SUNIST Program and Improvement of Operation on SUNIST Spherical Tokamak

Total Page:16

File Type:pdf, Size:1020Kb

SUNIST Program and Improvement of Operation on SUNIST Spherical Tokamak Paper SUNIST Program and Improvement of Operation on SUNIST Spherical Tokamak ∗ He Yexi Non-member ∗ Gao Zhe Non-member ∗ Wang Wenhao Non-member ∗ Xiao Qiong Non-member ∗ Xie Lifeng Non-member ∗ Zeng Li Non-member ∗ Zhang Guoping Non-member ∗ Feng Chunhua Non-member ∗ Wang Long Non-member ∗∗ Yang Xuanzong Non-member Spherical tokamak program in China was started up from 1999. The Sino United Spherical tokamak (SUNIST) has been assembled in November 2002. Test discharge of SUNIST completed at the end of 2002. We got the plasma with about 50 kA of current in test discharge without flattop on plasma current. After modification of the power supply of vertical field in 2003, we obtained fine equilibrium plasma current on SUNIST with about 2 ms flattop. The SUNIST laboratory has been founded in 2004, consisted of Depart- ment of Engineering Physics, Tsinghus University (DEPTS.) and Institute of Physics, Chinese Academy of Sciences (IOPCAS). A series of experiments has been taken on edge plasma parameters, fluctuation and turbulence before and after power supply modification. At the end of 2003, we tried to deposit siliconized film on vacuum vessel. After siliconization, plasma current flattop could extend to the regime where the signal of loop flux had fell down to zero. Keywords: spherical tokamak, discharge, vertical field, siliconization 1. The SUNIST program was originally sponsored by Introduction National Nature Science Fund, Subject Development of In past thirty years, Chinese fusion research activi- Tsinghua University Project and Innovation Fund of In- ties have been concentrated in tokamak configuration stitute of Physics, Chinese Academy of Sciences. The machines, such as CT-6, HT-6B/M, HL-1/M, KT-5, research activities in first period include establishing a and HT-7 with superconducting toroidal field magnet. spherical tokamak device, named SUNIST located at Now two tokamak programs are being developed in Tsinghua University, a united laboratory (consisted China. One is the EAST superconducting tokamak of Department of Engineering Physics, Tsinghua program (1) in Institute of Plasma Physics, Chinese University and Institute of Physics, Chinese Academy Academy of Sciences (IPPCAS), which aims at steady of Sciences) established in 2004 and the preliminary state advanced tokamak (AT) operation, and the other experiments of spherical tokamak, which is introduced is the HL-2A tokamak program (2) in Southwestern In- in Sec. I. The improvement of operation on SUNIST stitute of Physics (SWIP), which is motivated by the re- is described in Sec. II. Sec. III gives the vertical search of high performance plasma, reversed shear and field effect on discharge, and Sec. IV gives the vacuum AT operation mode. The Sino United Spherical toka- conditioning and its influence on discharge. Finally, a mak (SUNIST) program is the only research program of summary is given. (3) spherical tokamak in China. 2. SUNIST Program (4) ∗ SUNIST Laboratory, Department of Engineering Physics, The mission of this program is to explore the spherical Tsinghua University torus plasma on the SUNIST spherical tokamak (Fig. 1), Beijing 100084, P.R.Cnina including discharge character exploration, edge plasma ∗∗ SUNIST Laboratory, Institute of Physics, Chinese Academy of Sciences characteristic research, turbulence research, and plasma Beijing 100080, P.R.China current startup and sustain without solenoid. 電学論 A,125 巻 11 号,2005 年 925 Fig. 2. SUNIST vacuum vessel Table 1. Main parameters of SUNIST magnets and power supplies system I(kA) V(kV) L/R (µH/mΩ) C(mF/kV) toroidal 10 0.2 521/5.3 2560/0.4 ohmic ±13 4.7 532/18,3 3.4/5 vertical 2 2/0.2 697/15.5 1/2, 450/0.25 microwave 0.023 25 0.125/25 Fig. 1. SUNIST spherical tokamak device In coming years, SUNIST will start ECR plasma cur- rent startup and upgrade for coaxial helical injection The parameters of SUNIST device is as followings: (CHI) experiment. Peripheral systems would be modi- fied according to the demands of these experiments, such R major radius 0.3 m as power supply and control system, magnetic probes, spectroscopes, microwave interferometer, high speed im- a minor radius 0.23 m age recording and so on. A aspect ratio 1.3 k elongation 1.6 3. Improvement of SUNIST Operation BT toroidal field 0.15 T During the test discharge period on SUNIST, plasma IP plasma current 50 kA current could reach 50 kA easily, but there was no any ∆Φ flux swing 0.06 Vs flattop on plasma current curve. There were two pos- sible reasons, bad condition of vacuum vessel wall or The machine assembling has been completed in lack of basic equilibrium condition of plasma current col- November 2002. The leak rate of cross seal was less umn. It was difficult to distinguish without believable −7 3 than 2 × 10 Pa,m /s. Test discharge of SUNIST was information about plasma horizontal shift and impuri- (5) −5 completed at the end of 2002 and the plasma with ties. However, 6 × 10 Pa of vacuum vessel pressure 50 kA of current was gotten. A series of experiments was not too bad, and mass spectrum analysis also sug- has been taken for edge plasma parameters, fluctuation gested that vacuum should not to be the main reason and turbulence before and after power supply modifi- for the plasma current without flattop. On the other cation. Improvement of equilibrium quality decreased hand, comparing the plasma current with the currents fluctuation level of edge plasma. of ohmic and vertical field (Fig. 3) gave us useful in- The SUNIST vacuum vessel consists of outer shells formation. The current of vertical field dropped down with 6 mm of thickness and 0.5 mm thickness of cen- after touching the top when the plasma current reached tral column. A viton cross seal ring, between two half its peak also. We noticed the maximum value of the outer shells, and central post, provides vacuum sealing vertical field current and the decreasing subsequently and the electrical break along toroidal and poloidal di- were quite different with the behavior of the vertical rections (Fig. 2) for interrupting one of the eddy current field when it tested only. Associated with mutual in- during breakdown. ductivities between plasma and poloidal field (Table 2), Main parameters of SUNIST magnets and power sup- tight coupling between ohmic and vertical field might be plies are listed in Table 1. responsible for the hollow of vertical field current. Sim- Power supplies, diagnostics and other systems in ple analysis identified the similar in value of maximum SUNIST, limited by budget, were considered as simply value and dropped subsequently with test discharge. as possible. Following the successful test operation, up- Several methods could eliminate the couple effect com- grades of the peripheral system and the improvement of pletely. We selected a simplest one that is, using stor- operation become more important. age energy of capacitor banks instead of drawing from 926 IEEJ Trans. FM, Vol.125, No.11, 2005 SUNIST Program and Improvement of Operation on SUNIST Fig. 5. Vertical effect on discharge, with 1 kG of toroidal field, 10 kA of ohmic field current and charging Volts of vertical field capacitor banks as separately; A: 250/160, B: 300/210 and C: 400/240 Fig. 3. Typical discharge curves, current of plasma (IP ), vertical field (IV ), ohmic (Iohm) and flux loop signals at different positions (Vp1- inside, Vp2- outside) Fig. 6. Vertical field effect on magnetic surface of plasma with 30 kA of IP andA:0.2,B:0.4andC: Table 2. Mutual inductivities between poloidal 0.8 kA of vertical field current in SUNIST spherical field and plasma tokamak M(µH) Bohm Bvertical plasma Bohm 519 Bvertical 124.3 684 cal field current (charging volt of capacitor banks) with plasma 2.3 5.54 0.33 fixed toroidal field and ohmic field current. This phe- nomenon suggests that vertical field is not only to affect plasma horizontal position but also shape and plasma current value. We identified qualitatively the action of vertical field on plasma by mean of equilibrium calcula- tion with a simple single filament mode, shown in Fig. 6, the magnetic surface of plasma under same plasma current changes with vertical field acted on. It suggests that it is easy to keep plasma “equilibrium” by adjust- ing vertical field according to horizontal shift signal, but we would not only adjust the plasma position but also change other important parameters simultaneously. This phenomenon of plasma has influenced our re- search program from two aspects, one is we should per- Fig. 4. Typical discharge, reconfigured vertical field capacitor bank form integrality control of plasma current, position and shape to get a reproducible plasma for physics research; another, the contribution of vertical field on flux will be vertical field magnet energy to provide the coupling en- a interesting topic for research. ergy demand. We also planned to solve the problem 5. Vacuum Conditioning completely by real time control of poloidal field current later. After modifying the configuration of vertical field Vacuum condition is a special important issue in con- capacitor banks, from 1 mF/2 kV, 0.45 F/200 V to 2 trolled fusion research. There is a nature risk of vacuum mF/ 1 kV, 4.7 mF/900 V (or 18.8 mF/450V), we ob- leakage in SUNIST device, four positions of cross vac- tained desirable effect (Fig. 4). Current of vertical field uum seal. We got a calibrated leak rate of less than has been adjustable easily by charging voltage of capac- 10−7 Pa·m3/s on cross seal positions in vacuum test of itor banks and there has been about 2 ms of flattop on SUNIST vacuum vessel and monitor these position any- plasma current that extended to the maximum of ohmic time the vacuum condition changed.
Recommended publications
  • The Fifth A3 Foresight Workshop on Spherical Torus
    The Fifth A3 Foresight Workshop on Spherical Torus Feb. 15-17, 2017 Fontaine Blanche Hotel (丽水云泉大酒店), Kunming, Yunnan, China Organized by: Tsinghua University Yunnan Normal University Sponsors: National Natural Science Foundation of China (NSFC) Japan Society for the promotion of Science (JSPS) National Research Foundation of Korea (NRF) Agenda Presentation type: 30 min =25 min talk +5 min discussion 20 min =15 min talk +5 min discussion Tuesday, February 14, 2017 (Day 0, the lobby of the hotel) 14:00-17:30 Registration Wednesday, February 15, 2017 (Day 1, Yuntu Hall) 8:30-9:00 Registration 9:00-9:20 Opening President of Yunnan Normal University Prof. Z. Gao (Tsinghua U, China) Prof. Y. S. Hwang (Seoul National U, Korea) Prof. M. Inomoto (U Tokyo, Japan) 9:20-10:20 Session 1 Chair: GAO Zhe 9:20-9:50 Overview of VEST Prof. HWANG Yong Seok 9:50-10:20 Overview of UTST Prof. INOMOTO Michiaki 10:20-10:40 Coffee Break and Photo 10:40-11:40 Session 2 Chair: MAEKAWA Takashi 10:40-11:10 Overview of SUNIST Prof. GAO Zhe 11:10-11:40 Overview of TST-2 Prof. EJIRI Aira 11:40-13:40 Lunch 13:40-16:00 Session 3 Chair: RYU Chang Mo 13:40-14:10 Non-inductive startup studies on LATE Prof. MAEKAWA Takashi 14:10-14:40 Overview of TBM Program in ITER Prof. HONG Bong Guen 14:40-15:00 Fundamental Concept of High Field Side Mr. ELSERAFY Hatem injection of RF for EBW excitation in QUEST 15:00-15:20 Intermittent Plasma Bursts in Over-dense Mr.
    [Show full text]
  • SUNIST Spherical Tokamak
    rd th SUNISTSUNIST The 3 IAEA TCM on Spherical Torus and the 11 STW, St. Petersburg Preliminary experiment of plasma current startup by ECR wave on SUNIST spherical tokamak HE Yexi, ZHANG Liang, *FENG Chunhua, FU Hongjun, GAO Zhe, TAN Yi, WANG Wenhao, *WANG Long, *YANG Xuanzong, XIE Lifeng [email protected], 86-10-62791874 (o), 86-10-62782658 (fax) SUNIST United Laboratory Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R.China *Institute of Physics, Chinese Academy of Science, Beijing 100080, P.R.China This work was supported by JSPS-CAS Core-University Program on Plasma and Nuclear Fusion, the National Nature and Science Fund of China (Grant numbers: 10275041 and 10375089) , and International Atomic Energy Agency (Research contract No. 12935/R0) . SUNIST- Sino UNIted Spherical Tokamak UNISTSUNISTUNISTSUNIST OUTLINE SUNIST spherical tokamak Preliminary result Remained questions UNISTSUNISTUNISTSUNIST SUNIST spherical tokamak SUNIST United Laboratory SUNIST United Laboratory founded in 2004, consists of Department of Engineering Physics, Tsinghus University (DEP) ; Institute of Physics, Chinese Academy of Science (IOP) and keeping very close collaboration with Southwestern Institute of Physics (SWIP) and Institute of Plasma Physics, Chinese Academy of Science (IPPAS). Members of SUNIST Laboratory He, Yexi Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R.China, 86-10- 62791874(lab), 86-10-62782658(fax), [email protected] (e-mail) Yang, Xuanzong Institute of Physics,
    [Show full text]
  • Topical Review Solenoid-Free Plasma Start-Up in Spherical Tokamaks
    Home Search Collections Journals About Contact us My IOPscience Solenoid-free plasma start-up in spherical tokamaks This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 Plasma Phys. Control. Fusion 56 103001 (http://iopscience.iop.org/0741-3335/56/10/103001) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.125.233.17 This content was downloaded on 06/01/2015 at 20:20 Please note that terms and conditions apply. Plasma Physics and Controlled Fusion Plasma Phys. Control. Fusion 56 (2014) 103001 (19pp) doi:10.1088/0741-3335/56/10/103001 Topical Review Solenoid-free plasma start-up in spherical tokamaks R Raman1 and V F Shevchenko2 1 William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195, USA 2 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK E-mail: [email protected] Received 15 June 2014, revised 20 August 2014 Accepted for publication 1 September 2014 Published 22 September 2014 Abstract The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity.
    [Show full text]
  • RFP Program Started in China
    6th US-PRC Magnetic Fusion Collaboration Workshop San Diego, July 10-12, 2012 Physics Rationale and Engineering Design of Keda Torus eXperiment Wandong Liu, on behalf of KTX team School of Physical Sciences University of Science and Technology of China Collaboration with: – Institute of plasma physics – University of Wisconsin at Madison, U.S. – South western institute of physics – Consorzio RFX, Padova, Italy – Huazhong University of Science and Technology – Kyoto Institute of Technology, Japan – University of California Los Angles, U.S. – University of Saskatchewan, Canada A new RFP program started in China The new reversed field pinch(RFP) program in China, Keda Torus eXperiment (KTX)officially started by the Ministry of Science and Technology, in the framework of the ITER domestic program The duration of the program is 3 years, starting from the end of last year for design and construction of the machine (2012-2014) The University of Science and Technology of China (USTC) will provide a new building to accommodate KTX device Reversed Field Pinch: an important alternate toroidal concept Three major configuration of MCF Stellarator: magnetic field is generated totally by the external coils Tokamak: magnetic field is generated primarily by the external coils RFP: magnetic field is generated primarily by the plasma current Tokamak RFP Main advantages of Reversed Field Pinch Small externally applied field: the use of normal magnets, high engineering beta, high mass-power-density, efficient assembly Large plasma current density:
    [Show full text]
  • Observation of Multiple Shear Layers and Long-Range Transport Events on HL-2A Tokamak Wenbin Liu1, George R
    MF-O9 AAPPS-DPP2019 3rd Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China Observation of multiple shear layers and long-range transport events on HL-2A tokamak Wenbin Liu1, George R. Tynan2,3, Yihang Chen3, Rui Ke3, Yifan Wu3, Zengchen Yang3, Kairui Fang3, Weiwen Xiao4, Min Xu3, Zhe Gao1 and HL-2A team3 1Department of engineering physics, Tsinghua University 2Department of Mechanical and Aerospace Engineering, University of California, San Diego 3Center for Fusion Science, Southwestern Institute of Physics 4Department of Physics, Zhejiang University e-mail (speaker): [email protected] Recent flux-driven gyrokinetic computational shown in Fig. 1 (b). modeling and theory suggested the existence of an 푬 × 푩 4. Multi-channel ECE and FMCW reflectometry staircase in the plasma core consisting of a series of data show that there are some corrugations in the m/n=0/0 푬 × 푩 shear layers formed at different plasma background gradient profiles and their radial positions are minor radii via the action of the turbulent Reynolds consistent with those of the shear layers; stress1,2. These layers then act as semi-permeable 5. Moreover, In the region between these shear transport barriers and thus regulate the background layers, transport events with long radial distance and small gradients, causing a localized steepening of the gradient. radial wavenumber satisfy the characteristics of avalanche Recent published experimental work in TORE-SUPRA dynamics; shows that the turbulent radial correlation length exhibits 6. A statistical result shows that the weak a number of marked reductions across the minor radius of disturbances terminate at the shear layers while strong the device, and data also suggest that the turbulent eddies disturbances penetrate the shear layers, thus verifies the undergo a reversal of their anisotropic tilting as these semi-permeability of the shear layers which is an minima are traversed.
    [Show full text]
  • Recent Progress in the SUNIST Spherical Tokamak
    The Joint Meeting of 5th IAEA Technical Meeting on Spherical Tori, 16th International Workshop on Spherical Torus (ISTW2011), and 2011 US-Japan Workshop on ST Plasma September 27-30, 2011 , National Institute for Fusion Science, Toki, Japan Recent Progress in the SUNIST Spherical Tokamak Yi Tan1, Zhe Gao1, Wenhao Wang1, Lifeng Xie1, Long Zeng1, Huiqiao Xie1, Ou Zhao1, Yangqing Liu1, Yanzheng Jiang1, Song Chai1, Xiaowei Peng1, Kun Yao1, Aihui Zhao1 Chunhuan Feng2, Long Wang2, Xuanzong Yang2 Guixiang Yang3 Email: [email protected] 1) Department of Engineering Physics, Tsinghua University, Beijing, China 2) Institute of Physics, Chinese Academic of Science, Beijing, China 3) College of Nuclear Physics and Technology, Nanhua University, Hengyang, China This work is supported by the Major State Basic Research Development Program from MOST of China under Grant No. 2008CB717804, 2009GB105002 and 2010GB107002, NSFC under Grant No. 10990214, 10775086 and 11005066. Introduction to SUNIST • SUNIST: Sino UNIted Spherical Overview of the SUNIST device Tokamak – What are united? • Department of Engineering Physics, Tsinghua University • Institute of Physics, Chinese Academy of Sciences – Major parameters • R0/a: 0.3/ 0.23m ~ 1.3 • BT0: <0.15 T • IP: ~ 50 kA 19 -3 • ne: ~ 110 m – Major diagnostics • Langmuir probes • Normal ( <100 kHz) / High frequency (~1 MHz) magnetic probes • Visible Spectrometers (250~ 750 nm) • 94 GHz interferometer • 8 mm reflectometer • Fast visible camera • Ha diode array Section view of the The vacuum SUNIST device vessel of
    [Show full text]
  • Preparation and Submission of a Manuscript for the Proceedings
    1 EX/P4-47 Re-commissioning of the Spherical Tokamak MEDUSA in Costa Rica V.I. Vargas1, J. Mora1, L.A. Araya-Solano1, A.M. Rojas-Loaiza1, J.M. Arias-Brenes1, J. F. Rojas1, J.I. Monge1, A. Canizales1, E. Acuña1, N. Piedra-Quesada1 1Instituto Tecnológico de Costa Rica (ITCR), Cartago, Costa Rica E-mail contact of main author: [email protected] Abstract. The low aspect ratio spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect ratio tokamak) is currently being re-commissioned in Costa Rica and was donation to Costa Rica Institute of Tecnology by University of Wisconsin-Madison, USA. The major characteristics of this device are: plasma major radius Ro < 0.14 m, plasma minor radius a < 0.10 m, plasma vertical elongation 1.2, toroidal field at the 20 -3 geometric center of the vessel BT < 0.5 T, plasma current Ip < 40 kA, ne (0) < 2 x 10 m , central electron temperature Te (0) < 140 eV, discharge duration is < 3 ms, top and bottom rail limiters, natural divertor D-shaped ohmic plasmas). In addition to training, the major objective of renamed device MEDUSA-CR is to address relevant physics for spherical and conventional tokamaks, taking advantage of the insulating vessel which allows plasma real time response to applied external electrical or magnetic fields. The major topics for the scientific programme are 1) Comparative studies of equilibrium and stability between natural divertor D and bean-shaped ST plasmas; 2) Study of an ergodic magnetic limiter; 3) Alfvén wave heating and current drive and; 4) Transport. Advances in some of these topics will be presented in this work, in addition to the technical tasks of machine re-commissioning involving the re-design of energy, gas injection, vacuum system and control systems.
    [Show full text]
  • M Ono Presentation ICEF 2016 V4.Pptx
    Spherical Tokamak for Economical Fusion Energy Development Masayuki Ono NSTX-U Department Head PPPL, Princeton University PPPL Innovation for Cool Earth Forum October 5 - 6, 2016 M. Ono ICEF 2016 October 5, 2016 Fusion for safe limitless energy source Fusion could provide energy for Energy 10 million times that of fossil fuel by weight future mankind: D + T He4 + n + 17.6 MeV - Environmentally friendly Heat from fusion reactor can also produce hydrogen! - Safe - Globally abundant fuel - High energy density - Support hydrogen economy Global Warming Nuclear spent fuel A large asteroid / comet hit Earh 65 million years ago Annual CO2 release – 40 billion tons Still increasing 8,000 tons per year M. Ono ICEF 2016 October 5, 2016 2 Fusion for safe limitless energy source Fusion can also solve potential challenges for humanity Fusion could provide energy for Energy 10 million times that of fossil fuel by weight future mankind: D + T He4 + n + 17.6 MeV - Environmentally friendly Heat from fusion reactor can also produce hydrogen! - Safe - Globally abundant fuel - High energy density - Support hydrogen economy Fusion could help solve future challenges facing mankind: - Global warming - Fission reactor spent fuel - Space travel Global Warming Nuclear spent fuel A large asteroid / comet hit Earh 65 million years ago Annual CO2 release – 40 billion tons Still increasing 8,000 tons per year M. Ono ICEF 2016 October 5, 2016 3 Nuclear Fusion has many possible approaches Many Types of Magnetic Bottles! Beta is a ratio of plasma pressure over magnetic pressure - Plasma pressure produces fusion power - Mangetic pressure provided by coils but cost $ Tokamak Tri-Alpha NSTX-U Energy (Private) (US-DOE) A Modern Conventional Spherical (Private) Compact Stellarator Tokamak Tokamak Toroids Very Low B Axi-symmettric High beta Ip / IC ~ 0 Ip / IC ~ 0.1 Ip / IC ~ 1 Ip / IC > 1 LHD, W7-X TFTR, JET, JT-60, ITER NSTX, MAST.
    [Show full text]
  • Sf: Su Signature Analysis • Simulated Annealing • Sine Anno • S: Distance
    StarBriefs 2001 619 s sf: Su Signature Analysis • Simulated Annealing • Sine Anno • s: Distance. Path • Path Length • Laplace Variable • Single Access. Single Aircraft. Single Aisle. Site Activa­ Length of Arc. Long-Range Order Parameter. Response tion. Situational Awareness. Sky Atlas. Small Array. Curve • Saint • Satisfactory • Save • School • Scientific Sobolev Approximation • Sociedad Anonima • Sociedade Anonima • Societa Anonima • Societe Anonyme • So­ • Sculpsit • Sea. Second • Secondary • Section • Sed­ imentation Coefficient • Segundo • See • Semi • Sensi­ lar Activity • Solar Array • Source Acquisition • South tivity Curve • Series • Set • Shilling • Siecle • Siege • Africa • South African • South America • South Amer­ Siehe • Siglo • Sign • Signature • Signed • Silver • Sin ican • South Atlantic • South Australia • South Aus­ • Sine. Singlet • Singular • Sinister. Sinistra • Sister tralian • Spacecraft Adapter • Special Agent • Spectral • Small • Snow • Society • Soft • Solidus • Solo • Son Albedo • Spectrograph Assembly • Spectrum Analysis • • Southerly • Specific Entropy • Spectral Transmission Spectrum Analyzer • Spin Axis • Splitting Amplifier • • Spherical. Spin Quantum Number. Steamer. Steel Station Address. Station Automatique • Storage Alter­ • Stem. Stere • Stock. Stoichiometric Oxidant-to-Fuel ation • Storage Area • Store Address • Strongly Agree • Ratio • Strange • Stratus • Strong Absorption • Su • Structural Analyzer • Structured Analysis • Su Alteza • Siidlich • Sun • Sunny • sur • Sustantivo • Symmetrical Subaccount.
    [Show full text]
  • The Fairy Tale of Nuclear Fusion L
    The Fairy Tale of Nuclear Fusion L. J. Reinders The Fairy Tale of Nuclear Fusion 123 L. J. Reinders Panningen, The Netherlands ISBN 978-3-030-64343-0 ISBN 978-3-030-64344-7 (eBook) https://doi.org/10.1007/978-3-030-64344-7 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland When you are studying any matter or considering any philosophy, ask yourself only what are the facts and what is the truth that the facts bear out.
    [Show full text]
  • Current Status of China Fusion Researches
    Current Status of China Fusion Researches • The State Council Authority The Ministry of Science and Technology (MOST) join to ITER Negotiation (China will be as fully member join to ITER). •The ITERChina Work Group Suggest: China Fusion Materials Researches Join IFMIF Project ( Now Ongoing Discussions). •The domestic Fusion Budget will be increased 10% of total Budget of International Collaboration (Join ITER + Maybe Join IFMIF) SWiP FUSION MATERIALS PROGRAM IN CHINA xu Budget for Fusion Energy R & D The State Council--- Policy SDIC -- Made Budget Plan for every ministry and commission ( Also directly made budget plan for some large construction project (Such as HL-2A Tokamak construction <SWIP> NNSFC --- Include Fusion energy R & D MOST--- Include some key technology for fusion energy One Office will Consider China National Fusion Energy R&D Program ! SWiP FUSION MATERIALS PROGRAM IN CHINA xu Current Missions for Fusion Energy R & D On China Science and Technology Society Right Now, It is Discussing : TO Participate in International Research collaboration on Large Facility • What can we contribute to the Large Facility ? • What is the benefit from the collaboration for China? • How to adjust and reinforce domestic fusion research? SWiP FUSION MATERIALS PROGRAM IN CHINA xu National Devices -- Constructing and Designing HL - 2A Normal Tokamak (SWIP) First plasma December 1st , 2002 HT - 7U Super-conducting Tokamak (ASIPP) First plasma will be in the end of 2005 } Spherical Tokamak (Tsinghua University) SUNIST (Sino-united spherical tokamak)
    [Show full text]
  • Overview of the Fusion Program in China
    ASIPP Overview of the Fusion Program in China B. N. Wan Institute of Plasma Physics, Chinese Academy of Sciences 1 Fusion as an important part of the national strategic in clean energy ASIPP 国家中长期科学和技术发展规划纲要 国务院 (2006-2020年) State council Outline of nation S&T development 国务院关于印发国家重大科技基础设 国发〔2013〕8 施建设中长期规划(2012-2030年) 号 国务院 Plan for large scale science facilities 国务院关于印发”十三五”国家科技创 国发〔2016〕43 新规划 国务院 号 Plan of S&T innovation for 13th 5 year 能源技术革命创新行动计划(2016- 2030年) 发改能源〔2016〕 国家发展改革委 /国 Acting plan for energy technology 513号 家能源局 innovation Fusion research is included in national science and technology developing plan and national innovation acting plan/program in clean energy 2 National Magnetic Confinement Fusion th Science Program in 12 5 year plan ASIPP • Supported R&D needed for ITER PA of China • Supported research capability enhancement of EAST/HL-2A Heating, diagnostics, in-vessel components, control… • Supported domestic research program on EAST/HL-2A ITER-physics including Modeling and simulation International collaboration including ITPACTPA • Supported conceptual design and some R&D of CFETR • Supported education and training program for MF community University program (JTEXT, KTX, SUNIST) • Supported material and other key R&D 3 Material research, remote handling, W-mono-block… National Magnetic Confinement Fusion Science th Program will be continuued in 13 5 year planASIPP It is emphasized to support ITER and CFETR related activities • ITER construction and operation PA of China, ITER physics and preparation of operation…
    [Show full text]