Schur Complement Domain Decomposition in Conjunction with Algebraic Multigrid Methods Based on Generic Approximate Inverses

Total Page:16

File Type:pdf, Size:1020Kb

Schur Complement Domain Decomposition in Conjunction with Algebraic Multigrid Methods Based on Generic Approximate Inverses Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 487–493 Schur Complement Domain Decomposition in conjunction with Algebraic Multigrid methods based on Generic Approximate Inverses P.I. Matskanidis G.A. Gravvanis Department of Electrical and Computer Engineering, Department of Electrical and Computer Engineering, School of Engineering, Democritus University of School of Engineering, Democritus University of Thrace, University Campus, Kimmeria, Thrace, University Campus, Kimmeria, GR 67100 Xanthi, Greece GR 67100 Xanthi, Greece Email: [email protected] Email: [email protected] In non-overlapping DD methods, also referred to as itera- Abstract—For decades, Domain Decomposition (DD) tech- tive substructuring methods, the subdomains intersect only niques have been used for the numerical solution of boundary on their interface. Non-overlapping methods can further- value problems. In recent years, the Algebraic Multigrid more be distinguished in primal and dual methods. Primal (AMG) method has also seen significant rise in popularity as well as rapid evolution. In this article, a Domain Decomposition methods, such as BDDC [7], enforce the continuity of the method is presented, based on the Schur complement system solution across the subdomain interface by representing the and an AMG solver, using generic approximate banded in- value of the solution on all neighbouring subdomains by the verses based on incomplete LU factorization. Finally, the appli- same unknown. In dual methods, such as FETI [10], the cability and effectiveness of the proposed method on character- continuity is further enforced by the use of Lagrange multi- istic two dimensional boundary value problems is demonstrated pliers. Hybrid methods, such as FETI-DP [8],[9],[16], have and numerical results on the convergence behavior are given. also been introduced. In the past decades, the development of multigrid meth- I. INTRODUCTION ods has also been critical for the numerical solution of OMAIN decomposition includes a significant range of PDEs. An essential component of the multigrid method is Dcomputing techniques for the numerical solution of the relaxation scheme, which efficiently reduces high fre- Partial Differential Equations (PDEs). Domain decomposi- quency components of the error, however is inefficient at re- tion techniques are based on splitting the computational do- ducing the lower frequency ones [2]. Transferring the prob- main into smaller subdomains, with or without overlap. The lem to a coarser grid, those low frequency errors become problems in the subdomains are independent, thus rendering more oscillatory and can be effectively damped by a station- domain decomposition methods suitable for parallelization. ary iterative method. Recursive application of this process Domain decomposition techniques can themselves be used produces the multigrid methods [18]. as stationary iterative schemes, as well as preconditioners in The algebraic multigrid algorithm (AMG) was first intro- order to accelerate the convergence of other iterative meth- duced over twenty years ago [1],[20]. Unlike geometric ods, specifically Krylov subspace methods [14]. multigrid, the algebraic multigrid method does not require Domain decomposition methods can be split into two cat- knowledge of the geometry of the problem to define its com- egories: overlapping and non-overlapping methods. In over- ponents. This is the reason AMG is perfectly suited for un- lapping DD methods, often referred to as Schwarz methods structured grids, both in two and three dimensions, and com- due to Schwarz’s work in 1870 [22], the subdomains overlap plicated domains. Specifically, by considering a linear sys- by more than the interface. The overlapping methods have a tem Au=f, the AMG method requires only the coefficient simple algorithmic structure, since there is no need to solve matrix A and the right-hand side vector f. As a result, AMG special interface problems between neighbouring subdo- solvers can easily be integrated into existing problem solv- mains. This feature differentiates overlapping from ing environments as standard solvers or precondition- non-overlapping DD methods [5],[23]. Overlapping meth- ers [18]. ods operate by an iterative procedure, where the PDE is re- Consider a linear system Au=f, where A= a ,i,j∈[ 1,n] peatedly solved within every subdomain. For each subdo- ( i,j) main, the artificial internal boundary condition is provided is an (n×n) coefficient matrix. A “grid” is a set of indices of by its neighbouring subdomains. The convergence of the so- the variables, thus the first grid is Ω={1,2, ... ,n } . Since lution on these internal boundaries ensures the convergence AMG is independent of the geometry of the problem, the of the solution in the entire solution domain. coarser grids, where the successive corrections to the solu- 978-1-4673-4471-5/$25.00 c 2013, IEEE 487 488 PROCEEDINGS OF THE FEDCSIS. KRAKOW,´ 2013 tion will be obtained, have to be constructed by the coarsen- Au=f (2) ing process, which is an essential component of the AMG al- with a symmetric, positive definite matrix A. Partitioning the gorithm. degrees of freedom to those internal to Ω1, Ω2 and those in- The components needed for AMG, where superscripts in- terior of Γ, the matrix A and vectors u, f can be expressed as: dicate the level with 1 being the finest level [4],[27], are the following: (1) ( 1) (1 ) ( 1) AII 0 AIΓ u f 1 2 Ν I I • Grids Ω ⊃Ω ⊃...⊃Ω (Ω1=Ω) containing the fol- (2 ) ( 2) A= 0 A A ,u= (2) ,f = ( 2 ) (3) lowing two disjoint subsets: II IΓ uI f I k A(1) A(2 ) A u f Coarse points set (C-points): C ,k=1,...,N−1 . [ ΓI ΓI ΓΓ ] [ Γ ] [ Γ ] k Fine points set (f-points): F ,k=1,...,N−1 . The first step of many iterative domain decompositions • Grid operators: A1 ,A2 ,... ,AN , where A1=A . methods eliminates the unknowns in the interior of the sub- (i) • Interpolation and restriction operators: domains uI . This leads to a block factorization of the matrix k k+1 A (3) [25]: I k+1 ,k=1,...,N−1 ; I k ,k=1,...,N−1 . • A smoother (relaxation scheme) for each level. AMG consists of two main phases: the setup phase, where (1 ) (1) I 0 0 A 0 A the above components are created, and the solution phase II IΓ 0 I 0 ( 2 ) (2) that utilizes the components in the recursively defined multi- A=LR= 0 A A −1 −1 II IΓ grid cycle. A( 1) A(1) A( 2) A(2) I [ ΓI II ΓI II ][ 0 0 S ] In this article, a domain decomposition method is pre- sented, based on the Schur complement system. An Alge- (4) braic Multigrid method is used to solve the resulting linear and the resulting linear system: systems for each domain, based on the use of generic ap- (1) (1 ) (1 ) proximate banded inverses, derived from the ILU(0) factor- AII 0 AIΓ f I ization [13],[18]. In section II, the Schur complement ( 2 ) ( 2) u= (2 ) (5) method is showcased, while in section III, the AMG method 0 AII AIΓ f I is presented. 0 0 S g [ ] [ Γ ] Finally in section IV, the applicability of the new pro- posed scheme on two dimensional boundary value problems where I is the identity matrix and is demonstrated and numerical results on the convergence (1 ) (1)−1 (1) ( 2) (2)−1 (2) is the behavior and performance are given. S= AΓΓ− AΓI AII AΙΓ −AΓI AII AΙΓ Schur complement matrix relative to the unknowns on Γ. II.THE SCHUR COMPLEMENT METHOD Defining the local Schur complements by 2 In this section, the Schur complement domain decomposi- (i ) (i) (i ) (i)−1 ( i) tion method is presented. S := AΓΓ−∑ AΓI AII AΙΓ (6) The Schur complement method is the earliest version of i=1 non-overlapping DD methods. Methods such as Dirich- let-Neumann and Neumann-Neumann are essentially the Schur complement method with the use of particular precon- ditioners. Let us consider the Poisson equation on a region Ω, with zero Dirichlet data given on ∂Ω , the boundary of Ω. Let us also suppose that Ω is partitioned into two non-overlapping subdomains Ωi: Ω=Ω1∪Ω2 ,Ω1∩Ω2=∅,Γ =∂Ω1∩∂Ω2 as shown in Fig. 1 [25]. Assuming the boundaries of the subdomains are Lipschitz continuous, we consider the problem: −Δu(x,y )= f ( x,y)∈Ω (1) u(x,y)=0 ( x,y)∈∂Ω (1.a) Fig. 1 Ω partitioned into two non-overlapping subdomains. Considering a triangulation of the domain Ω and a finite we find the Schur complement system for uΓ to be [25]: element approximation of the problem (1), assuming that subdomains consist of unions of elements, leads to a linear SuΓ = g Γ (7) system with P. I. MATSKANIDIS, G. A. GRAVVANIS: SCHUR COMPLEMENT DOMAIN DECOMPOSITION 489 1 2 H1 S=S( )+S( ) (8) • : For each point j that strongly influences a fine-grid point i, j is either a coarse-grid point or strongly −1 depends on a coarse-grid point that also strongly g :=g(1)+g( 2)=( f (1 )− A( 1) A(1 ) f ( 1)) Γ Γ Γ Γ ΓI II I (9) influences i. −1 (2) ( 2) (2) (2) • H2: C is a maximal set with the property that no +( f Γ − AΓI AII f I ) C-point influences another C-point. Once uΓ is found by solving (7), the internal components Condition H1 ensures the quality of the interpolation and can be found by using (5): condition H2 restricts the size of coarser grids. The coarsening schemes of early AMG methods are based ( i) (i )−1 (1) (i ) u I =AII ( f I −AIΓ uΓ ) (10) on the Ruge-Stüben (RS) coarsening method [20]. The Ruge-Stüben coarsening is the classical coarse-grid selection Equations (8) and (9) can be extended to a generic case, algorithm, based on enforcing heuristic H1, while implicitly where there are more than two domains.
Recommended publications
  • Multigrid Methods
    Multigrid Methods Volker John Winter Semester 2013/14 Contents 1 Literature 2 2 Model Problems 3 3 Detailed Investigation of Classical Iterative Schemes 8 3.1 General Aspects of Classical Iterative Schemes . .8 3.2 The Jacobi and Damped Jacobi Method . 10 3.3 The Gauss{Seidel Method and the SOR Method . 15 3.4 Summary . 18 4 Grid Transfer 19 4.1 Algorithms with Coarse Grid Systems, the Residual Equation . 19 4.2 Prolongation or Interpolation . 21 4.3 Restriction . 23 5 The Two-Level Method 27 5.1 The Coarse Grid Problem . 27 5.2 General Approach for Proving the Convergence of the Two-Level Method . 30 5.3 The Smoothing Property of the Damped Jacobi Iteration . 32 5.4 The Approximation Property . 33 5.5 Summary . 36 6 The Multigrid Method 37 6.1 Multigrid Cycles . 37 6.2 Convergence of the W-cycle . 39 6.3 Computational Work of the Multigrid γ-Cycle . 45 7 Algebraic Multigrid Methods 49 7.1 Components of an AMG and Definitions . 49 7.2 Algebraic Smoothness . 52 7.3 Coarsening . 56 7.4 Prolongation . 58 7.5 Concluding Remarks . 60 8 Outlook 61 1 Chapter 1 Literature Remark 1.1 Literature. There are several text books about multigrid methods, e.g., • Briggs et al. (2000), easy to read introduction, • Hackbusch (1985), the classical book, sometimes rather hard to read, • Shaidurov (1995), • Wesseling (1992), an introductionary book, • Trottenberg et al. (2001). 2 2 Chapter 2 Model Problems Remark 2.1 Motivation. The basic ideas and properties of multigrid methods will be explained in this course on two model problems.
    [Show full text]
  • 38. a Preconditioner for the Schur Complement Domain Decomposition Method J.-M
    Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c 2003 DDM.org 38. A preconditioner for the Schur complement domain decomposition method J.-M. Cros 1 1. Introduction. This paper presents a preconditioner for the Schur complement domain decomposition method inspired by the dual-primal FETI method [4]. Indeed the proposed method enforces the continuity of the preconditioned gradient at cross-points di- rectly by a reformulation of the classical Neumann-Neumann preconditioner. In the case of elasticity problems discretized by finite elements, the degrees of freedom corresponding to the cross-points coming from domain decomposition, in the stiffness matrix, are separated from the rest. Elimination of the remaining degrees of freedom results in a Schur complement ma- trix for the cross-points. This assembled matrix represents the coarse problem. The method is not mathematically optimal as shown by numerical results but its use is rather economical. The paper is organized as follows: in sections 2 and 3, the Schur complement method and the formulation of the Neumann-Neumann preconditioner are briefly recalled to introduce the notations. Section 4 is devoted to the reformulation of the Neumann-Neumann precon- ditioner. In section 5, the proposed method is compared with other domain decomposition methods such as generalized Neumann-Neumann algorithm [7][9], one-level FETI method [5] and dual-primal FETI method. Performances on a parallel machine are also given for structural analysis problems. 2. The Schur complement domain decomposition method. Let Ω denote the computational domain of an elasticity problem.
    [Show full text]
  • Hybrid Particle-Grid Water Simulation Using Multigrid Pressure Solver Per Karlsson
    LiU-ITN-TEK-G--14/006-SE Hybrid Particle-Grid Water Simulation using Multigrid Pressure Solver Per Karlsson 2014-03-13 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LiU-ITN-TEK-G--14/006-SE Hybrid Particle-Grid Water Simulation using Multigrid Pressure Solver Examensarbete utfört i Medieteknik vid Tekniska högskolan vid Linköpings universitet Per Karlsson Handledare George Baravdish Examinator Camilla Forsell Norrköping 2014-03-13 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • Newton-Krylov-BDDC Solvers for Nonlinear Cardiac Mechanics
    Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics Item Type Article Authors Pavarino, L.F.; Scacchi, S.; Zampini, Stefano Citation Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics 2015 Computer Methods in Applied Mechanics and Engineering Eprint version Post-print DOI 10.1016/j.cma.2015.07.009 Publisher Elsevier BV Journal Computer Methods in Applied Mechanics and Engineering Rights NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering, 18 July 2015. DOI:10.1016/ j.cma.2015.07.009 Download date 07/10/2021 05:34:35 Link to Item http://hdl.handle.net/10754/561071 Accepted Manuscript Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics L.F. Pavarino, S. Scacchi, S. Zampini PII: S0045-7825(15)00221-2 DOI: http://dx.doi.org/10.1016/j.cma.2015.07.009 Reference: CMA 10661 To appear in: Comput. Methods Appl. Mech. Engrg. Received date: 13 December 2014 Revised date: 3 June 2015 Accepted date: 8 July 2015 Please cite this article as: L.F. Pavarino, S. Scacchi, S. Zampini, Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics, Comput. Methods Appl. Mech. Engrg. (2015), http://dx.doi.org/10.1016/j.cma.2015.07.009 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Multigrid Algorithms for High Order Discontinuous Galerkin Methods
    Multigrid algorithms for high order discontinuous Galerkin methods Paola F. Antonietti1, Marco Sarti2, and Marco Verani3 Abstract I n this paper we study the performance of h- and p-multigrid algorithms for high order Discontinuous Galerkin discretizations of elliptic problems. We test the performance of the multigrid schemes employing a wide class of smoothers and considering both two- and three-dimensional test cases. 1 Introduction In the framework of multigrid solvers for Discontinuous Galerkin (DG) schemes, the first contributions are due to Gopalakrishnan and Kanschat [16] and Brenner and Zhao [10]. In [16] a V-cycle preconditioner for a Sym- metric Interior Penalty (SIP) discretization of an elliptic problem is analyzed. They prove that the condition number of the preconditioned system is uni- formly bounded with respect to the mesh size and the number of levels. In [10] V-cycle, F-cycle and W-cycle multigrid schemes for SIP discretizations are presented and analyzed, employing the additive theory developed in [8, 9]. A uniform bound for the error propagation operator is shown provided the number of smoothing steps is large enough. All the previously cited works focus on low order, i.e., linear, DG approximations. With regard to high order DG discretizations, h- and p-multigrid schemes are successfully em- ployed for the numerical solution of many different kinds of problems, see e.g. [14, 20, 22, 21, 24, 6], even if only few theoretical results are available that show the convergence properties of the underlying algorithms. In the MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano ITALY.
    [Show full text]
  • Domain Decomposition Solvers (FETI) Divide Et Impera
    Domain Decomposition solvers (FETI) a random walk in history and some current trends Daniel J. Rixen Technische Universität München Institute of Applied Mechanics www.amm.mw.tum.de [email protected] 8-10 October 2014 39th Woudschoten Conference, organised by the Werkgemeenschap Scientific Computing (WSC) 1 Divide et impera Center for Aerospace Structures CU, Boulder wikipedia When splitting the problem in parts and asking different cpu‘s (or threads) to take care of subproblems, will the problem be solved faster ? FETI, Primal Schur (Balancing) method around 1990 …….. basic methods, mesh decomposer technology 1990-2001 .…….. improvements •! preconditioners, coarse grids •! application to Helmholtz, dynamics, non-linear ... Here the concepts are outlined using some mechanical interpretation. For mathematical details, see lecture of Axel Klawonn. !"!! !"#$%&'()$&'(*+*',-%-.&$(*&$-%'#$%-'(*-/$0%1*()%-).1*,2%()'(%()$%,.,3$4*-($,+$% .5%'%-.6"(*.,%*&76*$-%'%6.2*+'6%+.,(8'0*+(*.,9%1)*6$%$,2*,$$#-%&*2)(%+.,-*0$#%'% ,"&$#*+'6%#$-"6(%'-%()$%.,6:%#$'-.,';6$%2.'6<%% ="+)%.,$%-*0$0%>*$1-%-$$&%(.%#$?$+(%)"&',%6*&*('(*.,-%#'()$#%()',%.;@$+(*>$%>'6"$-<%% A,%*(-$65%&'()$&'(*+-%*-%',%*,0*>*-*;6$%.#2',*-&%",*(*,2%()$.#$(*+'6%+.,($&76'(*.,% ',0%'+(*>$%'776*+'(*.,<%%%%% %%%%%%% R. Courant %B % in Variational! Methods for the solution of problems of equilibrium and vibrations Bulletin of American Mathematical Society, 49, pp.1-23, 1943 Here the concepts are outlined using some mechanical interpretation. For mathematical details, see lecture of Axel Klawonn. Content
    [Show full text]
  • Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method
    Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method James W. Lottes¤ and Paul F. Fischery February 4, 2004 Abstract We study the performance of the multigrid method applied to spectral element (SE) discretizations of the Poisson and Helmholtz equations. Smoothers based on finite element (FE) discretizations, overlapping Schwarz methods, and point-Jacobi are con- sidered in conjunction with conjugate gradient and GMRES acceleration techniques. It is found that Schwarz methods based on restrictions of the originating SE matrices converge faster than FE-based methods and that weighting the Schwarz matrices by the inverse of the diagonal counting matrix is essential to effective Schwarz smoothing. Sev- eral of the methods considered achieve convergence rates comparable to those attained by classic multigrid on regular grids. 1 Introduction The availability of fast elliptic solvers is essential to many areas of scientific computing. For unstructured discretizations in three dimensions, iterative solvers are generally optimal from both work and storage standpoints. Ideally, one would like to have computational complexity that scales as O(n) for an n-point grid problem in lRd, implying that the it- eration count should be bounded as the mesh is refined. Modern iterative methods such as multigrid and Schwarz-based domain decomposition achieve bounded iteration counts through the introduction of multiple representations of the solution (or the residual) that allow efficient elimination of the error at each scale. The theory for these methods is well established for classical finite difference (FD) and finite element (FE) discretizations, and order-independent convergence rates are often attained in practice. For spectral element (SE) methods, there has been significant work on the development of Schwarz-based methods that employ a combination of local subdomain solves and sparse global solves to precondition conjugate gradient iteration.
    [Show full text]
  • Multigrid and Saddle-Point Preconditioners for Unfitted Finite
    Multigrid and saddle-point preconditioners for unfitted finite element modelling of inclusions Hardik Kothari∗and Rolf Krause† Institute of Computational Science, Universit`adella Svizzera italiana, Lugano, Switzerland February 17, 2021 Abstract In this work, we consider the modeling of inclusions in the material using an unfitted finite element method. In the unfitted methods, structured background meshes are used and only the underlying finite element space is modified to incorporate the discontinuities, such as inclusions. Hence, the unfitted methods provide a more flexible framework for modeling the materials with multiple inclusions. We employ the method of Lagrange multipliers for enforcing the interface conditions between the inclusions and matrix, this gives rise to the linear system of equations of saddle point type. We utilize the Uzawa method for solving the saddle point system and propose preconditioning strategies for primal and dual systems. For the dual systems, we review and compare the preconditioning strategies that are developed for FETI and SIMPLE methods. While for the primal system, we employ a tailored multigrid method specifically developed for the unfitted meshes. Lastly, the comparison between the proposed preconditioners is made through several numerical experiments. Keywords: Unfitted finite element method, multigrid method, saddle-point problem 1 Introduction In the modeling of many real-world engineering problems, we encounter material discontinuities, such as inclusions. The inclusions are found naturally in the materials, or can be artificially introduced to produce desired mechanical behavior. The finite element (FE) modeling of such inclusions requires to generate meshes that can resolve the interface between the matrix and inclusions, which can be a computationally cumbersome and expensive task.
    [Show full text]
  • Numerical Solution of Saddle Point Problems
    Acta Numerica (2005), pp. 1–137 c Cambridge University Press, 2005 DOI: 10.1017/S0962492904000212 Printed in the United Kingdom Numerical solution of saddle point problems Michele Benzi∗ Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322, USA E-mail: [email protected] Gene H. Golub† Scientific Computing and Computational Mathematics Program, Stanford University, Stanford, California 94305-9025, USA E-mail: [email protected] J¨org Liesen‡ Institut f¨ur Mathematik, Technische Universit¨at Berlin, D-10623 Berlin, Germany E-mail: [email protected] We dedicate this paper to Gil Strang on the occasion of his 70th birthday Large linear systems of saddle point type arise in a wide variety of applica- tions throughout computational science and engineering. Due to their indef- initeness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of system. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems. ∗ Supported in part by the National Science Foundation grant DMS-0207599. † Supported in part by the Department of Energy of the United States Government. ‡ Supported in part by the Emmy Noether Programm of the Deutsche Forschungs- gemeinschaft. 2 M. Benzi, G. H. Golub and J. Liesen CONTENTS 1 Introduction 2 2 Applications leading to saddle point problems 5 3 Properties of saddle point matrices 14 4 Overview of solution algorithms 29 5 Schur complement reduction 30 6 Null space methods 32 7 Coupled direct solvers 40 8 Stationary iterations 43 9 Krylov subspace methods 49 10 Preconditioners 59 11 Multilevel methods 96 12 Available software 105 13 Concluding remarks 107 References 109 1.
    [Show full text]
  • Multigrid Method Based on a Space-Time Approach with Standard Coarsening for Parabolic Problems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CWI's Institutional Repository Applied Mathematics and Computation 317 (2018) 25–34 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc Multigrid method based on a space-time approach with standard coarsening for parabolic problems Sebastião Romero Franco a,b, Francisco José Gaspar c, Marcio Augusto Villela ∗ Pinto d, Carmen Rodrigo e, a Department of Mathematics, State University of Centro-Oeste, Irati, PR, Brazil b Graduate Program in Numerical Methods in Engineering, Federal University of Paraná, Curitiba, PR, Brazil c Centrum Wiskunde & Informatica (CWI), Science Park 123, P.O. Box 94079, Amsterdam 1090, The Netherlands d Department of Mechanical Engineering, Federal University of Paraná, Curitiba, PR, Brazil e IUMA and Applied Mathematics Department, University of Zaragoza, María de Luna, 3, Zaragoza 50018, Spain a r t i c l e i n f o a b s t r a c t MSC: In this work, a space-time multigrid method which uses standard coarsening in both tem- 00-01 poral and spatial domains and combines the use of different smoothers is proposed for the 99-00 solution of the heat equation in one and two space dimensions. In particular, an adaptive Keywords: smoothing strategy, based on the degree of anisotropy of the discrete operator on each Space-time multigrid grid-level, is the basis of the proposed multigrid algorithm. Local Fourier analysis is used Local Fourier analysis for the selection of the crucial parameter defining such an adaptive smoothing approach.
    [Show full text]
  • Electrostatic PIC with Adaptive Cartesian Mesh
    Electrostatic PIC with adaptive Cartesian mesh Vladimir Kolobov1,2 and Robert Arslanbekov1 1 CFD Research Corporation, Huntsville, AL, USA 2 The University of Alabama in Huntsville, Huntsville, AL 35899, USA E-mail: [email protected] Abstract. We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events. 1. Introduction Particle-in-Cell (PIC) is a mature technology widely used for plasma simulations. There are three versions of PIC: an electrostatic (EC) PIC uses Poisson equation for calculating electric field, an electromagnetic (EM) PIC employs full-wave Maxwell solver for calculations of electric and magnetic fields, and a quasi-static (QS) PIC uses a quasi-static version of the Maxwell equations (such as Darwin model) for calculation of the EM fields. Surprisingly, PIC solvers with adaptive mesh refinement (AMR) are relatively rare. It is worth mentioning the WARP code for accelerator applications [1], and an explicit EM-PIC code of Fujimoto [2] for astrophysics applications, both using block-structured AMR. In this paper, we describe an initial implementation of an ES-PIC module in our Unified Flow Solver (UFS) framework [3].
    [Show full text]
  • Preconditioning the Coarse Problem of BDDC Methods—Three-Level, Algebraic Multigrid, and Vertex-Based Preconditioners
    Electronic Transactions on Numerical Analysis. Volume 51, pp. 432–450, 2019. ETNA Kent State University and Copyright c 2019, Kent State University. Johann Radon Institute (RICAM) ISSN 1068–9613. DOI: 10.1553/etna_vol51s432 PRECONDITIONING THE COARSE PROBLEM OF BDDC METHODS— THREE-LEVEL, ALGEBRAIC MULTIGRID, AND VERTEX-BASED PRECONDITIONERS∗ AXEL KLAWONNyz, MARTIN LANSERyz, OLIVER RHEINBACHx, AND JANINE WEBERy Abstract. A comparison of three Balancing Domain Decomposition by Constraints (BDDC) methods with an approximate coarse space solver using the same software building blocks is attempted for the first time. The comparison is made for a BDDC method with an algebraic multigrid preconditioner for the coarse problem, a three-level BDDC method, and a BDDC method with a vertex-based coarse preconditioner. It is new that all methods are presented and discussed in a common framework. Condition number bounds are provided for all approaches. All methods are implemented in a common highly parallel scalable BDDC software package based on PETSc to allow for a simple and meaningful comparison. Numerical results showing the parallel scalability are presented for the equations of linear elasticity. For the first time, this includes parallel scalability tests for a vertex-based approximate BDDC method. Key words. approximate BDDC, three-level BDDC, multilevel BDDC, vertex-based BDDC AMS subject classifications. 68W10, 65N22, 65N55, 65F08, 65F10, 65Y05 1. Introduction. During the last decade, approximate variants of the BDDC (Balanc- ing Domain Decomposition by Constraints) and FETI-DP (Finite Element Tearing and Interconnecting-Dual-Primal) methods have become popular for the solution of various linear and nonlinear partial differential equations [1,8,9, 12, 14, 15, 17, 19, 21, 24, 25].
    [Show full text]