Newton-Krylov-BDDC Solvers for Nonlinear Cardiac Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A FETI Method with a Mesh Independent Condition Number for the Iteration Matrix Christine Bernardi, Tomas Chacon-Rebollo, Eliseo Chacòn Vera
A FETI method with a mesh independent condition number for the iteration matrix Christine Bernardi, Tomas Chacon-Rebollo, Eliseo Chacòn Vera To cite this version: Christine Bernardi, Tomas Chacon-Rebollo, Eliseo Chacòn Vera. A FETI method with a mesh in- dependent condition number for the iteration matrix. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2008, 197 (issues-13-16), pp.1410-1429. 10.1016/j.cma.2007.11.019. hal- 00170169 HAL Id: hal-00170169 https://hal.archives-ouvertes.fr/hal-00170169 Submitted on 6 Sep 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A FETI method with a mesh independent condition number for the iteration matrix C. Bernardi1, T . Chac´on Rebollo2, E. Chac´on Vera2 August 21, 2007 Abstract. We introduce a framework for FETI methods using ideas from the 1 decomposition via Lagrange multipliers of H0 (Ω) derived by Raviart-Thomas [22] and complemented with the detailed work on polygonal domains devel- oped by Grisvard [17]. We compute the action of the Lagrange multipliers 1/2 using the natural H00 scalar product, therefore no consistency error appears. As a byproduct, we obtain that the condition number for the iteration ma- trix is independent of the mesh size and there is no need for preconditioning. -
An Adaptive Hp-Refinement Strategy with Computable Guaranteed Bound
An adaptive hp-refinement strategy with computable guaranteed bound on the error reduction factor∗ Patrik Danielyz Alexandre Ernzy Iain Smearsx Martin Vohral´ıkyz April 24, 2018 Abstract We propose a new practical adaptive refinement strategy for hp-finite element approximations of elliptic problems. Following recent theoretical developments in polynomial-degree-robust a posteriori error analysis, we solve two types of discrete local problems on vertex-based patches. The first type involves the solution on each patch of a mixed finite element problem with homogeneous Neumann boundary conditions, which leads to an H(div; Ω)-conforming equilibrated flux. This, in turn, yields a guaranteed upper bound on the error and serves to mark mesh vertices for refinement via D¨orfler’s bulk-chasing criterion. The second type of local problems involves the solution, on patches associated with marked vertices only, of two separate primal finite element problems with homogeneous Dirichlet boundary conditions, which serve to decide between h-, p-, or hp-refinement. Altogether, we show that these ingredients lead to a computable guaranteed bound on the ratio of the errors between successive refinements (error reduction factor). In a series of numerical experiments featuring smooth and singular solutions, we study the performance of the proposed hp-adaptive strategy and observe exponential convergence rates. We also investigate the accuracy of our bound on the reduction factor by evaluating the ratio of the predicted reduction factor relative to the true error reduction, and we find that this ratio is in general quite close to the optimal value of one. Key words: a posteriori error estimate, adaptivity, hp-refinement, finite element method, error reduction, equilibrated flux, residual lifting 1 Introduction Adaptive discretization methods constitute an important tool in computational science and engineering. -
Combining Perturbation Theory and Transformation Electromagnetics for Finite Element Solution of Helmholtz-Type Scattering Probl
Journal of Computational Physics 274 (2014) 883–897 Contents lists available at ScienceDirect Journal of Computational Physics www.elsevier.com/locate/jcp Combining perturbation theory and transformation electromagnetics for finite element solution of Helmholtz-type scattering problems ∗ Mustafa Kuzuoglu a, Ozlem Ozgun b, a Dept. of Electrical and Electronics Engineering, Middle East Technical University, 06531 Ankara, Turkey b Dept. of Electrical and Electronics Engineering, TED University, 06420 Ankara, Turkey a r t i c l e i n f o a b s t r a c t Article history: A numerical method is proposed for efficient solution of scattering from objects with Received 31 August 2013 weakly perturbed surfaces by combining the perturbation theory, transformation electro- Received in revised form 13 June 2014 magnetics and the finite element method. A transformation medium layer is designed over Accepted 15 June 2014 the smooth surface, and the material parameters of the medium are determined by means Available online 5 July 2014 of a coordinate transformation that maps the smooth surface to the perturbed surface. The Keywords: perturbed fields within the domain are computed by employing the material parameters Perturbation theory and the fields of the smooth surface as source terms in the Helmholtz equation. The main Transformation electromagnetics advantage of the proposed approach is that if repeated solutions are needed (such as in Transformation medium Monte Carlo technique or in optimization problems requiring multiple solutions for a set of Metamaterials perturbed surfaces), computational resources considerably decrease because a single mesh Coordinate transformation is used and the global matrix is formed only once. -
Robust Finite Element Solution
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 212 (2008) 374–389 www.elsevier.com/locate/cam An elliptic singularly perturbed problem with two parameters II: Robust finite element solutionଁ Lj. Teofanova,∗, H.-G. Roosb aDepartment for Fundamental Disciplines, Faculty of Technical Sciences, University of Novi Sad, Trg D.Obradovi´ca 6, 21000 Novi Sad, Serbia bInstitute of Numerical Mathematics, Technical University of Dresden, Dresden D-01062, Germany Received 8 November 2005; received in revised form 8 December 2006 Abstract In this paper we consider a singularly perturbed elliptic model problem with two small parameters posed on the unit square. The problem is solved numerically by the finite element method using piecewise linear or bilinear elements on a layer-adapted Shishkin mesh. We prove that method with bilinear elements is uniformly convergent in an energy norm. Numerical results confirm our theoretical analysis. © 2007 Elsevier B.V. All rights reserved. MSC: 35J25; 65N30; 65N15; 76R99 Keywords: Singular perturbation; Convection–diffusion problems; Finite element method; Two small parameters; Shishkin mesh 1. Introduction In this paper, we consider a finite element method for the following singularly perturbed elliptic two-parameter problem posed on the unit square = (0, 1) × (0, 1) Lu := −1u + 2b(x)ux + c(x)u = f(x,y) in , u = 0onj, (1) b(x) > 0, c(x) > 0 for x ∈[0, 1], (2) where 0 < 1, 2>1 and and are constants. We assume that b, c and f are sufficiently smooth functions and that f satisfies the compatibility conditions f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0. -
Preconditioning the Coarse Problem of BDDC Methods—Three-Level, Algebraic Multigrid, and Vertex-Based Preconditioners
Electronic Transactions on Numerical Analysis. Volume 51, pp. 432–450, 2019. ETNA Kent State University and Copyright c 2019, Kent State University. Johann Radon Institute (RICAM) ISSN 1068–9613. DOI: 10.1553/etna_vol51s432 PRECONDITIONING THE COARSE PROBLEM OF BDDC METHODS— THREE-LEVEL, ALGEBRAIC MULTIGRID, AND VERTEX-BASED PRECONDITIONERS∗ AXEL KLAWONNyz, MARTIN LANSERyz, OLIVER RHEINBACHx, AND JANINE WEBERy Abstract. A comparison of three Balancing Domain Decomposition by Constraints (BDDC) methods with an approximate coarse space solver using the same software building blocks is attempted for the first time. The comparison is made for a BDDC method with an algebraic multigrid preconditioner for the coarse problem, a three-level BDDC method, and a BDDC method with a vertex-based coarse preconditioner. It is new that all methods are presented and discussed in a common framework. Condition number bounds are provided for all approaches. All methods are implemented in a common highly parallel scalable BDDC software package based on PETSc to allow for a simple and meaningful comparison. Numerical results showing the parallel scalability are presented for the equations of linear elasticity. For the first time, this includes parallel scalability tests for a vertex-based approximate BDDC method. Key words. approximate BDDC, three-level BDDC, multilevel BDDC, vertex-based BDDC AMS subject classifications. 68W10, 65N22, 65N55, 65F08, 65F10, 65Y05 1. Introduction. During the last decade, approximate variants of the BDDC (Balanc- ing Domain Decomposition by Constraints) and FETI-DP (Finite Element Tearing and Interconnecting-Dual-Primal) methods have become popular for the solution of various linear and nonlinear partial differential equations [1,8,9, 12, 14, 15, 17, 19, 21, 24, 25]. -
FETI-DP Domain Decomposition Method
ECOLE´ POLYTECHNIQUE FED´ ERALE´ DE LAUSANNE Master Project FETI-DP Domain Decomposition Method Supervisors: Author: Davide Forti Christoph Jaggli¨ Dr. Simone Deparis Prof. Alfio Quarteroni A thesis submitted in fulfilment of the requirements for the degree of Master in Mathematical Engineering in the Chair of Modelling and Scientific Computing Mathematics Section June 2014 Declaration of Authorship I, Christoph Jaggli¨ , declare that this thesis titled, 'FETI-DP Domain Decomposition Method' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: ii ECOLE´ POLYTECHNIQUE FED´ ERALE´ DE LAUSANNE Abstract School of Basic Science Mathematics Section Master in Mathematical Engineering FETI-DP Domain Decomposition Method by Christoph Jaggli¨ FETI-DP is a dual iterative, nonoverlapping domain decomposition method. By a Schur complement procedure, the solution of a boundary value problem is reduced to solving a symmetric and positive definite dual problem in which the variables are directly related to the continuity of the solution across the interface between the subdomains. -
Tr2005-865 a Bddc Algorithm for Flow in Porous Media
TR2005-865 A BDDC ALGORITHM FOR FLOW IN POROUS MEDIA WITH A HYBRID FINITE ELEMENT DISCRETIZATION XUEMIN TU∗ Abstract. The BDDC (balancing domain decomposition by constraints) methods have been applied successfully to solve the large sparse linear algebraic systems arising from conforming finite element discretizations of elliptic boundary value problems. In this paper, the scalar elliptic problems for flow in porous media are discretized by a hybrid finite element method which is equivalent to a nonconforming finite element method. The BDDC algorithm is extended to these problems which originate as saddle point problems. Edge/face average constraints are enforced across the interface and the same rate of convergence is obtained as in conforming cases. The condition number of the preconditioned system is estimated and numerical experiments are discussed. Key words. BDDC, domain decomposition, saddle point problem, condition number, hybrid finite element method AMS subject classifications 65N30, 65N55 65F10 1. Introduction. Mixed formulations of elliptic problems, see [3], have many applications, e.g., for flow in porous media, for which a good approximation to the velocity, which involves derivatives of the solution of the differential equations, is required. These discretizations lead to large, sparse, symmetric, indefinite linear systems. In our recent paper [24], we extended the BDDC algorithm to this mixed for- mulation of elliptic problems. The BDDC algorithms are nonoverlapping domain de- composition methods, introduced by Dohrmann [6] and further analyzed in [15, 16], are similar to the balancing Neumann-Neumann algorithms, see [14, 7]. However, the BDDC methods have different coarse components which are formed by a small num- ber of continuity constraints enforced across the interface throughout the iterations. -
A Numerical Study of Feti Algorithms for Mortar Finite Element Methods∗
SIAM J. SCI. COMPUT. c 2001 Society for Industrial and Applied Mathematics Vol. 23, No. 4, pp. 1135–1160 A NUMERICAL STUDY OF FETI ALGORITHMS FOR MORTAR FINITE ELEMENT METHODS∗ DAN STEFANICA† Abstract. The finite element tearing and interconnecting (FETI) method is an iterative sub- structuring method using Lagrange multipliers to enforce the continuity of the finite element solution across the subdomain interface. Mortar finite elements are nonconforming finite elements that al- low for a geometrically nonconforming decomposition of the computational domain into subregions and, at the same time, for the optimal coupling of different variational approximations in different subregions. We present a numerical study of FETI algorithms for elliptic self-adjoint equations discretized by mortar finite elements. Several preconditioners which have been successful for the case of conforming finite elements are considered. We compare the performance of our algorithms when applied to classical mortar elements and to a new family of biorthogonal mortar elements, and we discuss the differences between enforcing mortar conditions instead of continuity conditions for the case of matching nodes across the interface. Our experiments are carried out for both two and three dimensional problems, and include a study of the relative costs of applying different preconditioners for mortar elements. Key words. FETI algorithms, mortar finite elements, Lagrange multipliers, domain decompo- sition AMS subject classifications. 65F10, 65N30, 65N55 PII. S1064827500378829 1. Introduction. The finite element tearing and interconnecting (FETI) method is an iterative substructuring method using Lagrange multipliers which is actively used in industrial-size parallel codes for solving difficult computational mechanics problems. This method was introduced by Farhat and Roux [26]; a detailed presentation is given in [27], a monograph by the same authors. -
Domain Decomposition Methods for Problems in H(Curl)
Domain Decomposition Methods for Problems in H (curl) by Juan Gabriel Calvo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics New York University September 2015 Professor Olof B. Widlund ©Juan Gabriel Calvo All rights reserved, 2015 Dedication To my family. iv Acknowledgements First, my deepest gratitude goes to my advisor Olof Widlund. I thank him profoundly for his direction, guidance, support and advice during four years. I would also like to thank the rest of my committee: Professors Berger, Good- man, O'Neil and Stadler. In addition, I also thank Dr. Clark Dohrmann of the SANDIA-Albuquerque laboratories for his help and comments throughout my re- search. Finally I thank my Alma Mater, Universidad de Costa Rica, for the support during my academic education at NYU. v Abstract Two domain decomposition methods for solving vector field problems posed in H(curl) and discretized with N´ed´elecfinite elements are considered. These finite elements are conforming in H(curl). A two-level overlapping Schwarz algorithm in two dimensions is analyzed, where the subdomains are only assumed to be uniform in the sense of Peter Jones. The coarse space is based on energy minimization and its dimension equals the number of interior subdomain edges. Local direct solvers are based on the overlapping subdomains. The bound for the condition number depends only on a few geometric parameters of the decomposition. This bound is independent of jumps in the coefficients across the interface between the subdomains for most of the different cases considered. -
Multigrid Solvers for Immersed Finite Element Methods and Immersed Isogeometric Analysis
Computational Mechanics https://doi.org/10.1007/s00466-019-01796-y ORIGINAL PAPER Multigrid solvers for immersed finite element methods and immersed isogeometric analysis F. de Prenter1,3 · C. V. Verhoosel1 · E. H. van Brummelen1 · J. A. Evans2 · C. Messe2,4 · J. Benzaken2,5 · K. Maute2 Received: 26 March 2019 / Accepted: 10 November 2019 © The Author(s) 2019 Abstract Ill-conditioning of the system matrix is a well-known complication in immersed finite element methods and trimmed isogeo- metric analysis. Elements with small intersections with the physical domain yield problematic eigenvalues in the system matrix, which generally degrades efficiency and robustness of iterative solvers. In this contribution we investigate the spectral prop- erties of immersed finite element systems treated by Schwarz-type methods, to establish the suitability of these as smoothers in a multigrid method. Based on this investigation we develop a geometric multigrid preconditioner for immersed finite element methods, which provides mesh-independent and cut-element-independent convergence rates. This preconditioning technique is applicable to higher-order discretizations, and enables solving large-scale immersed systems at a computational cost that scales linearly with the number of degrees of freedom. The performance of the preconditioner is demonstrated for conventional Lagrange basis functions and for isogeometric discretizations with both uniform B-splines and locally refined approximations based on truncated hierarchical B-splines. Keywords Immersed finite element method · Fictitious domain method · Iterative solver · Preconditioner · Multigrid 1 Introduction [14–21], scan based analysis [22–27] and topology optimiza- tion, e.g., [28–34]. Immersed methods are useful tools to avoid laborious and An essential aspect of finite element methods and iso- computationally expensive procedures for the generation of geometric analysis is the computation of the solution to a body-fitted finite element discretizations or analysis-suitable system of equations. -
Finite Element Tearing and Interconnect for Maxwell's Equations Using
Finite Element Tearing and Interconnect for Maxwell’s equations using IGA BSc-thesis, MSc-thesis or project/internship work Electrical engineering / Computational engineering / Accelerator physics / Mathematics 1. Context Isogeometric analysis (IGA) is a finite element method (FEM) Computational Electromagnetics using splines for geometry description and basis functions such Prof. Dr. Sebastian Schöps that the geometry can be exactly represented. Recently, an [email protected] isogeometric mortar coupling [1] for electromagnetic problems Office: S4|10 317 was proposed. It is particularly well suited for the eigenfrequency prediction of superconducting accelerator cavities. Each cell, see Numerik und Fig. 1, can be represented by a different subdomain but may still Wissenschaftliches Rechnen share the same discretization. The approach leads to a (stable and Prof. Dr. Herbert Egger spectral correct) saddle-point problem. However, its numerical [email protected] solution is cumbersome and iterative substructuring methods Office: S4|10 101a become attractive. The resulting system is available from a Matlab/Octave code. In this project the finite element tearing and interconnect method (FETI) shall be investigated and standard, possibly low-rank, preconditioners implemented and compared. 2. Task First, familiarize yourself with Maxwell’s eigenvalue problem, the basics of Isogeometric Analysis and the software GeoPDEs [2]. Then understand the ideas behind FETI [3] and implement an iterative solver within the existing software. Finally, experiment with preconditioners to speed up the solution procedure. Fig. 1: 9-cell TESLA cavity 3. Prerequisites decomposed into 9 subdomains Strong background in FEM, basic knowledge of Maxwell’s equations, experience with programming in Matlab/Octave, interest in electromagnetic field simulation. -
A Finite Element Method for Approximating Electromagnetic Scattering from a Conducting Object
A FINITE ELEMENT METHOD FOR APPROXIMATING ELECTROMAGNETIC SCATTERING FROM A CONDUCTING OBJECT ANDREAS KIRSCH∗ AND PETER MONK† Abstract. We provide an error analysis of a fully discrete finite element – Fourier series method for approximating Maxwell’s equations. The problem is to approximate the electromagnetic field scattered by a bounded, inhomogeneous and anisotropic body. The method is to truncate the domain of the calculation using a series solution of the field away from this domain. We first prove a decomposition for the Poincar´e-Steklov operator on this boundary into an isomorphism and a compact perturbation. This is proved using a novel argument in which the scattering problem is viewed as a perturbation of the free space problem. Using this decomposition, and edge elements to discretize the interior problem, we prove an optimal error estimate for the overall problem. 1. Introduction. Motivated by the problem of computing the interaction of microwave radiation with biological tissue, we shall analyze a finite element method for approximating Maxwell’s equations in an infinite domain. We suppose that there is a bounded anisotropic, conducting object, called the scatterer, illuminated by a time-harmonic microwave source. The microwave source produces an incident electromagnetic field that interacts with the scatterer and produces a scattered time harmonic electromagnetic field. It is the scattered field that we wish to approximate. From the mathematical point of view, the problem can be reduced to that of approximating the total electric field E = E(x), x ∈ R3, which satisfies Maxwell’s equations in all space: −1 2 3 (1.1) ∇ × µr ∇ × E − k rE = 0 , in R where µr and r are respectively the relative permeability tensor (real 3 × 3 matrix) and the relative permit- tivity tensor (complex 3 × 3 matrix) describing the electromagnetic properties of the scatterer.