The EPR Advanced Nuclear Reactor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Reactors' Construction Costs
Nuclear reactors’ construction costs: The role of lead-time, standardization and technological progress Lina Escobar Rangel and Michel Berthélemy Mines ParisTech - Centre for Industrial Economics CERNA International WPNE Workshop Project and Logistics Management in Nuclear New Build NEA Headquarters - Issy les Moulineaux, 11th March 2014 Growing demand for nuclear power... Demand for nuclear power has increased in the past years and it is likely to keep on rising. Experienced countries: US, UK, Russia, South Korea According with UK’s Department of Energy & Climate Change nuclear industry plans to develop around 16 gigawatts (GW) of new nuclear EDF → 4 EPRs (6.4GW) at Hinkley Point and Sizewell Hitachi → 2 or 3 new nuclear reactors at Wylfa and Oldbury NuGeneration → 3.6GW of new nuclear capacity at Moorside Fast-growing economies: China, India China has 28 reactors under construction and it is planned a three-fold increase in nuclear capacity to at least 58 GWe by 2020, then some 150 GWe by 2030 16 AP1000 reactors are planned to start to be constructed from 2014-2018 At least 6 ACC1000 in 4 different locations 2 EPRs in Guangdong Other technologies like VVER-1000, VVER-1200, CNP-600, etc are also envisioned Growing demand for nuclear power... Demand for nuclear power has increased in the past years and it is likely to keep on rising. Experienced countries: US, UK, Russia, South Korea According with UK’s Department of Energy & Climate Change nuclear industry plans to develop around 16 gigawatts (GW) of new nuclear EDF → 4 EPRs (6.4GW) at -
From Gen I to Gen III
From Gen I to Gen III Gabriel Farkas Slovak University of Technology in Bratislava Ilkovicova 3, 81219 Bratislava [email protected] 14. 9. 2010 1 Evolution of Nuclear Reactors Generation I - demonstration reactors Generation II - working in the present Generation III - under construction 14. 9. 2010 2 Generation IV - R&D 14. 9. 2010 3 Expected development in nuclear technologies Prolongation of lifetieme of existing nuclear reactors Construction of new reactors in frame of Gen. III and IV . Figure 1 Replacement staggered over a 30-year period (2020 - 2050) Rate of construction : 2,000 MW/year 70000 60000 Lifetime 50000 prolongation 40000 Generation IV 30000 Actual reactors 20000 Generation III+ 10000 0 197519801985199019952000200520102015202020252030203520402045205020552060 14. 9. 2010 Average plant life : 48 years 4 Nuclear in Europe (Nuclear ~ 32% of total EU electricity production) SE, 7.3% UK, 7.9% SP, 5.8% BE,4.8% CZ, 2.5% GE, 16.3% FI, 2.4% BU, 1.8% Other 12.4% SK, 1.7% HU, 1.4% LT, 1.1% FR, 45.5% SI, 0.6% NL, RO, 0.5% 0.4% Source PRIS 14. 9. 2010 5 Central & Eastern Europe - Nuclear Landscape Russia Lithuania Ukraine 6 VVER440 Poland 1 RBMK 1300 2 VVER440 8 VVER1000 Min. of Energy 13 VVER1000 NNEGC State owned 11 RBMK 1 BN600 4 Graph Mod BWR Czech Republic Rosenergoatom State 4 VVER440 owned 2 VVER1000 CEZ/ 67% State Romania owned 2 Candu PHW Nuclearelectrica State owned Slovak Republic 4/6 VVER440 Bulgaria ENEL 67% owned 2/4 VVER1000 NEC State owned Hungary Armenia 4 VVER 440 1 VVER440 MVM State owned Armatomenergo, State owned 14. -
Toimintakertomus Ja Tilinpäätös 2019
HALLITUKSEN TOIMINTAKERTOMUS JA TILINPÄÄTÖS HALLITUKSEN TOIMINTAKERTOMUS KESKEISET TUNNUSLUVUT KONSERNIN TILINPÄÄTÖS EMOYHTIÖN TILINPÄÄTÖS TALOUDELLISET TIEDOTTEET Sisältö 3 Teollisuuden Voima Oyj:n hallituksen 11 Vireillä olevat oikeudenkäynnit ja riita-asiat 20 Olennaiset tapahtumat tilikauden päättymisen jälkeen toimintakertomus 2019 12 Ydinvoima 21 Arvio tulevasta kehityksestä 3 Vuoden 2019 keskeiset tapahtumat 12 Olkiluoto 1 ja Olkiluoto 2 21 Ehdotukset yhtiökokoukselle 5 Toimintaympäristö 13 Vuosihuollot 5 TVO yhtiönä 13 Olkiluoto 3 EPR 22 Tilinpäätös 2019 6 Liiketoiminnan tulos 13 Ydinpolttoaine 22 Konsernin keskeisiä tietoja ja tunnuslukuja 6 Rahoitus ja maksuvalmius 13 Ydinjätehuolto 23 Emoyhtiön keskeisiä tietoja ja tunnuslukuja 7 Osakepääoma 15 Hiilivoima 24 Konsernin tilinpäätös 7 Hallinnointiperiaatteet 15 Meri-Pori 71 Emoyhtiön tilinpäätös 7 Hallintoelimet 15 Tutkimus- ja kehitystoiminta 89 Ehdotukset yhtiökokoukselle 8 Sääntely-ympäristö 15 Investoinnit käyttöomaisuuteen ja osakkeisiin 89 Toimintakertomuksen ja tilinpäätöksen allekirjoitukset 9 Riskienhallinta, merkittävimmät riskit ja 16 Vastuullisuus 90 Tilintarkastuskertomus epävarmuustekijät 17 Turvallisuus ja työturvallisuus 96 Taloudelliset tiedotteet vuonna 2020 9 Riskienhallinta 18 Ympäristö 9 Riskienhallintaprosessi 18 Henkilöstö ja henkilöstön koulutus 9 Merkittävimmät riskit ja epävarmuustekijät 20 Tytäryhtiöt ja yhteisyritykset 2 Hallituksen toimintakertomus ja tilinpäätös 2019 HALLITUKSEN TOIMINTAKERTOMUS KESKEISET TUNNUSLUVUT KONSERNIN TILINPÄÄTÖS EMOYHTIÖN -
The EPR™ Reactor
The EPR™ reactor the reference for New Build - © Photo credits: AREVA - EDF - TNPJVC - Tracy FAVEYRIAL - Elodie FERRARE - René QUATRAIN - Charlène MOREAU - Image et Process - Image - Charlène MOREAU QUATRAIN - Elodie FERRARE René FAVEYRIAL - Tracy - EDF TNPJVC AREVA credits: - © Photo April 2014 - design and production: April 2014 - design and production: The value of experience With 4 EPR™ reactors being built in 3 different countries, AREVA can leverage an unparalleled experience in licensing and construction to deliver high-performance new-generation projects to nuclear utilities all over the world. Olkiluoto 3, Best practices from continuous Finland project experience The most advanced new-generation Licensing experience with different regulators: project in the The only reactor with 5 separate licensing processes world underway worldwide • Construction licenses granted in Finland, France and China • Full Design Acceptance Confirmation awarded in the United Kingdom • Licensing review underway in the United States Flamanville 3, The only Gen3+ reactor design submitted to the European France “post-Fukushima” stress tests The first reactor in the new EDF’s EPR™ fleet Project management excellence • The largest in-house nuclear Engineering Procurement Construction (EPC) team: - More than 1,000 project management skilled people - 6,000+ Engineering and Project experienced workforce • Most Taishan Project Directors have worked on Taishan 1 and 2, Olkiluoto 3 or Flamanville 3 projects China EPR™ projects on track to be delivered Company-wide -
A Comparison of Advanced Nuclear Technologies
A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department. -
The Cost of New Nuclear Power Plants in France
The cost of new nuclear power plants in France SFEN TECHNICAL NOTE – MARCH 2018 SFEN TECHNICAL NOTE – MARCH 2018 The French Nuclear Energy Society (SFEN) is the French knowledge hub for nuclear energy. Created in 1973, the SFEN provides a place where French and International specialists, and all those with an interest in nuclear energy and its applications, can obtain and share information. The SFEN brings together 4000 professio- nals in industry, education and research. The SFEN’s contribution to France’s Multi-Year Energy Plan (Programmation pluriannuelle de l’énergie) The cost of new nuclear power plants in France Executive Summary & Recommendations SFEN TECHNICAL NOTE – MARCH 2018 Guaranteeing the nuclear option for 2050 With its June 2017 Climate Change Plan (Plan Climat), France has set a greenhouse gas emissions neutrality target for 2050. France currently relies on nuclear and renewable energy for generating low-carbon elec- tricity, with one of the most competitive supplies in Europe. France is committed to diversifying its energy mix at a pace that will depend on several factors which are not yet fully clear: the characteristics of demand, the technical and economic performance of the different technologies (renewable energy, storage, smart grids), as well as the energy strategies of its European neighbours, as part of an increas- ingly interconnected electricity system. In the short-term, continued operation of existing nuclear reactors (‘Grand carénage’ refurbishment programme) will provide France with low-carbon electricity, produced locally and at a competitive price. In the long-term, between 2030 and 2050, France is expected to progressively replace part of its existing nuclear fleet by new means of production. -
POHJOLAN VOIMA Annual Report 1999 CONTENTS
POHJOLAN VOIMA Annual Report 1999 CONTENTS Key figures for the Group 1999 4 Company Structure, 1 April 2000 5 Production and services 6 Review by the President of Pohjolan Voima Oy 8 Review by the President of PVO-Palvelut Oy 10 Strategy outline 12 Pohjolan Voima, environment and society 14 Events in 1999 17 Production 18 Services 25 Environmental year 1999 32 Administration 34 Accounts for 1999 Review by the Board of Directors 36 Consolidated Profit and Loss Account 39 Consolidated Balance Sheet 40 Consolidated Cash Flow Statement 41 Profit and Loss Account of Parent Company 42 Parent Company Balance Sheet 43 Parent Company Cash Flow Statement 44 Accounting Policies 45 Notes to the Accounts 46 Notes to the Balance Sheet 48 Report of the Auditors 58 Information on Shares 59 Management 60 Adresses 62 The Annual General Meeting The Annual General Meeting of Pohjolan Voima Oy will be held on Thursday, 27 April 2000 at 10 am in Mikonkatu 15A, 00100 Helsinki. P o h j o l a n V o i m a 2 CHANGE IS AN OPPORTUNITY. CHANGING IS ESSENTIAL. OPERATING IDEA Ability and long-term commitment are re- As a whole, Pohjolan Voima will be de- The Pohjolan Voima Group is a privately- quired to ensure future operating conditions veloped into an international operator, able owned group of energy sector companies, in the energy field. to offer its shareholders and other customers which generates and purchases power In 1999, Pohjolan Voima’s energy gen- competitive energy solutions, through a wide and heat for the shareholders. -
The EPR - a Safe and Competitive Solution for Future Energy Needs
International Conference Nuclear Energy for New Europe 2006 Portorož, Slovenia, September 18-21, 2006 http://www.djs.si/port2006 The EPR - A Safe and Competitive Solution for Future Energy Needs Rüdiger Leverenz AREVA NP GmbH Freyeslebenstr. 1, 91058 Erlangen, Germany [email protected] Introduction In 2002, the Finnish Government gave the go-ahead for construction of the country's fifth nuclear power plant unit. In December of 2003, the AREVA NP/Siemens Consortium was awarded a turnkey contract by the Finnish utility Teollisuuden Voima Oy (TVO) to build a new nuclear power plant at the Olkiluoto site where two boiling water reactor units are already in operation. "Olkiluoto 3" [1][2] is an EPR, and thus the world’s very first third- generation nuclear power plant under construction. The reactor is being supplied by AREVA NP, the turbine and generator by Siemens. AREVA NP, which is head of the consortium, is responsible for overall project management as well as technical and functional integration. Figure 1: Affordable climate protection: the EPR (foreground) at Olkiluoto in Finland is to start producing electricity in 2009. AREVA: Power is Our Core Business With manufacturing facilities in 40 countries and a sales network in more than 100, AREVA offers customers reliable technological solutions for CO2-free power generation and electricity transmission and distribution. AREVA is the world leader in nuclear power and the only company to cover all industrial activities in this field (from uranium mining, processing 409.1 409.2 and enrichment as well as fuel manufacture, through reactor construction and services to reprocessing of used fuel). -
Technical and Economic Aspects of Load Following with Nuclear Power Plants
Nuclear Development June 2011 www.oecd-nea.org Technical and Economic Aspects of Load Following with Nuclear Power Plants NUCLEAR ENERGY AGENCY Nuclear Development Technical and Economic Aspects of Load Following with Nuclear Power Plants © OECD 2011 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Foreword Nuclear power plants are used extensively as base load sources of electricity. This is the most economical and technically simple mode of operation. In this mode, power changes are limited to frequency regulation for grid stability purposes and shutdowns for safety purposes. However for countries with high nuclear shares or desiring to significantly increase renewable energy sources, the question arises as to the ability of nuclear power plants to follow load on a regular basis, including daily variations of the power demand. This report considers the capability of nuclear power plants to follow load and the associated issues that arise when operating in a load following mode. The report was initiated as part of the NEA study “System effects of nuclear power”. It provided a detailed analysis of the technical and economic aspects of load-following with nuclear power plants, and summarises the impact of load-following on the operational mode, fuel performance and ageing of large equipment components of the plant. 3 Acknowledgements Valuable comments and contributions were received from Mr. Philippe Lebreton, Electricité de France, Dr. Holger Ludwig, Areva GMBH, Dr. Michael Micklinghoff, E.ON Kernkraft and Dr. M.A.Podshibyakin, OKB “GIDROPRESS”. This report was prepared by Dr. Alexey Lokhov of the NEA Nuclear Development Division. Detailed review and comments were provided by Dr. -
Fundamentals of Nuclear Power
Fundamentals of Nuclear Power Juan S. Giraldo Douglas J. Gotham David G. Nderitu Paul V. Preckel Darla J. Mize State Utility Forecasting Group December 2012 Table of Contents List of Figures .................................................................................................................................. iii List of Tables ................................................................................................................................... iv Acronyms and Abbreviations ........................................................................................................... v Glossary ........................................................................................................................................... vi Foreword ........................................................................................................................................ vii 1. Overview ............................................................................................................................. 1 1.1 Current state of nuclear power generation in the U.S. ......................................... 1 1.2 Nuclear power around the world ........................................................................... 4 2. Nuclear Energy .................................................................................................................... 9 2.1 How nuclear power plants generate electricity ..................................................... 9 2.2 Radioactive decay ................................................................................................. -
Recent Developments of Nuclear Power in Finland: Olkiluoto 3, and More…
RECENT DEVELOPMENTS OF NUCLEAR POWER IN FINLAND: OLKILUOTO 3, AND MORE… Jarmo Vehmas 15th REFORM Group meeting Schloss Leopoldskron, Salzburg, 10.9.2010 CONTENT 1. Olkiluoto 3: Basics 2. Olkiluoto 3: About TVO 3. Olkiluoto 3: Delays 4. Olkiluoto 3: Financing and increasing costs 5. Olkiluoto 3. Conclusions 6. Government decision-in-principle, June/July 2010 7. Fennovoima: Shareholders 8. Fennovoima: Site alternatives 9. Olkiluoto 4 and Fennovoima: Conclusions OLKILUOTO 3: BASICS • Fifth nuclear reactor in Finland, ordered by TVO, a private power company • TVO already has two units, taken into use in 1978 (OL 1) and 1982 (OL 2). State-owned Fortum has two units in Loviisa, taken into use in 1977 and 1981 • Attemps for a fifth unit were made ijointly by Fortum and TVO in mid-1980s (cancelled after Chernobyl), in early 1990s (rejected in 1993 by the Parliament), • TVO submitted the OL 3 application in 2000 and it was accepted by the Government and ratified by the Parliament in 2002. • OL 3 is a new plant design, European pressurized reactor (EPR) by AREVA, 4300/1600 MW • The construction license was granted and construction started in 2005. • Original scedule and budget: In commercial operation in 2009, turnkey contract of €3.2 bn 2. OLKILUOTO 3: ABOUT TVO • Teollisuuden Voima Oy (TVO), is a Finnish power company which produces electricity to its shareholders only. • According to its articles of association, TVO shareholders pay fixed costs in relation to their shares of the stock, and receive corresponding right to the produced electricity. • TVO Shareholders pay the moving cost in relation to their use of the produced electricity. -
Application for a Decision- In-Principle Concerning the Construction of a Nuclear Power Plant Unit – Olkiluoto 4
Application for a Decision- in-Principle concerning the Construction of a Nuclear Power Plant Unit – Olkiluoto 4 Teollisuuden Voima Oyj 2008 OOL4_PAP_eng_FINAL.inddL4_PAP_eng_FINAL.indd 1 55/30/08/30/08 2:11:562:11:56 PPMM OOL4_PAP_eng_FINAL.inddL4_PAP_eng_FINAL.indd 2 55/30/08/30/08 2:11:592:11:59 PPMM Application for a Decision- in-Principle concerning the Construction of a Nuclear Power Plant Unit – Olkiluoto 4 Th is publication does not include the following documents enclosed with the actual decision-in-principle application: - Extract from the Trade Register, Teollisuuden Voima Oyj (Appendix 1) - Copy of the company’s Articles of Association and Register of Shareholders (Appendix 2) - Annual Report 2007, Teollisuuden Voima Oyj (Appendix 5.1) - Environmental Impact Assessment Report, Extension of the Olkiluoto Nuclear Power Plant by a fourth Unit (Appendix 12.1) More information: Teollisuuden Voima Oyj Olkiluoto FI-27160 EURAJOKI Tel. +358 2 83 811 www.tvo.fi OOL4_PAP_eng_FINAL.inddL4_PAP_eng_FINAL.indd 3 55/30/08/30/08 2:11:592:11:59 PPMM OOL4_PAP_eng_FINAL.inddL4_PAP_eng_FINAL.indd 4 55/30/08/30/08 2:11:592:11:59 PPMM TEOLLISUUDEN VOIMA OYJ APPLICATION FOR DECISION-IN-PRINCIPLE 1(7) OLKILUOTO 4 TO THE COUNCIL OF STATE APPLICATION FOR A DECISION-IN-PRINCIPLE CONCERNING THE CONSTRUCTION OF A NUCLEAR POWER PLANT UNIT APPLICANT Teollisuuden Voima Oyj, hereinaft er “TVO”. APPLICATION Th e applicant requests for the Council of State’s decision-in-principle re- ferred to in Section 11 of the Nuclear Energy Act confi rming that the con- struction of the new nuclear power plant unit described in the ‘Scope of the application’ section is in line with the overall good of society.