The Discovery of Microorganisms Revisited a Close Reading of 17Th-Century Documents Shows That Hooke, Rather Than Leeuwenhoek, Was the first to Observe a Microorganism

Total Page:16

File Type:pdf, Size:1020Kb

The Discovery of Microorganisms Revisited a Close Reading of 17Th-Century Documents Shows That Hooke, Rather Than Leeuwenhoek, Was the first to Observe a Microorganism The Discovery of Microorganisms Revisited A close reading of 17th-century documents shows that Hooke, rather than Leeuwenhoek, was the first to observe a microorganism Howard Gest wo remarkable geniuses, Robert Preface of Micrographia and in a 1678 treatise, Hooke and Antonie van Leeuwen- Lectures and Collections; Microscopium. hoek, deserve the credit for discover- Hooke’s Preface to Micrographia also describes T ing microorganisms in the 17th cen- how to make a single-lens microscope of the tury. A complex series of events and same kind that Leeuwenhoek used in studies a common interest in microscopes were instru- that began almost a decade later. mental in leading these two men from very dif- According to my analysis along with the im- ferent backgrounds to codiscover the microbial portant studies of microscopist Brian Ford, universe. Their separate journeys into that realm Hooke rather than Leeuwenhoek was the first to were recorded between 1665 and 1678 in pub- observe and document the existence of a micro- lications of the Royal Society of London. organism. Moreover, his Micrographia pro- Among Hooke’s outstanding achievements is vided the basic model and “trigger” for Leeu- the first published description of a microorgan- wenhoek’s subsequent discoveries of other ism. From Hooke’s excellent drawing in Micro- microbes during the the 17th century. Thus, graphia (1665), mycologists identify Hooke’s Robert Hooke as well as Antonie van Leeuwen- specimen as the microfungus Mucor, the com- hoek should be considered responsible for “fa- mon bread mold (Fig. 1). In Micrographia, thering” modern microbiology. Hooke illustrated microscopic views of diverse biological objects, including sponges, wood, seaweed, leaf surfaces, hair, pea- A Glimpse of Robert Hooke’s cock feathers, fly wings, eggs of Illustrious Career silkworms, mites, a flea, and a Robert Hooke (1635–1703) was louse—as well as that of a mold. Robert Hooke as well as enrolled as an undergraduate at Hooke obtained the microfungus Christ Church College at the Uni- specimen from a “small white spot Antonie van versity of Oxford but apparently of a hairy mould,” many of which Leeuwenhoek never obtained a degree. Nonethe- he observed on the red sheepskin should be less, he became associated with a covers of a small book. He called the considered brilliant group of scholars, includ- organism a “microscopical mush- responsible for ing Christopher Wren and Robert Howard Gest is room.” Although he attempted to “fathering” Boyle, who met regularly to dis- Distinguished Pro- observe the “seed” (now called spo- cuss a broad range of scientific modern fessor Emeritus of rangiospores) from which it devel- problems. Microbiology and microbiology ops, the relatively low magnifying In due course, this group be- Adjunct Professor power of his microscope made that came the nucleus of the Royal So- of History and Phi- effort impossible. ciety. Hooke, a founding member losophy of Science Hooke advanced the techniques of micros- of the Society, served as “Curator of Experi- at Indiana Univer- copy in many ways that are detailed in the ments” from 1662–1677. His duties included sity, Bloomington. Volume 70, Number 6, 2004 / ASM News Y 269 FIGURE 1 tenary of Hooke’s death, several new biographies were published, describing his life and scientific achievements as well as his impor- tant architectural contributions while London was reconstructed following the Great Fire of 1666. Antonie van Leeuwenhoek’s Unusual Career Leeuwenhoek (1632–1723), who had little formal schooling, opened a shop at age 22 as a draper in Delft, Holland. Indeed, his scientific career likely traces to his use of low-power magnifying glasses to inspect cloth. Leeuwenhoek developed the ability to make superb micro- scopes containing single lenses Microscopic view of a “hairy mould” colony described by Robert Hooke in 1665 (in Micro- that were about 1 mm in diame- graphia). This image was the first published depiction of a microorganism. The reproductive structures (sporangia) are characteristic of the microfungus Mucor. Sporangia in different stages ter. Leeuwenhoek was a keen ob- are identified by the letters A, B, C, and D. Hooke included a scale reference; the length of the server and had extraordinary cu- bar under the diagram represents 1/32 of an inch. Image courtesy of The Lilly Library, Indiana riosity, which he soon focused on University, Bloomington. the natural world. For instance, he was the first to observe and describe sperm cells of animals, conducting “considerable experiments” and do- red blood cells, protozoa, and yeast cells. Al- ing other research projects officially recom- though it was then thought that maggots, fleas, mended to him. Hooke soon became a com- and the like formed through “spontaneous gen- manding intellectual force in the Society and, as eration,” he showed that such creatures hatch Curator, provided the main substance of many from eggs. meetings. During April 1663, Hooke lectured Leeuwenhoek communicated his observa- on the structure of plant tissues, such as cork tions to the scientific world in an unorthodox and moss, and coined the term “cell.” In Micro- way. Dutch acquaintances, who were corre- graphia, the structure of cork is detailed in Obs. sponding members of the Royal Society, sug- XVIII: “Texture of cork, and of the cells and gested that he describe his findings in letters pores of some other such frothy bodies.” addressed to the Society. During the rest of his Hooke’s scientific interests were broad, and life, Leeuwenhoek communicated some 200 let- his genius many sided. Physicist J. D. Bernal ters in Dutch, many of great length. Between wrote of Hooke in 1965 that his “interests 1939 and 1983 the “Leeuwenhoek Letters” ranged over the whole of mechanics, physics, were translated into English by large committees chemistry, and biology. He studied elasticity of Dutch scientists, yielding 11 volumes with and discovered what is known as Hooke’s English and Dutch texts on opposing pages. Law. .he invented the balance wheel, the use These volumes include extensive annotation. of which made possible accurate watches and Several footnotes show that Leeuwenhoek was chronometers; he wrote Micrographia, the first familiar with Micrographia even before he be- systematic account of the microscopic world, gan sending letters to the Royal Society. including the discovery of cells; he introduced One of Leeuwenhoek’s greatest contributions the telescope into astronomic measurement and to biology was the discovery of bacteria in 1676. invented the micrometer.” In 2003, the tercen- As might be expected, his observations and de- 270 Y ASM News / Volume 70, Number 6, 2004 Valuing Impact of History on Science, Witnessing Science’s Impact on History Howard Gest feels very strongly ily to America. He received a B.A. cessful, we felt about the impact of history on sci- in bacteriology from the University great pride in ence. “I believe that many young of California, Los Angeles (UCLA) our work; we scientists know little about the in 1942, and his Ph.D. from Wash- felt it was very early history of their own research ington University in 1949. While important for areas, and I think this limits their attending UCLA, he spent the sum- the security of understanding of how major dis- mers of 1941 and 1942 assisting the United coveries are made,” he says, adding Max Delbru¨ ck and Salvador Luria, States,” Gest that too often they assume that who were studying bacterial vi- says, recalling contemporary biological knowl- ruses. Although Gest began gradu- the Manhattan Howard Gest edge is nearly complete. “History ate work with Delbru¨ ck at Vander- Project. “But we clearly shows that biology is far bilt University, World War II were very disappointed in how the more complicated than each gener- intervened. Later in St. Louis, he bombs were used. We’d hoped they ation thinks it is.” did research with Alfred Hershey, would be used in such a way that Gest came to this realization using the radioactive isotope P32 to would not lead to the death of many years ago, influenced by the late examine what happens to phos- innocent civilians. And we were very J. H. “Jack” Hexter, a noted histo- phorus-containing cell components perturbed that the petition never rian and professor of history at when bacterial viruses replicate. reached President Truman.” Washington University, St. Louis, These studies culminated with their Gest has served on the faculties Mo., where Gest knew him, and discovery of P32 “suicide” of bacte- of Case Western Reserve University Yale University, New Haven, riophage. in Cleveland, Ohio, Washington Conn. “Hexter once said: ‘History During World War II, Gest was University, and Indiana University, with a capital H deals with major involved in the Manhattan Project and has been a visiting researcher at trends, large movements, deep run- with physical chemist Charles the California Institute of Technol- ning tides, portentous rumbles. Coryell—one of Gest’s teachers at ogy, Dartmouth Medical School, When a “small h” historian fixes UCLA—first at the University of Stanford University, Oxford Uni- his attention on a fragment of the Chicago, and later at Oak Ridge, versity, Tokyo University, and past washed up on the littered Tenn. His role was to conduct basic UCLA. He was twice named a beach of the present, he is likely to research on the radioactive ele- Guggenheim Fellow and has served ask simple questions about it: How ments formed in uranium fission. on a number of advisory commit- did it get there? What the devil is it? He looks back at that period with tees of the U.S. government. During What was it for? Where is it from? conflicted emotions. While proud his second Guggenheim fellowship, What happened to it?’,” Gest says. of his contribution toward devel- he studied problems of biochemical “Hexter’s remarks made me realize oping the atomic bomb, he was evolution as a member of the Pre- that I had become a ‘small h’ histo- troubled by the real possibility that cambrian Paleobiology Group.
Recommended publications
  • Review Pili in Gram-Negative and Gram-Positive Bacteria – Structure
    Cell. Mol. Life Sci. 66 (2009) 613 – 635 1420-682X/09/040613-23 Cellular and Molecular Life Sciences DOI 10.1007/s00018-008-8477-4 Birkhuser Verlag, Basel, 2008 Review Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease T. Profta,c,* and E. N. Bakerb,c a School of Medical Sciences, Department of Molecular Medicine & Pathology, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand), Fax: +64-9-373-7492, e-mail: [email protected] b School of Biological Sciences, University of Auckland, Auckland (New Zealand) c Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland (New Zealand) Received 08 August 2008; received after revision 24 September 2008; accepted 01 October 2008 Online First 27 October 2008 Abstract. Many bacterial species possess long fila- special form of bacterial cell movement, known as mentous structures known as pili or fimbriae extend- twitching motility. In contrast, the more recently ing from their surfaces. Despite the diversity in pilus discovered pili in Gram-positive bacteria are formed structure and biogenesis, pili in Gram-negative bac- by covalent polymerization of pilin subunits in a teria are typically formed by non-covalent homopo- process that requires a dedicated sortase enzyme. lymerization of major pilus subunit proteins (pilins), Minor pilins are added to the fiber and play a major which generates the pilus shaft. Additional pilins may role in host cell colonization. be added to the fiber and often function as host cell This review gives an overview of the structure, adhesins. Some pili are also involved in biofilm assembly and function of the best-characterized pili formation, phage transduction, DNA uptake and a of both Gram-negative and Gram-positive bacteria.
    [Show full text]
  • Chapter 10: Classification of Microorganisms
    Chapter 10: Classification of Microorganisms 1. The Taxonomic Hierarchy 2. Methods of Identification 1. The Taxonomic Hierarchy Phylogenetic Tree of the 3 Domains Taxonomic Hierarchy • 8 successive taxa are used to classify each species: Domain Kingdom Phylum Class Order Family Genus **species can also contain different strains** Species Scientific Nomenclature To avoid confusion, every type of organism must be referred to in a consistent way. The current system of nomenclature (naming) has been in use since the 18th century: • every type of organism is referred by its genus name followed by its specific epithet (i.e., species name) Homo sapiens (H. sapiens) Escherichia coli (E. coli) • name should be in italics and only the genus is capitalized which can also be abbreviated • names are Latin (or “Latinized” Greek) with the genus being a noun and the specific epithet an adjective **strain info can be listed after the specific epithet (e.g., E. coli DH5α)** 2. Methods of Identification Biochemical Testing In addition to morphological (i.e., appearance under the microscope) and differential staining characteristics, microorganisms can also be identified by their biochemical “signatures”: • the nutrient requirements and metabolic “by-products” of of a particular microorganism • different growth media can be used to test the physiological characteristics of a microorganism • e.g., medium with lactose only as energy source • e.g., medium that reveals H2S production **appearance on test medium reveals + or – result!** Commercial devices for rapid Identification Perform multiple tests simultaneously Enterotube II Such devices involve the simultaneous inoculation of various test media: • ~24 hrs later the panel of results reveals ID of organism! Use of Dichotomous Keys Series of “yes/no” biochemical tests to ID organism.
    [Show full text]
  • Activity-Release-Form-KLCC
    Kingdom Life Community Church Activity Release Form For those 18 years of age or older, all parents, and all guardians: I consent for any of my children listed below to participate in any activity or trip sponsored by Kingdom Life Community Church. In case of medical need or injury, I authorize the church to arrange for medical or dental services for me and any of my children listed below. I agree that any such expense will be my obligation. I, individually, or in my capacities as parent or guardian of the below listed children, waive, release, and indemnify the church and all of its agents, directors, officers, employees and volunteers (collectively, “released parties”) from all demands, claims, liability, in law or in equity, that have arisen or may arise from any church activity or trip and that involve any damage, loss, or injury to me, my spouse, any of my children, my property, or the property of any of my children. In the same capacities, I promise not to sue any of the released parties for any such demands, claims, or liability. This waiver, release, indemnification, and promise not to sue do not apply to claims of criminal conduct or gross negligence. I understand that the church may take photographs of me and my family in the course of its activities, and I grant the church permission to publish such photographs in a manner the church deems appropriate. This activity release form is in effect for any activities that I, or any of my children, may participate in. This form is revocable, prospectively only, by a writing signed by me that bears the date that the revocation is delivered to the church.
    [Show full text]
  • Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
    Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy.
    [Show full text]
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • General Microbiology (11:680:390) Syllabus
    COURSE SYLLABUS General Microbiology - 11:680:390 COURSE OVERVIEW General Microbiology 11:680:390 Fall, Spring, Summer Meeting times TBD Meeting Location Lecture: Sychronous Lecture Hall Cook/Douglas and Wright Labs Busch Meeting Location Lab: Food Science 209 CONTACT INFORMATION: Course Coordinator: Dr. Ines Rauschenbach Office Location: Lipman Hall, Room 215 Phone: 848-932-5635 Email: [email protected] Office Hours: By Appointment COURSE WEBSITE, RESOURCES AND MATERIALS: • Canvas • Text: Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. 2020. Brock Biology of Microorganisms. 16th edition. Pearson, New York, NY. • Lab Manual o The lab manual (departmental publication) will be available for free through RUCore. • Electronic Notebook o We will be sending you a link to LabArchives. You must sign up before the start of your first lab. COURSE DESCRIPTION: This course offers a comprehensive study of the field of microbiology to science majors. The course will give detailed insights into five major themes: Structure and function of microbes (cellular structures, metabolism, and growth);,microbial genetics, microbial ecology, microbial diversity (prokaryotes, eukaryotes, viruses) and clinical microbiology (immunity, pathogenicity, epidemiology, control of microbes, and diseases). The course is taught in the synchronous lecture halls on Cook/Douglass and Busch campuses. Students are expected to participate in active learning activities and participate in class discussion to deepen their understanding of the microbial world and apply their knowledge to various concepts. LEARNING GOALS: Learning Goals for General Microbiology Lecture: After completion of the lecture component of the course, successful students will: 1. Demonstrate an understanding of the structural similarities and differences among microbes and the unique structure/function relationships of prokaryotic cells.
    [Show full text]
  • Antony Van Leeuwenhoek, the Father of Microscope
    Turkish Journal of Biochemistry – Türk Biyokimya Dergisi 2016; 41(1): 58–62 Education Sector Letter to the Editor – 93585 Emine Elif Vatanoğlu-Lutz*, Ahmet Doğan Ataman Medicine in philately: Antony Van Leeuwenhoek, the father of microscope Pullardaki tıp: Antony Van Leeuwenhoek, mikroskobun kaşifi DOI 10.1515/tjb-2016-0010 only one lens to look at blood, insects and many other Received September 16, 2015; accepted December 1, 2015 objects. He was first to describe cells and bacteria, seen through his very small microscopes with, for his time, The origin of the word microscope comes from two Greek extremely good lenses (Figure 1) [3]. words, “uikpos,” small and “okottew,” view. It has been After van Leeuwenhoek’s contribution,there were big known for over 2000 years that glass bends light. In the steps in the world of microscopes. Several technical inno- 2nd century BC, Claudius Ptolemy described a stick appear- vations made microscopes better and easier to handle, ing to bend in a pool of water, and accurately recorded the which led to microscopy becoming more and more popular angles to within half a degree. He then very accurately among scientists. An important discovery was that lenses calculated the refraction constant of water. During the combining two types of glass could reduce the chromatic 1st century,around year 100, glass had been invented and effect, with its disturbing halos resulting from differences the Romans were looking through the glass and testing in refraction of light (Figure 2) [4]. it. They experimented with different shapes of clear glass In 1830, Joseph Jackson Lister reduced the problem and one of their samples was thick in the middle and thin with spherical aberration by showing that several weak on the edges [1].
    [Show full text]
  • On the Development of Spinoza's Account of Human Religion
    Intermountain West Journal of Religious Studies Volume 5 Number 1 Spring 2014 Article 4 2014 On the Development of Spinoza’s Account of Human Religion James Simkins University of Pittsburgh Follow this and additional works at: https://digitalcommons.usu.edu/imwjournal Recommended Citation Simkins, James "On the Development of Spinoza’s Account of Human Religion." Intermountain West Journal of Religious Studies 5, no. 1 (2014). https://digitalcommons.usu.edu/imwjournal/ vol5/iss1/4 This Article is brought to you for free and open access by the Journals at DigitalCommons@USU. It has been accepted for inclusion in Intermountain West Journal of Religious Studies by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 52 James Simkins: On the Development of Spinoza’s Account of Human Religion JAMES SIMKINS graduated with philosophy, history, and history and philosophy of science majors from the University of Pittsburgh in 2013. He is currently taking an indefinite amount of time off to explore himself and contemplate whether or not to pursue graduate study. His academic interests include Spinoza, epistemology, and history from below. IMW Journal of Religious Studies Vol. 5:1 53 ‡ On the Development of Spinoza’s Account of Human Religion ‡ In his philosophical and political writings, Benedict Spinoza (1632-1677) develops an account of human religion, which represents a unique theoretical orientation in the early modern period.1 This position is implicit in many of Spinoza’s philosophical arguments in the Treatise on the Emendation of the Intellect, the Short Treatise, and Ethics.2 However, it is most carefully developed in his Tractatus Theologico-Politicus (hereafter TTP).3 What makes Spinoza’s position unique is the fact that he rejects a traditional conception of religion on naturalistic grounds, while refusing to dismiss all religion as an entirely anthropological phenomenon.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Menasseh Ben Israel and His World Brill's Studies in Intellectual History
    MENASSEH BEN ISRAEL AND HIS WORLD BRILL'S STUDIES IN INTELLECTUAL HISTORY General Editor AJ. VANDERJAGT, University of Groningen Editorial Board M. COLISH, Oberlin College J.I. ISRAEL, University College, London J.D. NORTH, University of Groningen R.H. POPKIN, Washington University, St. Louis-UCLA VOLUME 15 MENASSEH BEN ISRAEL AND HIS WORLD EDITED BY YOSEF KAPLAN, HENRY MECHOULAN AND RICHARD H. POPKIN ^o fr-hw'* -A EJ. BRILL LEIDEN • NEW YORK • K0BENHAVN • KÖLN 1989 Published with financial support from the Dr. C. Louise Thijssen- Schoutestichting. Library of Congress Cataloging-in-Publication Data Menasseh Ben Israel and his world / edited by Yosef Kaplan, Henry Méchoulan and Richard H. Popkin. p. cm. -- (Brill's studies in intellectual history, ISSN 0920-8607 ; v. 15) Includes index. ISBN 9004091149 1. Menasseh ben Israel, 1604-1657. 2. Rabbis-Netherlands- -Amsterdam-Biography. 3. Amsterdam (Netherlands)-Biography. 4. Sephardim--Netherlands--Amsterdam--History--17th century. 5. Judaism--Netherlands--Amsterdam--History--17th century. I. Kaplan, Yosef. II. Popkin, Richard Henry, 1923- BM755.M25M46 1989 296'.092-dc20 89-7265 [B] CIP ISSN 0920-8607 ISBN 90 04 09114 9 © Copyright 1989 by E.J. Brill, The Netherlands All rights reserved. No part of this book may be reproduced or translated in any form, by print, photoprint, microfilm, microfiche or any other means without written permission from the publisher PRINTED IN THE NETHERLANDS BY E.J. BRILI, CONTENTS Introduction, Richard H. Popkin vu A Generation of Progress in the Historical Study of Dutch Sephardic Jewry, Yosef Kaplan 1 The Jewish Dimension of the Scottish Apocalypse: Climate, Cove- nant and World Renewal, Arthur H.
    [Show full text]
  • Introduction to Bacteriology and Bacterial Structure/Function
    INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century.
    [Show full text]