Non-Overlapping Domain Decomposition Methods in Structural Mechanics 3 Been Extensively Studied
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meshfree Methods Chapter 1 — Part 1: Introduction and a Historical Overview
MATH 590: Meshfree Methods Chapter 1 — Part 1: Introduction and a Historical Overview Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2014 [email protected] MATH 590 – Chapter 1 1 Outline 1 Introduction 2 Some Historical Remarks [email protected] MATH 590 – Chapter 1 2 Introduction General Meshfree Methods Meshfree Methods have gained much attention in recent years interdisciplinary field many traditional numerical methods (finite differences, finite elements or finite volumes) have trouble with high-dimensional problems meshfree methods can often handle changes in the geometry of the domain of interest (e.g., free surfaces, moving particles and large deformations) better independence from a mesh is a great advantage since mesh generation is one of the most time consuming parts of any mesh-based numerical simulation new generation of numerical tools [email protected] MATH 590 – Chapter 1 4 Introduction General Meshfree Methods Applications Original applications were in geodesy, geophysics, mapping, or meteorology Later, many other application areas numerical solution of PDEs in many engineering applications, computer graphics, optics, artificial intelligence, machine learning or statistical learning (neural networks or SVMs), signal and image processing, sampling theory, statistics (kriging), response surface or surrogate modeling, finance, optimization. [email protected] MATH 590 – Chapter 1 5 Introduction General Meshfree Methods Complicated Domains Recent paradigm shift in numerical simulation of fluid -
A Meshless Approach to Solving Partial Differential Equations Using the Finite Cloud Method for the Purposes of Computer Aided Design
A Meshless Approach to Solving Partial Differential Equations Using the Finite Cloud Method for the Purposes of Computer Aided Design by Daniel Rutherford Burke, B.Eng A Thesis submitted to the Faculty of Graduate and Post Doctoral Affairs in partial fulfilment of the requirements for the degree of Doctor of Philosophy Ottawa Carleton Institute for Electrical and Computer Engineering Department of Electronics Carleton University Ottawa, Ontario, Canada January 2013 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-94524-7 Our file Notre reference ISBN: 978-0-494-94524-7 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
A Plane Wave Method Based on Approximate Wave Directions for Two
A PLANE WAVE METHOD BASED ON APPROXIMATE WAVE DIRECTIONS FOR TWO DIMENSIONAL HELMHOLTZ EQUATIONS WITH LARGE WAVE NUMBERS QIYA HU AND ZEZHONG WANG Abstract. In this paper we present and analyse a high accuracy method for computing wave directions defined in the geometrical optics ansatz of Helmholtz equation with variable wave number. Then we define an “adaptive” plane wave space with small dimensions, in which each plane wave basis function is determined by such an approximate wave direction. We establish a best L2 approximation of the plane wave space for the analytic solutions of homogeneous Helmholtz equa- tions with large wave numbers and report some numerical results to illustrate the efficiency of the proposed method. Key words. Helmholtz equations, variable wave numbers, geometrical optics ansatz, approximate wave direction, plane wave space, best approximation AMS subject classifications. 65N30, 65N55. 1. Introduction In this paper we consider the following Helmholtz equation with impedance boundary condition u = (∆ + κ2(r))u(ω, r)= f(ω, r), r = (x, y) Ω, L − ∈ (1.1) ((∂n + iκ(r))u(ω, r)= g(ω, r), r ∂Ω, ∈ where Ω R2 is a bounded Lipchitz domain, n is the out normal vector on ∂Ω, ⊂ f L2(Ω) is the source term and κ(r) = ω , g L2(∂Ω). In applications, ω ∈ c(r) ∈ denotes the frequency and may be large, c(r) > 0 denotes the light speed, which is arXiv:2107.09797v1 [math.NA] 20 Jul 2021 usually a variable positive function. The number κ(r) is called the wave number. Helmholtz equation is the basic model in sound propagation. -
38. a Preconditioner for the Schur Complement Domain Decomposition Method J.-M
Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c 2003 DDM.org 38. A preconditioner for the Schur complement domain decomposition method J.-M. Cros 1 1. Introduction. This paper presents a preconditioner for the Schur complement domain decomposition method inspired by the dual-primal FETI method [4]. Indeed the proposed method enforces the continuity of the preconditioned gradient at cross-points di- rectly by a reformulation of the classical Neumann-Neumann preconditioner. In the case of elasticity problems discretized by finite elements, the degrees of freedom corresponding to the cross-points coming from domain decomposition, in the stiffness matrix, are separated from the rest. Elimination of the remaining degrees of freedom results in a Schur complement ma- trix for the cross-points. This assembled matrix represents the coarse problem. The method is not mathematically optimal as shown by numerical results but its use is rather economical. The paper is organized as follows: in sections 2 and 3, the Schur complement method and the formulation of the Neumann-Neumann preconditioner are briefly recalled to introduce the notations. Section 4 is devoted to the reformulation of the Neumann-Neumann precon- ditioner. In section 5, the proposed method is compared with other domain decomposition methods such as generalized Neumann-Neumann algorithm [7][9], one-level FETI method [5] and dual-primal FETI method. Performances on a parallel machine are also given for structural analysis problems. 2. The Schur complement domain decomposition method. Let Ω denote the computational domain of an elasticity problem. -
Newton-Krylov-BDDC Solvers for Nonlinear Cardiac Mechanics
Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics Item Type Article Authors Pavarino, L.F.; Scacchi, S.; Zampini, Stefano Citation Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics 2015 Computer Methods in Applied Mechanics and Engineering Eprint version Post-print DOI 10.1016/j.cma.2015.07.009 Publisher Elsevier BV Journal Computer Methods in Applied Mechanics and Engineering Rights NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering, 18 July 2015. DOI:10.1016/ j.cma.2015.07.009 Download date 07/10/2021 05:34:35 Link to Item http://hdl.handle.net/10754/561071 Accepted Manuscript Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics L.F. Pavarino, S. Scacchi, S. Zampini PII: S0045-7825(15)00221-2 DOI: http://dx.doi.org/10.1016/j.cma.2015.07.009 Reference: CMA 10661 To appear in: Comput. Methods Appl. Mech. Engrg. Received date: 13 December 2014 Revised date: 3 June 2015 Accepted date: 8 July 2015 Please cite this article as: L.F. Pavarino, S. Scacchi, S. Zampini, Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics, Comput. Methods Appl. Mech. Engrg. (2015), http://dx.doi.org/10.1016/j.cma.2015.07.009 This is a PDF file of an unedited manuscript that has been accepted for publication. -
Family Name Given Name Presentation Title Session Code
Family Name Given Name Presentation Title Session Code Abdoulaev Gassan Solving Optical Tomography Problem Using PDE-Constrained Optimization Method Poster P Acebron Juan Domain Decomposition Solution of Elliptic Boundary Value Problems via Monte Carlo and Quasi-Monte Carlo Methods Formulations2 C10 Adams Mark Ultrascalable Algebraic Multigrid Methods with Applications to Whole Bone Micro-Mechanics Problems Multigrid C7 Aitbayev Rakhim Convergence Analysis and Multilevel Preconditioners for a Quadrature Galerkin Approximation of a Biharmonic Problem Fourth-order & ElasticityC8 Anthonissen Martijn Convergence Analysis of the Local Defect Correction Method for 2D Convection-diffusion Equations Flows C3 Bacuta Constantin Partition of Unity Method on Nonmatching Grids for the Stokes Equations Applications1 C9 Bal Guillaume Some Convergence Results for the Parareal Algorithm Space-Time ParallelM5 Bank Randolph A Domain Decomposition Solver for a Parallel Adaptive Meshing Paradigm Plenary I6 Barbateu Mikael Construction of the Balancing Domain Decomposition Preconditioner for Nonlinear Elastodynamic Problems Balancing & FETIC4 Bavestrello Henri On Two Extensions of the FETI-DP Method to Constrained Linear Problems FETI & Neumann-NeumannM7 Berninger Heiko On Nonlinear Domain Decomposition Methods for Jumping Nonlinearities Heterogeneities C2 Bertoluzza Silvia The Fully Discrete Fat Boundary Method: Optimal Error Estimates Formulations2 C10 Biros George A Survey of Multilevel and Domain Decomposition Preconditioners for Inverse Problems in Time-dependent -
Domain Decomposition Solvers (FETI) Divide Et Impera
Domain Decomposition solvers (FETI) a random walk in history and some current trends Daniel J. Rixen Technische Universität München Institute of Applied Mechanics www.amm.mw.tum.de [email protected] 8-10 October 2014 39th Woudschoten Conference, organised by the Werkgemeenschap Scientific Computing (WSC) 1 Divide et impera Center for Aerospace Structures CU, Boulder wikipedia When splitting the problem in parts and asking different cpu‘s (or threads) to take care of subproblems, will the problem be solved faster ? FETI, Primal Schur (Balancing) method around 1990 …….. basic methods, mesh decomposer technology 1990-2001 .…….. improvements •! preconditioners, coarse grids •! application to Helmholtz, dynamics, non-linear ... Here the concepts are outlined using some mechanical interpretation. For mathematical details, see lecture of Axel Klawonn. !"!! !"#$%&'()$&'(*+*',-%-.&$(*&$-%'#$%-'(*-/$0%1*()%-).1*,2%()'(%()$%,.,3$4*-($,+$% .5%'%-.6"(*.,%*&76*$-%'%6.2*+'6%+.,(8'0*+(*.,9%1)*6$%$,2*,$$#-%&*2)(%+.,-*0$#%'% ,"&$#*+'6%#$-"6(%'-%()$%.,6:%#$'-.,';6$%2.'6<%% ="+)%.,$%-*0$0%>*$1-%-$$&%(.%#$?$+(%)"&',%6*&*('(*.,-%#'()$#%()',%.;@$+(*>$%>'6"$-<%% A,%*(-$65%&'()$&'(*+-%*-%',%*,0*>*-*;6$%.#2',*-&%",*(*,2%()$.#$(*+'6%+.,($&76'(*.,% ',0%'+(*>$%'776*+'(*.,<%%%%% %%%%%%% R. Courant %B % in Variational! Methods for the solution of problems of equilibrium and vibrations Bulletin of American Mathematical Society, 49, pp.1-23, 1943 Here the concepts are outlined using some mechanical interpretation. For mathematical details, see lecture of Axel Klawonn. Content -
Combined FEM/Meshfree SPH Method for Impact Damage Prediction of Composite Sandwich Panels
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications ECCOMAS Thematic Conference on Meshless Methods 2005 1 Combined FEM/Meshfree SPH Method for Impact Damage Prediction of Composite Sandwich Panels L.Aktay(1), A.F.Johnson(2) and B.-H.Kroplin¨ (3) Abstract: In this work, impact simulations using both meshfree Smoothed Particle Hy- drodynamics (SPH) and combined FEM/SPH Method were carried out for a sandwich composite panel with carbon fibre fabric/epoxy face skins and polyetherimide (PEI) foam core. A numerical model was developed using the dynamic explicit finite element (FE) structure analysis program PAM-CRASH. The carbon fibre/epoxy facings were modelled with standard layered shell elements, whilst SPH particles were positioned for the PEI core. We demonstrate the efficiency and the advantages of pure meshfree SPH and com- bined FEM/SPH Method by comparing the core deformation modes and impact force pulses measured in the experiments to predict structural impact response. Keywords: Impact damage, composite material, sandwich structure concept, Finite Ele- ment Method (FEM), meshfree method, Smoothed Particle Hydrodynamics (SPH) 1 Introduction Modelling of high velocity impact (HVI) and crash scenarios involving material failure and large deformation using classical FEM is complex. Although the most popular numer- ical method FEM is still an effective tool in predicting the structural behaviour in different loading conditions, FEM suffers from large deformation leading problems causing con- siderable accuracy lost. Additionally it is very difficult to simulate the structural behaviour containing the breakage of material into large number of fragments since FEM is initially based on continuum mechanics requiring critical element connectivity. -
Numerical Solution of Saddle Point Problems
Acta Numerica (2005), pp. 1–137 c Cambridge University Press, 2005 DOI: 10.1017/S0962492904000212 Printed in the United Kingdom Numerical solution of saddle point problems Michele Benzi∗ Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322, USA E-mail: [email protected] Gene H. Golub† Scientific Computing and Computational Mathematics Program, Stanford University, Stanford, California 94305-9025, USA E-mail: [email protected] J¨org Liesen‡ Institut f¨ur Mathematik, Technische Universit¨at Berlin, D-10623 Berlin, Germany E-mail: [email protected] We dedicate this paper to Gil Strang on the occasion of his 70th birthday Large linear systems of saddle point type arise in a wide variety of applica- tions throughout computational science and engineering. Due to their indef- initeness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of system. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems. ∗ Supported in part by the National Science Foundation grant DMS-0207599. † Supported in part by the Department of Energy of the United States Government. ‡ Supported in part by the Emmy Noether Programm of the Deutsche Forschungs- gemeinschaft. 2 M. Benzi, G. H. Golub and J. Liesen CONTENTS 1 Introduction 2 2 Applications leading to saddle point problems 5 3 Properties of saddle point matrices 14 4 Overview of solution algorithms 29 5 Schur complement reduction 30 6 Null space methods 32 7 Coupled direct solvers 40 8 Stationary iterations 43 9 Krylov subspace methods 49 10 Preconditioners 59 11 Multilevel methods 96 12 Available software 105 13 Concluding remarks 107 References 109 1. -
Preconditioning the Coarse Problem of BDDC Methods—Three-Level, Algebraic Multigrid, and Vertex-Based Preconditioners
Electronic Transactions on Numerical Analysis. Volume 51, pp. 432–450, 2019. ETNA Kent State University and Copyright c 2019, Kent State University. Johann Radon Institute (RICAM) ISSN 1068–9613. DOI: 10.1553/etna_vol51s432 PRECONDITIONING THE COARSE PROBLEM OF BDDC METHODS— THREE-LEVEL, ALGEBRAIC MULTIGRID, AND VERTEX-BASED PRECONDITIONERS∗ AXEL KLAWONNyz, MARTIN LANSERyz, OLIVER RHEINBACHx, AND JANINE WEBERy Abstract. A comparison of three Balancing Domain Decomposition by Constraints (BDDC) methods with an approximate coarse space solver using the same software building blocks is attempted for the first time. The comparison is made for a BDDC method with an algebraic multigrid preconditioner for the coarse problem, a three-level BDDC method, and a BDDC method with a vertex-based coarse preconditioner. It is new that all methods are presented and discussed in a common framework. Condition number bounds are provided for all approaches. All methods are implemented in a common highly parallel scalable BDDC software package based on PETSc to allow for a simple and meaningful comparison. Numerical results showing the parallel scalability are presented for the equations of linear elasticity. For the first time, this includes parallel scalability tests for a vertex-based approximate BDDC method. Key words. approximate BDDC, three-level BDDC, multilevel BDDC, vertex-based BDDC AMS subject classifications. 68W10, 65N22, 65N55, 65F08, 65F10, 65Y05 1. Introduction. During the last decade, approximate variants of the BDDC (Balanc- ing Domain Decomposition by Constraints) and FETI-DP (Finite Element Tearing and Interconnecting-Dual-Primal) methods have become popular for the solution of various linear and nonlinear partial differential equations [1,8,9, 12, 14, 15, 17, 19, 21, 24, 25]. -
Facts from Linear Algebra
Appendix A Facts from Linear Algebra Abstract We introduce the notation of vector and matrices (cf. Section A.1), and recall the solvability of linear systems (cf. Section A.2). Section A.3 introduces the spectrum σ(A), matrix polynomials P (A) and their spectra, the spectral radius ρ(A), and its properties. Block structures are introduced in Section A.4. Subjects of Section A.5 are orthogonal and orthonormal vectors, orthogonalisation, the QR method, and orthogonal projections. Section A.6 is devoted to the Schur normal form (§A.6.1) and the Jordan normal form (§A.6.2). Diagonalisability is discussed in §A.6.3. Finally, in §A.6.4, the singular value decomposition is explained. A.1 Notation for Vectors and Matrices We recall that the field K denotes either R or C. Given a finite index set I, the linear I space of all vectors x =(xi)i∈I with xi ∈ K is denoted by K . The corresponding square matrices form the space KI×I . KI×J with another index set J describes rectangular matrices mapping KJ into KI . The linear subspace of a vector space V spanned by the vectors {xα ∈V : α ∈ I} is denoted and defined by α α span{x : α ∈ I} := aαx : aα ∈ K . α∈I I×I T Let A =(aαβ)α,β∈I ∈ K . Then A =(aβα)α,β∈I denotes the transposed H matrix, while A =(aβα)α,β∈I is the adjoint (or Hermitian transposed) matrix. T H Note that A = A holds if K = R . Since (x1,x2,...) indicates a row vector, T (x1,x2,...) is used for a column vector. -
Domain Decomposition Methods for Problems in H(Curl)
Domain Decomposition Methods for Problems in H (curl) by Juan Gabriel Calvo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics New York University September 2015 Professor Olof B. Widlund ©Juan Gabriel Calvo All rights reserved, 2015 Dedication To my family. iv Acknowledgements First, my deepest gratitude goes to my advisor Olof Widlund. I thank him profoundly for his direction, guidance, support and advice during four years. I would also like to thank the rest of my committee: Professors Berger, Good- man, O'Neil and Stadler. In addition, I also thank Dr. Clark Dohrmann of the SANDIA-Albuquerque laboratories for his help and comments throughout my re- search. Finally I thank my Alma Mater, Universidad de Costa Rica, for the support during my academic education at NYU. v Abstract Two domain decomposition methods for solving vector field problems posed in H(curl) and discretized with N´ed´elecfinite elements are considered. These finite elements are conforming in H(curl). A two-level overlapping Schwarz algorithm in two dimensions is analyzed, where the subdomains are only assumed to be uniform in the sense of Peter Jones. The coarse space is based on energy minimization and its dimension equals the number of interior subdomain edges. Local direct solvers are based on the overlapping subdomains. The bound for the condition number depends only on a few geometric parameters of the decomposition. This bound is independent of jumps in the coefficients across the interface between the subdomains for most of the different cases considered.