I N a U G U R a L D I S S E R T a T I O N

Total Page:16

File Type:pdf, Size:1020Kb

I N a U G U R a L D I S S E R T a T I O N Synthese und Charakterisierung von Liganden spannungsabhängiger KV7-Kaliumkanäle auf Grundlage der Arzneistoffe Flupirtin und Retigabin I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald vorgelegt von Christian Bock Greifswald, Mai 2019 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Andreas Link 2. Gutachter: Prof. Dr. Holger Stark Tag der Promotion: 19.07.2019 Inhaltsverzeichnis Abkürzungsverzeichnis .................................................................................................. IV 1 Einleitung und Zielstellung ....................................................................................... 1 1.1 Physiologie spannungsabhängiger KV7-Kaliumkanäle ...................................... 1 1.2 Modulation von KV7-Kanälen............................................................................. 2 1.3 Das Analgetikum Flupirtin ................................................................................. 3 1.4 Das Antikonvulsivum Retigabin ......................................................................... 4 1.5 Bindetasche von Retigabin und Flupirtin ........................................................... 4 1.6 Bisher publizierte KV7-Kanal-Öffner .................................................................. 5 1.7 Therapeutisches Potential von KV7-Kanalöffnern .............................................. 7 1.8 Zielstellung der vorliegenden Arbeit .................................................................. 7 2 Methoden und Ergebnisse ....................................................................................... 8 2.1 Synthese der Flupirtin-Analoga ......................................................................... 8 2.2 Synthese der Retigabin-Analoga ......................................................................13 2.3 Synthese des Pyrimidin-Sulfids ........................................................................15 2.4 Bestimmung des Oxidationspotentials .............................................................16 2.5 Bestimmung der Lipophilie ...............................................................................17 2.6 Bestimmung der KV7.2/3-Modulation ................................................................17 2.7 Bestimmung der Hepatotoxizität ......................................................................17 3 Diskussion und Ausblick .........................................................................................19 4 Literaturverzeichnis .................................................................................................22 5 Publikationen ..........................................................................................................29 Synthesis and potassium KV7 channel opening activity of thioether analogues of the analgesic flupirtine ......................................................................................................29 Flupirtine Analogues: Explorative Synthesis and Influence of Chemical Structure on KV7.2/KV7.3 Channel Opening Activity ........................................................................35 How to replace the lost keys? Strategies towards safer KV7 channel openers ............40 Sulfide Analogues of Flupirtine and Retigabine with Nanomolar KV7.2/KV7.3 Channel Opening Activity .........................................................................................................60 Flupirtine and Retigabine as Templates for Ligand-based Drug Design of KCNQ2/3 activators ....................................................................................................................75 Simultaneous quantification of acidic and basic flupirtine metabolites by supercritical fluid chromatography according to European Medicines Agency validation ................87 Thioether als Modulatoren von KV7.2/KV7.3-Kanälen ................................................ 101 6 Veröffentlichungsverzeichnis................................................................................. 152 6.1 Wissenschaftliche Artikel ............................................................................... 152 6.2 Patentschrift ................................................................................................... 152 6.3 Posterpräsentationen ..................................................................................... 152 Abkürzungsverzeichnis Abkürzungsverzeichnis ACN Acetonitril ALAT Alanin-Aminotransferase ALS amyotrophe Lateralsklerose ASAT Aspartat-Aminotransferase BfArM Bundesinstitut für Arzneimittel und Medizinprodukte BFNE benigne familiäre Neugeborenenepilepsie DCM Dichlormethan DMA N,N-Dimethylanilin DMAP 4-(Dimethylamino)pyridin DMF N,N-Dimethylformamid DMSO Dimethylsulfoxid EC50 Konzentration, bei der ein halbmaximaler Effekt auftritt EPA United States Environmental Protection Agency FILI flupirtine induced liver injury FLIPR fluorescent imaging plate reader GABA -Aminobuttersäure HATU O-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium-hexafluorphosphat HEK human embryonic kidney cells IKs repolarisierender Kaliumstrom + IM M-type K current IMS imaging mass spectrometry LD25 Konzentration, welche die Zellviabilität auf 75 % senkt mAChR muskarinischer Acetylcholinrezeptor mCPBA meta-Chlorperoxybenzoesäure NBS N-Bromsuccinimid NSAR nichtsteroidales Antirheumatikum PIP2 Phosphatidylinositol-4,5-bisphosphonat PLC Phospholipase C PRAC Pharmacovigilance Risk Assessment Center SAR structure activity relationship Ssm Scolopendra subspinipes mutilans IV Abkürzungsverzeichnis TAMH transforming growth factor-a transgenic mouse hepatocyte TFA Trifluoressigsäure THF Tetrahydrofuran TsCl para-Toluensulfonsäurechlorid VSD voltage-sensing domain (Spannungssensor-Domäne) ZNS zentrales Nervensystem V Einleitung und Zielstellung 1 Einleitung und Zielstellung 1.1 Physiologie spannungsabhängiger KV7-Kaliumkanäle Bereits im Jahr 1980 konnte durch Brown und Adams ein spannungsabhängiger Kaliumstrom in sympathischen Neuronen des nordamerikanischen Ochsenfrosches (Rana catesbeiana) nachgewiesen werden[1]. Dabei wurde mittels Voltage-Clamp-Experimenten gezeigt, dass die Stärke des Kaliumstroms vom Membranpotential abhängig ist. Während bei Potentialen unter −60 mV kein Kaliumstrom zu beobachten war, steigerte sich dieser mit zunehmendem Potential in sigmoider Form und erreichte ein Plateau bei ca. −10 mV. Die zu beobachtende Hemmung des Kaliumstroms durch Aktivierung muskarinerger Rezeptoren führte zur Benennung desselben als M-current (IM). Die dem Ionenstrom zugrunde liegenden Kanäle konnten erst ca. 20 Jahre später identifiziert werden. Zunächst wurde 1996 durch Wang et al. das Gen für das KVLQT1-Protein (später als KV7.1 bekannt) beschrieben, welches aufgrund seiner Ähnlichkeit zu schon bekannten spannungsabhängigen Kaliumkanälen als eben solcher Kanal identifiziert wurde[2]. Die überwiegende Expression des Proteins in Herz und in der Niere, aber die Abwesenheit im Gehirn zeigte, dass es sich nicht um die molekulare Grundlage des IM handeln konnte. Im selben Jahr wurde auch der nKQT2-Kanal (später als KV7.2 bezeichnet) durch die Entschlüsselung des Genoms eines Fadenwurms (Caenorhabiditis elegans) entdeckt[3]. Der dritte Vertreter der Proteinfamilie konnte [4] 1998 als KCNQ3 (später als KV7.3 bezeichnet) identifiziert werden . Wenige Monate danach wurde dann ein [5] heteromerer Kanal aus KV7.2- und KV7.3-Untereinheiten als Grundlage des IM publiziert . Komplettiert wurde die KV7-Familie durch die Entdeckungen von KCNQ4 (KV7.4) im Jahre 1999 sowie KCNQ5 (KV7.5) im Jahre 2000[6,7]. [6,8] Die Proteine der KV7-Familie sind aus 676–932 Aminosäuren aufgebaut . Diese teilen sich auf in sechs transmembranäre Domänen (S1–S6), sowie eine Schlaufe zwischen S5–S6 und lange intrazelluläre C- und N- Termini (siehe Abbildung 1). Der Abschnitt S1–S4 fungiert als Spannungssensor-Domäne (voltage-sensing domain, VSD), während von dem Abschnitt S5–S6 die ionenselektive Pore gebildet wird. KV7-Kanäle werden aus vier Untereinheiten aufgebaut, wobei fast ausschließlich Tetramere aus Poren-formenden -Untereinheiten (KV7.1–5) funktionsfähige Kanäle bilden. Lediglich das KV7.1-Protein neigt dazu auch mit Poren-losen - Untereinheiten (vor allem KCNE1 und KCNE3) Kanäle zu bilden[8,9]. Neben den möglichen Homotetrameren, welche aus vier gleichen -Untereinheiten bestehen, werden auch häufig Heterotetramere aus zwei verschiedenen -Untereinheiten beschrieben. Diese setzten sich in symmetrischer Weise zusammen (siehe Abbildung 1). Die Affinität der Untereinheiten zueinander ist verschieden stark ausgeprägt. So bildet das KV7.1- Protein bevorzugt homomere Kanäle oder assembliert, wie bereits erwähnt, mit -Untereinheiten. Heterotetramere mit anderen -Untereinheiten sind für KV7.1 nicht beschrieben. Die KV7.2-Untereinheit kann Homotetramere ausbilden, diese zeigen allerdings einen elffach niedrigeren Kaliumstrom als das Heterotetramer mit KV7.3, entsprechend sollte die physiologische Bedeutung dieser Homotetramere von [5] vernachlässigbarer Bedeutung sein . Für KV7.3 gilt Gleiches, so zeigt das Homotetramer einen deutlich geringeren Kaliumstrom als das Heterotetramer mit KV7.2. KV7.3 bildet allerdings zusätzlich Kanäle mit KV7.4 bzw. KV7.5. Auch für das KV7.4-Protein sind Homotetramere beschrieben und neben der bereits erwähnten [8] Konjugation mit KV7.3 werden auch Heterotetramere mit KV7.5 berichtet . KV7-Kanäle
Recommended publications
  • Calcium Channel Blocker As a Drug Candidate for the Treatment of Generalised Epilepsies
    UNIVERSITAT DE BARCELONA Faculty of Pharmacy and Food Sciences Calcium channel blocker as a drug candidate for the treatment of generalised epilepsies Final degree project Author: Janire Sanz Sevilla Bachelor's degree in Pharmacy Primary field: Organic Chemistry, Pharmacology and Therapeutics Secondary field: Physiology, Pathophysiology and Molecular Biology March 2019 This work is licensed under a Creative Commons license ABBREVIATIONS AED antiepileptic drug AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ANNA-1 antineuronal nuclear antibody 1 BBB blood-brain barrier Bn benzyl BnBr benzyl bromide BnNCO benzyl isocyanate Boc tert-butoxycarbonyl Bu4NBr tetrabutylammonium bromide Ca+2 calcium ion CACNA1 calcium channel voltage-dependent gene cAMP cyclic adenosine monophosphate CCB calcium channel blocker cGMP cyclic guanosine monophosphate CH3CN acetonitrile Cl- chlorine ion Cmax maximum concentration CMV cytomegalovirus CTScan computed axial tomography DCM dichloromethane DIPEA N,N-diisopropylethylamine DMF dimethylformamide DMPK drug metabolism and pharmacokinetics DNET dysembryoplastic neuroepithelial tumours EEG electroencephalogram EPSP excitatory post-synaptic potential FDA food and drug administration Fe iron FLIPR fluorescence imaging plate reader fMRI functional magnetic resonance imaging GABA γ-amino-α-hydroxybutyric acid GAD65 glutamic acid decarboxylase 65 GAERS generalised absence epilepsy rat of Strasbourg GluR5 kainate receptor GTC generalised tonic-clonic H+ hydrogen ion H2 hydrogen H2O dihydrogen dioxide (water)
    [Show full text]
  • 85 Mv Respectively. When the Membranewas Depolarized, Th
    J. Physiol. (1985), 360, pp. 161-185 161 With 14 text-figurem Printed in Great Britain COMPARISON OF THE ACTION OF BACLOFEN WITH y-AMINOBUTYRIC ACID ON RAT HIPPOCAMPAL PYRAMIDAL CELLS IN VITRO BY N. R. NEWBERRY* AND R. A. NICOLLt From the Departments of Pharmacology and Physiology, University of California, San Francisco, CA 94143, U.S.A. (Received 13 June 1984) SUMMARY 1. Intracellular recordings from CAI pyramidal cells in the hippocampal slice preparation were used to compare the action of baclofen, a y-aminobutyric acid (GABA) analogue, with GABA. 2. Ionophoretic application of GABA or baclofen into stratum (s.) pyramidale evoked hyperpolarizations associated with reductions in the input resistance of the cell. Baclofen responses were easier to elicit in the dendrites than in the cell body layer. 3. Blockade of synaptic transmission, with tetrodotoxin or cadmium, did not reduce baclofen responses, indicating a direct post-synaptic action. 4. (+ )-Bicuculline (10 ,UM) and bicuculline methiodide (100 /SM) had little effect on baclofen responses but strongly antagonized somatic GABA responses of equal amplitude. The bicuculline resistance of the baclofen response was not absolute, as higher concentrations of these compounds did reduce it. Pentobarbitone (100 /M) enhanced somatic GABA responses without affecting baclofen responses. (-)-Baclofen was approximately 200 times more potent than (+ )-baclofen. 5. The reversal potentials for the somatic GABA and baclofen responses were -70 mV and -85 mV respectively. When the membrane was depolarized, the baclofen response was reduced. This apparent voltage sensitivity was not seen with somatic GABA responses. 6. Altering the chloride gradient across the cell membrane altered the reversal potential of the somatic GABA response but not that ofthe baclofen response.
    [Show full text]
  • Assessment of Molecular Action of Direct Gating and Allosteric Modulatory Effects of Carisoprodol (Somartm) on GABA a Receptors
    Graduate Theses, Dissertations, and Problem Reports 2015 Assessment of molecular action of direct gating and allosteric modulatory effects of carisoprodol (SomaRTM) on GABA A receptors Manoj Kumar Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Kumar, Manoj, "Assessment of molecular action of direct gating and allosteric modulatory effects of carisoprodol (SomaRTM) on GABA A receptors" (2015). Graduate Theses, Dissertations, and Problem Reports. 6022. https://researchrepository.wvu.edu/etd/6022 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. ASSESSMENT OF MOLECULAR ACTION OF DIRECT GATING AND ALLOSTERIC MODULATORY EFFECTS OF MEPROBAMATE (MILTOWN®) ON GABAA RECEPTORS Manish Kumar, MD, MS Dissertation submitted to the School of Pharmacy at West Virginia University in partial fulfillment of Requirements
    [Show full text]
  • Pregabalin Abuse: a Case Report Ilhan Yargic1, Filiz Alyanak Ozdemiroglu2
    Olgu Sunumları / Case Reports DOI: 10.5350/KPB-BCP201121110 Pregabalin Abuse: A Case Report Ilhan Yargic1, Filiz Alyanak Ozdemiroglu2 ÖZET: ABS TRACT: Pregabalin kötüye kullanımı: Bir olgu sunumu Pregabalin abuse: a case report Pregabalin epilepsi, nöropatik ağrı ve yaygın anksiyete Pregabalin is a gamma-amino butyric acid (GABA) analogue bozukluğunun tedavilerinde kullanılan bir gama-aminobu- used in the treatment of epilepsy, neuropathic pain, and tirik asit (GABA) analoğudur. Pregabalin Türkiye’de kontrole generalized anxiety disorder. Although pregabalin is not tabi ilaçlardan olmamasına karşın kötüye kullanılma potan- a controlled medication in Turkey, it has a potential risk 1M.D., Professor of Psychiatry, Istanbul siyeline sahiptir. Türkiye’de yaygın anksiteye bozukluğu gibi of abuse. It has not been approved for the treatment of University, Istanbul Faculty of Medicine, Psychiatry Department, Istanbul-Turkey psikiyatrik hastalıkların tedavisi için ruhsatlandırılmış olma- psychiatric disorders (such as generalized anxiety disorder) 2M.D., Istinye Devlet Hastanesi, Psikiyatri AD, dığı için henüz psikiyatri hastaları arasında popüler değildir. in Turkey, so it is not yet popular as a drug of abuse among Istinye, Istanbul-Turkey 37 yaşında, bipolar bozukluğu ve benzodiyazepin kötüye psychiatric patients. We report the first case of pregabalin Ya zış ma Ad re si / Add ress rep rint re qu ests to: kullanımı öyküsü olan bir erkek hastada Türkiye’den ilk pre- abuse in Turkey in a 37 year old male patient who has a İlhan Yargıç, M.D., Istanbul
    [Show full text]
  • Regulation of Ion Channels by Muscarinic Receptors
    Regulation of ion channels by muscarinic receptors David A. Brown Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT (UK). Contact address: Professor D.A.Brown, FRS, Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, Londin, WC1E 6BT. E-mail: [email protected] Telephone: (+44) (0)20 7679 7297 Mobile (for urgent messages): (+44)(0)7766-236330 Abstract The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor – channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. Key words: Ion channels; neuronal excitation and inhibition; pre- and postsynaptic events; muscarinic receptor subtypes; G proteins; transduction mechanisms. Contents. 1. Introduction: some principles of muscarinic receptor – ion channel coupling. 1.2 Some consequences of the indirect link between receptor and ion channel. + The connection between M1Rs and the M-type K channel as a model system 1.2.1 Dynamics of the response 1.2.2 Sensitivity of the response to agonist stimulation 2. Some muscarinic receptor-modulated neural ion channels.
    [Show full text]
  • Gamma-Aminobutyric Acid (GABA) Is a Major Neuro­Transmitter Widely Distributed Throughout the Central Nervous System (CNS)
    Alternative Medicine Review Volume 12, Number 3 2007 Monograph GABA Gamma-Aminobutyric O + Acid (GABA) H3N O- Introduction Gamma-aminobutyric acid (GABA) is a major neuro transmitter widely distributed throughout the central nervous system (CNS). Because too much excitation can lead to irritability, restlessness, insomnia, seizures, and movement disorders, it must be balanced with inhibition. GABA – the most important inhibitory neurotransmitter in the brain – provides this inhibition, acting like a “brake” during times of runaway stress. Medications for anxiety, such as benzodiazepines, stimulate GABA receptors and induce relaxation. Either low GABA levels or decreased GABA function in the brain is associated with several psy- chiatric and neurological disorders, including anxiety, depression, insomnia, and epilepsy. Studies indicate GABA can improve relaxation and enhance sleep. Both synthetic and natural GABA are available as dietary supplements in the United States. Natural GABA is produced via a fermentation process that utilizes Lactobacillus hilgardii – the bacteria used to ferment vegetables in the preparation of the traditional Korean dish known as kimchi. Biochemistry and Pharmacokinetics Within the brain, glutamic acid is converted to GABA via the enzyme glutamate decarboxylase and its cofac- tor pyridoxal 5’ phosphate (P5P; active vitamin B6). GABA is metabolized by gamma-aminobutyrate transaminase, also a P5P-dependent enzyme, forming an intermediate metabolite succinate semialdehyde. This metabolite can then be reduced to gamma-hydroxybutyrate, or oxidized to succinate and eventually converted to CO2 and water via the citric acid cycle. When plasma membrane depolarization induces the release of GABA from nerve terminals, GABA binds to GABA receptors – such as the GABAA and GABAB receptors – that are distributed on post-synaptic cell membranes.
    [Show full text]
  • Characterization of Cardiac Iks Channel Gating Using Voltage Clamp Fluorometry Jeremiah D. Osteen Submitted in Partial Fulfillme
    Characterization of cardiac IKs channel gating using voltage clamp fluorometry Jeremiah D. Osteen Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2012 Jeremiah D. Osteen All rights reserved ABSTRACT Characterization of cardiac IKs channel gating using voltage clamp fluorometry Jeremiah D. Osteen Voltage-gated ion channels make up a superfamily of membrane proteins involved in selectively or non-selectively conducting charged ions, which can carry current in and out of cells, in response to changes in membrane voltage. Currents carried by ion channels influence the voltage across the cell membrane, which can trigger changes in the conductance of neighboring voltage-gated channels. In this way, signals, measured as transient changes in voltage called action potentials, can be sent through and between cells in order to transmit information quickly and efficiently throughout excitable systems. My thesis work focuses on elucidating the mechanisms underlying the voltage-dependent gating of a member of the voltage gated potassium (Kv) channel family, KCNQ1 (Kv7.1). Like other members of the voltage gated potassium family, the KCNQ1 channel is made up of four subunits, each containing a voltage sensing domain and a pore-forming domain. Tetrameric channels form with a single central pore domain, and four structurally independent voltage sensing domains. KCNQ1 plays roles both in maintenance of the membrane potential (it forms a leak current in epithelial cells throughout the body) as well as a very important role in resting membrane potential reestablishment (it forms a slowly activating current important in action potential repolarization in cardiac cells).
    [Show full text]
  • The KCNQ5 Potassium Channel Mediates a Component of the Afterhyperpolarization Current in Mouse Hippocampus
    The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus Anastassios V. Tzingounisa,1,2, Matthias Heidenreichb,1, Tatjana Kharkovetsc, Guillermo Spitzmaulb, Henrik S. Jensend,3, Roger A. Nicolla,4, and Thomas J. Jentschb,c,4 aDepartment of Cellular and Molecular Pharmacology and Department of Physiology, University of California, San Francisco, CA 94143; bLeibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, D-13125, Germany; cZentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Hamburg, D-20251, Germany; and dDepartment of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen, DK-2200, Denmark Contributed by Roger A. Nicoll, April 8, 2010 (sent for review February 18, 2010) Mutations in KCNQ2 and KCNQ3 voltage-gated potassium channels brainstem (18). Unlike KCNQ2 and KCNQ3, the function of lead to neonatal epilepsy as a consequence of their key role in KCNQ5 in the brain remains unknown and no neurological dis- regulating neuronal excitability. Previous studies in the brain have orders have been attributed to it. Given KCNQ5’s similar bio- focused primarily on these KCNQ family members, which contribute physical properties to other members of the KCNQ family, to M-currents and afterhyperpolarization conductances in multiple KCNQ5 may also contribute to M-currents (15, 16). To elucidate brain areas. In contrast, the function of KCNQ5 (Kv7.5), which also the physiological functions of KCNQ5 and test whether KCNQ5 displays widespread expression in the brain, is entirely unknown. also has a role in AHP currents, we generated knock-in (KI) mice Here, we developed mice that carry a dominant negative mutation carrying a dominant negative (dn) mutation in KCNQ5.
    [Show full text]
  • The KCNQ4-Mediated M-Current Regulates the Circadian Rhythm in Mesopontine Cholinergic Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.11.293423; this version posted September 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The KCNQ4-mediated M-current regulates the circadian rhythm in mesopontine cholinergic neurons Bayasgalan T.1*, Stupniki S.2,3*, Kovács A.1, Csemer A.1, Szentesi P.1, Pocsai K.1, Dionisio L.2,3, Spitzmaul G.2,3*, Pál B.1* *equal contribution 1Department of Physiology, Faculty of Medicine, University of Debrecen. Debrecen, Hungary 2Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina 3Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina. Corresponding author: 1) Balázs Pál MD, PhD Department of Physiology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Nagyerdei krt 98. e-mail: [email protected] Phone: +36-52-255-575; Fax: +36-52-255-116 2) Guillermo Spitzmaul, PhD INIBIBB-CONICET/UNS, Camino la Carrindanga Km 7, 8000, Bahía Blanca, Argentina. e-mail: [email protected] Phone: +54-291-4861201; Fax: +54-291-4861200 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.11.293423; this version posted September 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Number of pages: 37 Number of figures: 8 Number of tables: 2 Number of words: in Abstract: 175 in Introduction: 737 in Results: 2274 in Discussion: 1707 in Materials and Methods: 1755 in Figure Legends: 1520 in References: 1164 The authors declare no competing financial interest.
    [Show full text]
  • Structure and Function Studies on the Herg Potassium Channel Including the Development and Characteriza Tion of Membrane Mimetics
    UNIVERSITÉ DU QUÉBEC À MONTRÉAL STRUCTURE AND FUNCTION STUDIES ON THE HERG POTASSIUM CHANNEL INCLUDING THE DEVELOPMENT AND CHARACTERIZA TION OF MEMBRANE MIMETICS DISSERTATION PRESENTED AS PARTIAL REQUIREMENT OF THE DOCTORA TE OF BIOCHEMISTRY BY MAÏWENN BEAUGRAND OCTOBER 2015 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de cette thèse se fait dans le respect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522 - Rév.0?-2011 ). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l 'auteur] autorise l'Université du Québec à Montréal à reproduire , diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l 'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire. •• UNIVERSITÉ DU QUÉBEC À MONTRÉAL ÉTUDE STRUCTURALE ET FONCTIONNELLE DU CANAL POTASSIQUE HERG, INCLUANT LE DÉVELOPPEMENT ET LA CARACTÉRISATION DE MEMBRANES MODÈLES THÈSE PRÉSENTÉE COMME EXIGENCE PARTIELLE DU DOCTORAT EN BIOCHIMIE PAR MAÏWENN BEAUGRAND OCTOBRE 2015 DEDICATION Je dédicace cette thèse à Erwan Beaugrand J'espère que tu aurais été .fier de ta petite sœur "Th e greatest mistake you can make in !ife is to be continually .fearing you will make one " - Elbert Hubbard (1 859-1915) ACKNOWLEDGEMENTS Throughout my doctoral studies I have received support from family, friends and co­ workers.
    [Show full text]
  • KV7 Potassium Channels: a Focus on Human Intra-Pulmonary Arteries
    KV7 potassium channels: A focus on human intra-pulmonary arteries A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences 2015 Sean Brennan 1 List of contents Chapter 1 : Introduction ........................................................................................................ 15 1.1 Anatomy and physiology of the lungs .......................................................................... 15 1.2 Pulmonary artery structure ......................................................................................... 15 1.3 Pulmonary hypertension .............................................................................................. 16 1.3.1 Definition .............................................................................................................. 16 1.3.2 Characteristics ....................................................................................................... 17 1.3.3 Classification ......................................................................................................... 17 1.3.4 Treatment ............................................................................................................. 19 1.4 Regulation of the pulmonary vasculature.................................................................... 21 1.4.1 Neuronal regulation .............................................................................................. 21 1.4.2 Humoral regulation ..............................................................................................
    [Show full text]
  • Sternum. ^Sympathetic Chain \ to Prevertebral
    Durham E-Theses An electrophysiological study of the interaction between fenamate NSAIDs and the GABA(_A) receptor Patten, Debra How to cite: Patten, Debra (1999) An electrophysiological study of the interaction between fenamate NSAIDs and the GABA(_A) receptor, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4561/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 An electrophysiological study of the interaction between Fenamate NSAIDs and the GABAA receptor. Debra Patten Submitted for the Degree of Ph.D. The copyright of this thesis rests with the author. No quotation from it should be published without the written consent of the author and information derived from it should be acknowledged. 1 9 JUL 2000 Dept. of Biological Sciences University of Durham March 1999 March 1999 Table of Contents AN ELECTROPHYSIOLOGICAL STUDY OF THE INTERACTION BETWEEN FENAMATE NSAIDs AND THE GABAA RECEPTOR CHAPTER ONE: GENERAL INTRODUCTION 1.1.
    [Show full text]