de développement est axée sur l’utilisation des machines mas- sivement parallèles à plusieurs milliers de processeurs. L’étude systématique de l’extensibilité et l’efficacité parallèle de différents préconditionneurs algébriques est réalisée aussi bien d’un point de vue informatique que numérique.
    [Show full text]
  • [55-64]-Wook Ryol Hwang.Fm
    Korea-Australia Rheology Journal, Vol.25, No.1, pp.55-64 (2013) www.springer.com/13367 DOI: 10.1007/s13367-013-0006-9 An efficient iterative scheme for the highly constrained augmented Stokes problem for the numerical simulation of flows in porous media Wook Ryol Hwang1,*, Oliver G. Harlen2,§ and Mark A. Walkley3 1School of Mechanical Engineering, Research Center for Aircraft Parts Technology (ReCAPT), Gyeongsang National University, Gajwa-dong 900, Jinju, 660-701, Korea 2Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom 3School of Computing, University of Leeds, Leeds, LS2 9JT, United Kingdom (Received November 24, 2012; final revision received January 21, 2013; accepted January 28, 2013) In this work, we present a new efficient iterative solution technique for large sparse matrix systems that are necessary in the mixed finite-element formulation for flow simulations of porous media with complex 3D architectures in a representative volume element. Augmented Stokes flow problems with the periodic boundary condition and the immersed solid body as constraints have been investigated, which form a class of highly constrained saddle point problems mathematically. By solving the generalized eigenvalue problem based on block reduction of the discrete systems, we investigate structures of the solution space and its sub- spaces and propose the exact form of the block preconditioner. The exact Schur complement using the fun- damental solution has been proposed to implement the block-preconditioning problem with constraints. Additionally, the algebraic multigrid method and the diagonally scaled conjugate gradient method are applied to the preconditioning sub-block system and a Krylov subspace method (MINRES) is employed as an outer solver.
    [Show full text]
  • Non-Overlapping Domain Decomposition Methods in Structural Mechanics Pierre Gosselet, Christian Rey
    Non-overlapping domain decomposition methods in structural mechanics Pierre Gosselet, Christian Rey To cite this version: Pierre Gosselet, Christian Rey. Non-overlapping domain decomposition methods in structural mechan- ics. Archives of Computational Methods in Engineering, Springer Verlag, 2007, 13 (4), pp.515-572. 10.1007/BF02905857. hal-00277626v1 HAL Id: hal-00277626 https://hal.archives-ouvertes.fr/hal-00277626v1 Submitted on 6 May 2008 (v1), last revised 20 Aug 2012 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. (2007) Non-overlapping domain decomposition methods in structural mechanics Pierre Gosselet LMT Cachan ENS Cachan / Universit´ePierre et Marie Curie / CNRS UMR 8535 61 Av. Pr´esident Wilson 94235 Cachan FRANCE Email: [email protected] Christian Rey LMT Cachan ENS Cachan / Universit´ePierre et Marie Curie / CNRS UMR 8535 61 Av. Pr´esident Wilson 94235 Cachan FRANCE Email: [email protected] Summary The modern design of industrial structures leads to very complex simulations characterized by nonlinearities, high heterogeneities, tortuous geometries... Whatever the modelization may be, such an analysis leads to the solution to a family of large ill-conditioned linear systems. In this paper we study strategies to efficiently solve to linear system based on non-overlapping domain decomposition methods.
    [Show full text]
  • Arxiv:1703.08466V2 [Math.NA] 19 Sep 2017 References 15
    NONLINEAR PARALLEL-IN-TIME SCHUR COMPLEMENT SOLVERS FOR ORDINARY DIFFERENTIAL EQUATIONS SANTIAGO BADIA† AND MARC OLM‡ Abstract. In this work, we propose a parallel-in-time solver for linear and nonlinear ordinary dif- ferential equations. The approach is based on an efficient multilevel solver of the Schur complement related to a multilevel time partition. For linear problems, the scheme leads to a fast direct method. Next, two different strategies for solving nonlinear ODEs are proposed. First, we consider a New- ton method over the global nonlinear ODE, using the multilevel Schur complement solver at every nonlinear iteration. Second, we state the global nonlinear problem in terms of the nonlinear Schur complement (at an arbitrary level), and perform nonlinear iterations over it. Numerical experiments show that the proposed schemes are weakly scalable, i.e., we can efficiently exploit increasing com- putational resources to solve for more time steps the same problem. Keywords: Time parallelism, ordinary differential equations, domain decomposition, nonlinear solver, scalability Contents 1. Introduction 2 2. Statement of the problem 3 3. An ODE direct solver 3 3.1. Application to different time integrators 5 3.2. Parareal interpretation 6 3.3. Parallel efficiency 7 4. Iterative solvers for nonlinear ODEs 8 4.1. Newton-Schur complement methods 8 4.2. Nonlinear Schur complement-Newton methods 9 5. Numerical experiments 11 5.1. Experimental set-up 11 5.2. Two-level solvers 12 5.3. Multilevel solver 13 6. Conclusions 15 arXiv:1703.08466v2 [math.NA] 19 Sep 2017 References 15 Date: September 20, 2017. † Universitat Politècnica de Catalunya, Jordi Girona1-3, Edifici C1, E-08034 Barcelona & Centre Internacional de Mètodes Numèrics en Enginyeria, Parc Mediterrani de la Tecnologia, Esteve Terrades 5, E-08860 Castelldefels, Spain E-mail: [email protected].
    [Show full text]