Enhanced D-D Fusion Rates When the Coulomb Barrier Is Lowered by Electrons Alfred Y
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Concepts for a Deuterium-Deuterium Fusion Reactor
Concepts for a deuterium-deuterium fusion reactor Roberto Onofrio1, 2 1Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universit`adi Padova, Via Marzolo 8, Padova 35131, Italy 2Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA We revisit the assumption that reactors based on deuterium-deuterium (D-D) fusion processes have to be necessarily developed after the successful completion of experiments and demonstrations for deuterium-tritium (D-T) fusion reactors. Two possible mechanisms for enhancing the reactivity are discussed. Hard tails in the energy distribution of the nuclei, through the so-called κ-distribution, allow to boost the number of energetic nuclei available for fusion reactions. At higher temperatures − − than usually considered in D-T plasmas, vacuum polarization effects from real e+e and µ+µ pairs may provide further speed-up due to their contribution to screening of the Coulomb barrier. Furthermore, the energy collection system can benefit from the absence of the lithium blanket, both in simplicity and compactness. The usual thermal cycle can be bypassed with comparable efficiency levels using hadronic calorimetry and third-generation photovoltaic cells, possibly allowing to extend the use of fusion reactors to broader contexts, most notably maritime transport. I. INTRODUCTION high yield scintillating materials and hadronic calorime- try with third-generation photovoltaic cells. This could lead to energy conversion at an initially nearly compara- It is usually assumed that the first commercial fusion ble efficiency with respect to a thermal cycle, with un- reactors will be based on D-T mixtures, and within this known margins for improvement, and within a compact frame a well-defined path has been paved with the ongo- design. -
Nuclear Fusion with Coulomb Barrier Lowered by Scalar Field
Issue 3 (October) PROGRESS IN PHYSICS Volume 15 (2019) Nuclear Fusion with Coulomb Barrier Lowered by Scalar Field T. X. Zhang1 and M. Y. Ye2 1Department of Physics, Chemistry, and Mathematics, Alabama A & M University, Normal, Alabama 35762, USA. E-mail: [email protected] 2School of Physical Science, University of Science and Technology of China, Hefei, Anhui 230088, China. E-mail: [email protected] The multi-hundred keV electrostatic Coulomb barrier among light elemental positively charged nuclei is the critical issue for realizing the thermonuclear fusion in laborato- ries. Instead of conventionally energizing nuclei to the needed energy, we, in this paper, develop a new plasma fusion mechanism, in which the Coulomb barrier among light elemental positively charged nuclei is lowered by a scalar field. Through polarizing the free space, the scalar field that couples gravitation and electromagnetism in a five- dimensional (5D) gravity or that associates with Bose-Einstein condensates in the 4D particle physics increases the electric permittivity of the vacuum, so that reduces the Coulomb barrier and enhances the quantum tunneling probability and thus increases the plasma fusion reaction rate. With a significant reduction of the Coulomb barrier and enhancement of tunneling probability by a strong scalar field, nuclear fusion can occur in a plasma at a low and even room temperatures. This implies that the conventional fusion devices such as the National Ignition Facility and many other well-developed or under developing fusion tokamaks, when a strong scalar field is appropriately estab- lished, can achieve their goals and reach the energy breakevens only using low-techs. -
The Coulomb Barrier Not Static in QED," a Correction to the Theory by Preparata on the Phenomenon of Cold Fusion and Theoretical Hypothesis
Frisone, F. "The Coulomb Barrier not Static in QED," A correction to the Theory by Preparata on the Phenomenon of Cold Fusion and Theoretical hypothesis. in ICCF-14 International Conference on Condensed Matter Nuclear Science. 2008. Washington, DC. “The Coulomb Barrier not Static in QED” A correction to the Theory by Preparata on the Phenomenon of Cold Fusion and Theoretical hypothesis Fulvio Frisone Department of Physics of the University of Catania Catania, Italy, 95125, Via Santa Sofia 64 Abstract In the last two decades, irrefutable experimental evidence has shown that Low Energy Nuclear Reactions (LENR) occur in specialized heavy hydrogen systems [1-4]. Nevertheless, we are still confronted with a problem: the theoretical basis of LENR are not known and, as a matter of fact, little research has been carried out on this subject. In this work we seek to analyse the deuteron-deuteron reactions within palladium lattice by means of Preparata’s model of the palladium lattice [5,15]. We will also show the occurrence probability of fusion phenomena according to more accurate experiments [6]. We are not going to use any of the research models which have been previously followed in this field. Our aim is to demonstrate the theoretical possibility of cold fusion. Moreover, we will focus on tunneling the existent Coulomb barrier between two deuterons. Analysing the possible contributions of the lattice to the improvement of the tunneling probability, we find that there is a real mechanism through which this probability could be increased: this mechanism is the screening effect due to d-shell electrons of palladium lattice. -
Can Deuterium Formation Be Measured?
CAN DEUTERIUM FORMATION BE MEASURED? Robert K. Soberman∗ and Maurice Dubin† retired (Dated: November 12, 2018) The fundamental PP reaction has never been attempted in the laboratory as theory states it cannot be measured within the human life span. This forms the foundation of stellar nucleosynthesis and the standard solar model. Yet numerous observations including the Sun’s obvious variability argue the theory is flawed and the reaction occurs in times many orders of magnitude shorter than prediction. Considering the consequence to accepted models and controlled fusion, testing is warranted. PACS numbers: 95.30.Cq, 96.60.-j, 25.40.-h There is no record of an attempt to measure the transmutation probability for the fundamental reaction 1H(p, e+,ν)2H. As Bethe and Critchfield [1] predicted a reaction rate of 14(10)9 years no one has been bold enough to test this prediction. Parker and Rolfs [2] wrote “It can be estimated that with a total cross section of 10−47cm2 at Ep(lab) = 1MeV for a proton beam of 1 mA incident on a thick hydrogen target, there would be only one 1H(p, e+,ν)2H reaction in 106 yr.” A similar but numerically discrepant statement appears in Clayton’s classic stellar nucleosynthesis text [3]. As no research team has the patients, resources or longevity to wait out such a prediction it is not surprising that it has never been tested. Such a slow reaction rate was necessary for the standard stellar power model. A much shorter time would cut the lifetime of stars accordingly and a brief reaction time such as seconds would, in that model, cause stars to explode when the reaction conditions were reached. -
Cold Fusion Phenomena May 23-25, 1989 Santa Fe, New Mexico
WORKSHOP ON COLD FUSION PHENOMENA MAY 23-25, 1989 SANTA FE, NEW MEXICO AGENDA Sponsored by Los Alamos National Laboratory and the U.S. Department of Energy TABLE OF CONTENTS Program Committee V Agenda 1-6 Abstracts of Presentations Sessions A - E WORKSHOP CO-CHAIRMAN Prof. Johann Rafelski Department of Physics Dr. Norman Hackerman University of Arizona The Welch Foundation Tucson, AZ Houston, TX Dr. A. John Appleby Dr. J. Robert Schrieffer Center for Electrochemical Systems Director, Institute for and Hydrogen Research Theoretical Physics Texas A&M University University of California College Station, TX Santa Barbara, CA Dr. Anthony L. Turkevich Enrico Fermi Institute TECHNICAL PROGRAM COORDINATOR University of Chicago Chicago, IL Dr. Reed J. Jensen Los Alamos National Laboratory PROGRAM SUPPORT COORDINATOR Mr. David C. Phillips Los Alamos National Laboratory WORKSHOP PROGRAM COMMITTEE Prof. Allen Bard Department of Chemistry University of Texas Austin, TX Dr. Hans Frauenfelder Department of Physics University of Illinois at Urbana-Champaign Urbana, IL Dr. Steven E. Jones Department of Chemistry Brigham Young University Provo, UT Prof. Arthur K. Kerman Director, Laboratory for Nuclear Science MIT Cambridge, MA Prof. Steve Koonin Institute for Theoretical Physics University of California Santa Barbara, CA AGENDA WORKSHOP ON COLD FUSION PHENOMENA May 22-25, 1989 SWEENEY CENTER, SANTA FE, NM MONDAY, MAY 22 Workshop participants arrive in Santa Fe 4:00 - 8:00 Registration and badge issue at EldoradoHotel -Hospitality room available at EldoradoHotel TUESDAY, MAY 23 7:30 - 8:00 Arrival at Sweeney Center 8:00 - 8:30 Late Registration 8:30 - 9:00 Preliminary Remarks Reed J. -
Stellar Evolution
AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown. -
Primordial Nucleosynthesis in the Precision Cosmology Era the Annual Review of Nuclear and Particle Science Gary Steigman (2007)
Primordial Nucleosynthesis in the Precision Cosmology Era The Annual Review of Nuclear and Particle Science Gary Steigman (2007) Galactic Archeology Seminar Manuel Kramer Universit¨atHeidelberg December 1, 2017 Contents 1 Introduction 2 Fusion of the first nuclides 3 Observations of the relic nuclides 4 Theory vs data 5 Summary Source: CERN Introduction Fusion of the first nuclides Observations of the relic nuclides Theory vs data Summary Fusion of the first nuclides Initial neutron to proton ratio Neutron & Proton equilibrium Once stable hadrons can form from the quark gluon plasma in the very early universe, neutrons and protons are in thermal equilibrium by the weak interactions: − p + e $ n + νe (1) + n + e $ p +ν ¯e Mass of protons is slightly lower than that of the neutrons ni =pi = 1=7 (2) Introduction Fusion of the first nuclides Observations of the relic nuclides Theory vs data Summary Deuterium evolution Deuterium is formed by fusion of a proton and a neutron n + p $ d + γ (3) Significant amounts can only built up when kT . 80 keV −10 The higher the baryon density η10 = 10 (nB=nγ), the higher the interaction rate Introduction Fusion of the first nuclides Observations of the relic nuclides Theory vs data Summary Helium-4 evolution Nucelar fusion processes The starting point for all subsequent fusions is Deuterium Deuterium fusion is a slow reaction Deuterium is immediately converted to 3He and tritium no stable mass-5 nuclides ! bottleneck at 4He Source: https://en.wikipedia.org/ wiki/Big Bang nucleosynthesis Introduction Fusion of -
Modern Physics, the Nature of the Interaction Between Particles Is Carried a Step Further
44.1 Some Properties of Nuclei 1385 are the same, apart from the additional repulsive Coulomb force for the proton– U(r ) (MeV) proton interaction. 40 Evidence for the limited range of nuclear forces comes from scattering experi- n–p system ments and from studies of nuclear binding energies. The short range of the nuclear 20 force is shown in the neutron–proton (n–p) potential energy plot of Figure 44.3a 0 r (fm) obtained by scattering neutrons from a target containing hydrogen. The depth of 1 567432 8 the n–p potential energy well is 40 to 50 MeV, and there is a strong repulsive com- Ϫ20 ponent that prevents the nucleons from approaching much closer than 0.4 fm. Ϫ40 The nuclear force does not affect electrons, enabling energetic electrons to serve as point-like probes of nuclei. The charge independence of the nuclear force also Ϫ60 means that the main difference between the n–p and p–p interactions is that the a p–p potential energy consists of a superposition of nuclear and Coulomb interactions as shown in Figure 44.3b. At distances less than 2 fm, both p–p and n–p potential The difference in the two curves energies are nearly identical, but for distances of 2 fm or greater, the p–p potential is due to the large Coulomb has a positive energy barrier with a maximum at 4 fm. repulsion in the case of the proton–proton interaction. The existence of the nuclear force results in approximately 270 stable nuclei; hundreds of other nuclei have been observed, but they are unstable. -
Astronomy General Information
ASTRONOMY GENERAL INFORMATION HERTZSPRUNG-RUSSELL (H-R) DIAGRAMS -A scatter graph of stars showing the relationship between the stars’ absolute magnitude or luminosities versus their spectral types or classifications and effective temperatures. -Can be used to measure distance to a star cluster by comparing apparent magnitude of stars with abs. magnitudes of stars with known distances (AKA model stars). Observed group plotted and then overlapped via shift in vertical direction. Difference in magnitude bridge equals distance modulus. Known as Spectroscopic Parallax. SPECTRA HARVARD SPECTRAL CLASSIFICATION (1-D) -Groups stars by surface atmospheric temp. Used in H-R diag. vs. Luminosity/Abs. Mag. Class* Color Descr. Actual Color Mass (M☉) Radius(R☉) Lumin.(L☉) O Blue Blue B Blue-white Deep B-W 2.1-16 1.8-6.6 25-30,000 A White Blue-white 1.4-2.1 1.4-1.8 5-25 F Yellow-white White 1.04-1.4 1.15-1.4 1.5-5 G Yellow Yellowish-W 0.8-1.04 0.96-1.15 0.6-1.5 K Orange Pale Y-O 0.45-0.8 0.7-0.96 0.08-0.6 M Red Lt. Orange-Red 0.08-0.45 *Very weak stars of classes L, T, and Y are not included. -Classes are further divided by Arabic numerals (0-9), and then even further by half subtypes. The lower the number, the hotter (e.g. A0 is hotter than an A7 star) YERKES/MK SPECTRAL CLASSIFICATION (2-D!) -Groups stars based on both temperature and luminosity based on spectral lines. -
Maximizing Specific Energy by Breeding Deuterium
Maximizing specific energy by breeding deuterium Justin Ball Ecole Polytechnique F´ed´eralede Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland E-mail: [email protected] Abstract. Specific energy (i.e. energy per unit mass) is one of the most fundamental and consequential properties of a fuel source. In this work, a systematic study of measured fusion cross-sections is performed to determine which reactions are potentially feasible and identify the fuel cycle that maximizes specific energy. This reveals that, by using normal hydrogen to breed deuterium via neutron capture, the conventional catalyzed D-D fusion fuel cycle can attain a specific energy greater than anything else. Simply surrounding a catalyzed D-D reactor with water enables deuterium fuel, the dominant stockpile of energy on Earth, to produce as much as 65% more energy. Lastly, the impact on space propulsion is considered, revealing that an effective exhaust velocity exceeding that of deuterium-helium-3 is theoretically possible. 1. Introduction The aim of this work is to investigate the basic question \What fuel source can provide the most energy with the least mass?" For this question, we will look into the near future and assume that the current incremental and steady development of technology will continue. However, we will not postulate any breakthroughs or new physical processes because they cannot be predicted with any certainty. It is already well-known that the answer to our question must involve fusion fuels [1,2], but nothing more precise has been rigorously establishedz. A more precise answer may be useful in the future arXiv:1908.00834v1 [physics.pop-ph] 2 Aug 2019 when the technology required to implement it becomes available. -
Stellar Nucleosynthesis
Stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements. It explains why the observed abundances of elements change over time and why some elements and their isotopes are much more abundant than others. The theory was initially proposed by Fred Hoyle in 1946,[1] who later refined it in 1954.[2] Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret Burbidge, Geoffrey Burbidge, William Alfred Fowler and Hoyle in their famous 1957 B2FH paper,[3] which became one of the most heavily cited papers in astrophysics history. Stars evolve because of changes in their composition (the abundance of their constituent elements) over their lifespans, first by burning hydrogen (main sequence star), then helium (red giant star), and progressively burning higher elements. However, this does not by itself significantly alter the abundances of elements in the universe as the elements are contained within the star. Later in its life, a low-mass star will slowly eject its atmosphere via stellar wind, forming a planetary nebula, while a higher–mass star will eject mass via a sudden catastrophic event called a supernova. The term supernova nucleosynthesis is used to describe the creation of elements during the explosion of a massive star or white dwarf. The advanced sequence of burning fuels is driven by gravitational collapse and its associated heating, resulting in the subsequent burning of carbon, oxygen and silicon. -
F .~ I DISCLAIMER
---,~ ES·F·'H125.1y U.S. DEPARTMENT OF ENERGY (10-86) '" . I CORRESPONDENCE CONTROL FORM OFFICE OF THE EXECUTIVE SECRETARIAT ACTIVITY (. 1) 0 DO NOT DETACH FROM ORIGINAL CORRESPONDENCE SOURCE.CODE f'N PUB."]( r1Hll... .SPEC INT: CONTROL Nor- ~~ 89 .... ,) 1• ~~ OB O .\TE CORR: ~tH,..,..1 ....,..1 ..,...l ""'O ....,.,,. "''""l8,..,..,9 / :<r DATE CNTRL: O<~J/ l '·l.·· bS' DATE DUE: -------- -------- .R: .:_ MEMO: TWX: TO: SECY: X DEP SEC: UN SEC: OTHER: ----- I (J SUBJ: 1'1 .;J...[A I U~~· .[( N FOR USE BY ACTION OFFICE ONLY ENCL OSES "SHOR f BUfriNAI~Y OF ACTION REFERRED TO DATE RETURN TO DUE RE.:>E ·· F Cll 0 :: U f ON·-I'tDUC :::n DATE CH .·N .. ~REf.~CTIO -~ROLESSEb ~-oR 2 L "'GE·- SC l .:. p WER t •• II 3 ACTION T<(IJ~ TYPEACTION: For vour' infor'M<ltion SIG OF: --~------------- ---- CONCURRENCE: INFORMATION ~ ; DS US t1A/1. 22 DO/I~ 1 FILECODE. MKIM-ESJS 012080 CONTROL ANALYST: TRI-)Vlb HULSEY. I ~j07 ·,; ALL DOCUMENTS FOR THE OFFICE OF THE SECRETARY MUST BE FORWARDED TO THE OFFICE OF THE EXECUTIVE SECRETARIAT FOR FINAL PROCESSING f .~ I DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ' t PURDUE UNIVERSITY DEPARTMENT OF PHYSICS August 10, 1989 Dr. John R . Huizenga Co-Chairman, Cold Fusion Panel U.S. Department of Energy 1000 Independence A venue, SW Washington, D.C. 20585 Dear Dr. Huizenga: As you requested in your letter of July 20, 1989, I am sending you a short summary of my past and present research on nuclear fusion.