Plant Sale 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nitrogen Containing Volatile Organic Compounds
DIPLOMARBEIT Titel der Diplomarbeit Nitrogen containing Volatile Organic Compounds Verfasserin Olena Bigler angestrebter akademischer Grad Magistra der Pharmazie (Mag.pharm.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 996 Studienrichtung lt. Studienblatt: Pharmazie Betreuer: Univ. Prof. Mag. Dr. Gerhard Buchbauer Danksagung Vor allem lieben herzlichen Dank an meinen gütigen, optimistischen, nicht-aus-der-Ruhe-zu-bringenden Betreuer Herrn Univ. Prof. Mag. Dr. Gerhard Buchbauer ohne dessen freundlichen, fundierten Hinweisen und Ratschlägen diese Arbeit wohl niemals in der vorliegenden Form zustande gekommen wäre. Nochmals Danke, Danke, Danke. Weiteres danke ich meinen Eltern, die sich alles vom Munde abgespart haben, um mir dieses Studium der Pharmazie erst zu ermöglichen, und deren unerschütterlicher Glaube an die Fähigkeiten ihrer Tochter, mich auch dann weitermachen ließ, wenn ich mal alles hinschmeissen wollte. Auch meiner Schwester Ira gebührt Dank, auch sie war mir immer eine Stütze und Hilfe, und immer war sie da, für einen guten Rat und ein offenes Ohr. Dank auch an meinen Sohn Igor, der mit viel Verständnis akzeptierte, dass in dieser Zeit meine Prioritäten an meiner Diplomarbeit waren, und mein Zeitbudget auch für ihn eingeschränkt war. Schliesslich last, but not least - Dank auch an meinen Mann Joseph, der mich auch dann ertragen hat, wenn ich eigentlich unerträglich war. 2 Abstract This review presents a general analysis of the scienthr information about nitrogen containing volatile organic compounds (N-VOC’s) in plants. -
Bean Thrips Surveys
Blackwell Publishing AsiaMelbourne, AustraliaAENAustralian Journal of Entomology1326-6756© 2006 The Authors; Journal compilation © 2006 Australian Entomological SocietyMay 2006452122129Original ArticleSurvey for Caliothrips fasciatus in Australia M S Hoddle et al. Australian Journal of Entomology (2006) 45, 122–129 Populations of North American bean thrips, Caliothrips fasciatus (Pergande) (Thysanoptera: Thripidae: Panchaetothripinae) not detected in Australia Mark S Hoddle,1* Christina D Stosic1 and Laurence A Mound2 1Department of Entomology, University of California, Riverside, CA 92521, USA. 2Australian National Insect Collection, CSIRO Entomology, Canberra, ACT 2601, Australia. Abstract Caliothrips fasciatus is native to the USA and western Mexico and overwintering adults are regular contaminants in the ‘navel’ of navel oranges exported from California, USA to Australia, New Zealand and elsewhere. Due to the long history of regular interceptions of C. fasciatus in Australia, a survey for this thrips was undertaken around airports, seaports, public recreational parks and major agricul- tural areas in the states of Queensland, New South Wales, Victoria, South Australia and Western Australia to determine whether C. fasciatus has successfully invaded Australia. Host plants that are known to support populations of C. fasciatus, such as various annual and perennial agricultural crops, urban ornamentals and weeds along with native Australian flora, were sampled for this thrips. A total of 4675 thrips specimens encompassing at least 76 species from a minimum of 47 genera, and three families were collected from at least 159 plant species in 67 families. Caliothrips striatopterus was collected in Queensland, but the target species, C. fasciatus, was not found anywhere. An undescribed genus of Thripidae, Panchaetothripinae, was collected from ornamental Grevillea (var. -
Plant Breading
SNA Research Conference Vol. 52 2007 Plant Breeding and Evaluation Tom Ranney Section Editor and Moderator Plant Breeding and Evaluation Section 326 SNA Research Conference Vol. 52 2007 New Callicarpa Species with Breeding Potential Ryan N. Contreras and John M. Ruter University of Georgia, Dept. of Horticulture, Tifton, GA 31793 [email protected] Index Words: beautyberry, species evaluation, ornamental plant breeding Significance to Industry: There is a great deal of available Callicarpa L. germplasm that has yet to be utilized by the nursery industry in the U.S. Taxa currently being evaluated are likely to have potential as breeding material or direct commercial marketability. With new breeding material and selections for introduction the number of beautyberry cultivars for use in southeastern gardens has the potential to expand greatly. Nature of Work: Callicarpa L. is a genus of ~150 species of shrubs and trees distributed throughout the world including warm-temperate and tropical America, SE Asia, Malaysia, Pacific Islands, and Australia (5) with the greatest concentration of species found in SE Asia, specifically the Philippine Islands (1). Of the New World species the highest concentration occurs in Cuba, with ~20 native species (1). There are currently four species commonly found in cultivation in the U.S.: C. americana L., C. bodinieri Lév., C. dichotoma (Lour.)K.Koch, and C. japonica Thunb. with a limited number of varieties or cultivars of each to choose from (3). Beautyberries, desired primarily for their handsome berries produced in fall, have been selected for white-fruiting varieties, finer textured varieties, increased berry production, and variegated foliage. -
Species at Risk on Department of Defense Installations
Species at Risk on Department of Defense Installations Revised Report and Documentation Prepared for: Department of Defense U.S. Fish and Wildlife Service Submitted by: January 2004 Species at Risk on Department of Defense Installations: Revised Report and Documentation CONTENTS 1.0 Executive Summary..........................................................................................iii 2.0 Introduction – Project Description................................................................. 1 3.0 Methods ................................................................................................................ 3 3.1 NatureServe Data................................................................................................ 3 3.2 DOD Installations............................................................................................... 5 3.3 Species at Risk .................................................................................................... 6 4.0 Results................................................................................................................... 8 4.1 Nationwide Assessment of Species at Risk on DOD Installations..................... 8 4.2 Assessment of Species at Risk by Military Service.......................................... 13 4.3 Assessment of Species at Risk on Installations ................................................ 15 5.0 Conclusion and Management Recommendations.................................... 22 6.0 Future Directions............................................................................................. -
New Orleans Botanical Garden Plant Sale Saturday September 14, 2013 Pelican Greenhouse 9-12
New Orleans Botanical Garden Plant Sale Saturday September 14, 2013 Pelican Greenhouse 9-12 Fence Row Plectranthus Mona Lavender Greenhouse Row Split Leaf Philodendron Philodendron bipinnatifidum Crepe Ginger Costus speciosus Chinese Rain Bells Strobilanthes hamiltoniana Velvet Stepladder Ginger Costus malortieanus Dwarf Elephant Ear Colocasia fallax ‘Silver Dollar’ Costus erythrophyllus Imperial Taro Colocasia antiquorum ‘Illustris’ Costus ‘Green Mountain’ Angel Trumpet Brugmansia ‘Charles Grimaldi’ Orange Tulip Ginger Costus curvibracteatus Little White Soldiers Drimiopsis maculata Turmeric Costus longa Dorstenia contrajerva Curcuma hybrid ‘Choco Zebra Red’ Dusty Thalia Thalia dealbata Curcuma ‘Ribbon’ Chinese Taro Alocasia cucullata Curcuma ‘Purple Garden’ Indigo Indigofera decora Curcuma ‘Emperor’ Valerian Valerian officinalis Yellow Dancing Girl Globba schomburgkii Variegated Peppermint Scented Geranium Strap-leaf Ginger Stahlianthes involucratus Pseuderanthemum ‘Texas Tri-Star’ Purple Globe Ginger Globba globulifera Cocoa Plant Theobroma cacao Cat Palm Chamaedorea cataractarum Oyster Plant Tradescantia spathacea Assorted Ti Plants Red Buckeye Aesculus pavia Basket Plant Callisia fragrans Dianthera Dianthera nodosa ‘Pretty in Pink’ Asian Crocus Kaempferia rotunda Cuban Oregano Plectranthus amboinicus Aspidistra Milky Way Aspidistra elatior ‘Milky Way’ Southern Swamp Lily Crinum americanum Perilla ‘Magilla’ Bush Willow Salix integra ‘Hakuro Nishiki’ Mickey Mouse Taro Xanthosoma atrovirens Indigo Spires Sage Salvia ‘Indigo Spires’ -
Latitudinal Gradient in Leaf Defense Traits of Woody Plants Along Japanese Archipelago
Latitudinal gradient in leaf defense traits of woody plants along Japanese archipelago 日本産樹木種における、葉防御形質の緯度傾度 Saihanna 1 General Introduction It is estimated that over the twenty million species of organisms are living on our planet, and all of these organisms adapted to their own living environment, namely niche (Hatchinson 1957). Not only the abiotic factors but biotic interaction plays a key role in the maintenance of biodiversity. Animal-plant interactions are one of the most important topic in community ecology (e.g. Morin 1999). Plants and herbivore insects have accounted for about half of the entire diversity on the earth (Strong et al., 1984). Plant-herbivore interactions are extremely complex, which should lead the tremendous diversity of both plants and herbivores (e.g. Gutierrez et al., 1984; Hay et al., 1989). Although the interaction between these two components, namely co-speciation, should account for this diversification, most of the studies so far, tend to explain this interaction only from one side of them. Plants have interacted with insect herbivores for several hundred million years, which should lead to complex defense systems against various herbivores (Fürstenberg-Hägg et al., 2013). This interaction between plants and herbivores has long proposed the opportunity for studying the mechanism of the creation and maintenance of biological diversity because of its universality and generality (Strong et al. 1984; Ali and Agrawal 2012). It is believed that the evolution of plant defense traits followed by counter-adaptations in herbivores could lead to bursts of adaptive radiation of both components (Ehrlich and Raven 1969). Understanding the coevolution of plant and insect species and macroevolution of adaptive traits has inspired biologists for some decades, yet has been challenging to study even present days (Schluter, 2000). -
Indigofera. Linnaeus
BLUMEA 30 (1984) 89-151 A revision of the genus Indigofera (Legumemosae -Papilionoideae) in Southeast Asia Ingrid de Kort & G. Thijsse Contents Summary 89 of the Short history genus 89 of the 91 Systematic position genus Characters: Vegetativeparts - Inflorescence - Flower - Pollen - Fruit - Seedling 92 Cytology 94 Taxonomy 94 Distribution 95 Economic uses 98 Acknowledgements 99 References 101 Systematic part Generic description 104 Key to the species and infraspecific taxa 105 Species treated 109 Identification list ofcollections 144 Index 149 Summary In Southeast Asia (excluding India) 44 taxa are recognized, 39 species, of which four are newly be described (I. kerrii, I. luzoniensis, I. emmae, and one unnamed species A, which will treated by Nguyen Van Thuan, Paris), four subspecies, one of which is new (I. sootepensis subsp. acutifolia) and three are new combinations ((I. suffruticosa subsp. guatemalensis, I. trifoliata subsp. unifoliata, I. trita subsp. scabra)), and one variety which is a new combination I. spicata var. siamensis). A and full well 4 distribution key, descriptions synonymy are given as as maps and 5 figures. Short history of the genus Linnaeus (1753) distinguished 3 species in the genusIndigofera. Under I. tinctoria (the later type species) he referred among others to AnilBauhin (Hist. 2,1651) and Ameri Rheede (Hort. Mai. 1, 1678). Miller (1754) used the name Anil for the same genus and counted 3 (plurino- mial) species. He took this name from an earlier edition of his Gardeners' Dictionary, * c/o R. Geesink, Rijksherbarium, Leiden, The Netherlands. 90 BLUMEA - VOL. 30, No. 1, 1984 where he referred to Anil Bauhin. Therefore Indigofera L. -
1 Recent Incursions of Weeds to Australia 1971
Recent Incursions of Weeds to Australia 1971 - 1995 1 CRC for Weed Management Systems Technical Series No. 3 CRC for Weed Management Systems Technical Series No. 3 Cooperative Research Centre for Weed Management Systems Recent Incursions of Weeds to Australia 1971 - 1995 Convened by R.H. Groves Appendix compiled by J.R. Hosking Established and supported under the Commonwealth Government’s Cooperative Research Centres 2 Program. Recent Incursions of Weeds to Australia 1971 - 1995 CRC for Weed Management Systems Technical Series No.3 January 1998 Groves, R.H. (Richard Harrison) Recent incursions of weeds to Australia 1971 - 1995 ISBN 0 9587010 2 4 1. Weeds - Control - Australia. I. Hosking, J.R. (John Robert). II. Cooperative Research Centre for Weed Management Systems (Australia). III. Title. (Series: CRC for Weed Management Systems Technical Series; No. 3) 632.5 Contact address: CRC for Weed Management Systems Waite Campus University of Adelaide PMB1 Glen Osmond SA 5064 Australia CRC for Weed Management Systems, Australia 1997. The information advice and/or procedures contained in this publication are provided for the sole purpose of disseminating information relating to scientific and technical matters in accordance with the functions of the CRC for Weed Management Systems. To the extent permitted by law, CRC for Weed Management Systems shall not be held liable in relation to any loss or damage incurred by the use and/or reliance upon any information advice and/or procedures contained in this publication. Mention of any product in this publication is for information purposes and does not constitute a recommendation of any such product either expressed or implied by CRC for Weed Management Systems. -
Hippocastanaceae Yellow Buckeye
Aesculus octandra Family: Hippocastanaceae Yellow Buckeye The genus Aesculus contains 13 species, which grow in the United States [6], Mexico [1] and Eurasia [6]. Species cannot be separated based on microanatomy. The name aesculus is a Latin name of a European oak or other mast-bearing tree. Aesculus californica-California buckeye, horsechestnut Aesculus glabra*-American horsechestnut, buckeye, fetid buckeye, Ohio buckeye, sevenleaf buckeye, smooth buckeye, sticking buckeye, stinking buckeye, Texas buckeye, white buckeye Aesculus glabra var. glabra-Ohio buckeye (typical) Aesculus glabra var. arguta-Texas buckeye, white buckeye Aesculus hippocastanum-buckeye, common horsechestnut, conker-tree, European horsechestnut, horse chestnut (Europe) Aesculus octandra*-big buckeye, buckeye, large buckeye, Ohio buckeye, sweet buckeye, yellow buckeye Aesculus parviflora-bottlebrush buckeye, shrubby buckeye Aesculus pavia-buckeye, firecracker plant, red buckeye, red-flowered buckeye, red pavia, scarlet buckeye, woolly, woolly buckeye Aesculus sylvatica-dwarf buckeye, Georgia buckeye, painted buckeye *commercial species Distribution In the United States, buckeye ranges from the Appalachians of Pennsylvania, Virginia, and North Carolina westward to Kansas, Oklahoma, and Texas. Buckeye is not customarily separated from other species when manufactured into lumber and can be utilized for the same purposes as aspen, basswood, and sap yellow- poplar. The following description is for yellow buckeye (Aesculus octandra). The Tree Buckeye is a tree 30 to 70 ft (9 to 21 m) high and 2 ft (0.6 m) in diameter. It grows best in rich moist soil along the banks of streams and in river bottoms. Buckeye matures in 60 to 80 years. It is one of the initial trees to leaf-out in the spring. -
Biological Evaluation of Proposed, Threatened, Endangered and Sensitive Species
Biological Evaluation of Proposed, Threatened, Endangered and Sensitive Species Wildlife Habitat Improvement and Fuels Reduction Project Proposed Action within Winston County, Alabama Responsible Agency: USDA Forest Service National Forests in Alabama William B. Bankhead Ranger District Contact: Deciding Officer: District Ranger Glen D. Gaines Biological Evaluation Preparer: Biological Scientist Allison Cochran PO Box 278 Double Springs, Alabama 35553 Telephone 205-489-5111 FAX 205-489-3427 E-mail [email protected] [email protected] Type of Document Categorical Exclusion – BE Summary The proposed project will reduce midstory and understory trees and shrubs in two sites, totaling approximately 47 acres, noted on the attached maps. The project sites are located in the Black Pond and Hickory Grove communities. They are found in Forest Service management compartments 163 and 19. The sites proposed for treatment are loblolly pine stands. They were thinned in 2005 and 2006, respectively. Selected vegetation between 1 inch and 6 inches DBH will be removed in upland pine- dominant habitat. In compartment 163, the result will be an open pine stand with reduced fuel loading and advanced hardwood regeneration. In compartment 19, the result will be an open pine stand with reduced fuel loading. The result will allow for restoration and maintenance of native forest communities, including upland oak-hickory forest in compartment 163 and fire dependent pine woodlands in compartment 19. The purpose and need for the project is to improve wildlife habitat, improve conditions for native upland plants, restore and maintain native forest communities, and to decrease the risk of catastrophic wildfires by reducing fuels. -
Annual Benefit Plant Sale 2012
Annual Benefit Plant Sale 2012 Botanic Gardens COLLEGE OF AGRICULTURE & NATURAL RESOURCES Connect to nature Get inspired by wildflowers, naturalistic gardening and meadows in a whole new way with our seasonal garden tours. Enjoy an art class in the garden or learn about native plant gardening, conservation, and habitats by taking one of our classes. And if you can’t visit us, enroll in our new online distance learning program, Mt. Cuba Center Connect. Visit www.mtcubacenter.org to reserve a tour or sign up for a class. Two-Hour Guided Tours | $5 per person Spring Wildflower Tours April 12th – May 27th Summer Twilight Tours May 30th – July 26th 8th Annual Wildflower Celebration |Free th April 29 , 10am – 4pm Purple pitcherplant (Sarracenia purpurea) Greenville, DE P: 302.239.4244 www.mtcubacenter.org INSPIRATION x EDUCATION x CONSERVATION 2 2012 SPRING PLANT SALE CATALOG WEBSITE: http://ag.udel.edu/udbg/events/annualsale.html WELCOME We welcome you to the twentieth annual UDBG benefit plant sale. In addition to its role as the major source of funding for the UDBG, 2012 BENEFIT PLANT SALE CATALOG we hope it also serves as a major educational event for our members and the public. It presents an opportunity to learn about new plants and consider possibilities. We should always look for ways to expand and improve our knowledge about plants and this catalog offers possibilities to accomplish both. As always, we offer an in- depth look at a particular group of plants, this year the genus Camellia. The selection goes beyond offering various cultivars with differing flower color, to a more extensive exploration of the genus with particular emphasis on hardy selections and new hybrids Camellia ‘Autumn Spirit’. -
Sensitive Species That Are Not Listed Or Proposed Under the ESA Sorted By: Major Group, Subgroup, NS Sci
Forest Service Sensitive Species that are not listed or proposed under the ESA Sorted by: Major Group, Subgroup, NS Sci. Name; Legend: Page 94 REGION 10 REGION 1 REGION 2 REGION 3 REGION 4 REGION 5 REGION 6 REGION 8 REGION 9 ALTERNATE NATURESERVE PRIMARY MAJOR SUB- U.S. N U.S. 2005 NATURESERVE SCIENTIFIC NAME SCIENTIFIC NAME(S) COMMON NAME GROUP GROUP G RANK RANK ESA C 9 Anahita punctulata Southeastern Wandering Spider Invertebrate Arachnid G4 NNR 9 Apochthonius indianensis A Pseudoscorpion Invertebrate Arachnid G1G2 N1N2 9 Apochthonius paucispinosus Dry Fork Valley Cave Invertebrate Arachnid G1 N1 Pseudoscorpion 9 Erebomaster flavescens A Cave Obligate Harvestman Invertebrate Arachnid G3G4 N3N4 9 Hesperochernes mirabilis Cave Psuedoscorpion Invertebrate Arachnid G5 N5 8 Hypochilus coylei A Cave Spider Invertebrate Arachnid G3? NNR 8 Hypochilus sheari A Lampshade Spider Invertebrate Arachnid G2G3 NNR 9 Kleptochthonius griseomanus An Indiana Cave Pseudoscorpion Invertebrate Arachnid G1 N1 8 Kleptochthonius orpheus Orpheus Cave Pseudoscorpion Invertebrate Arachnid G1 N1 9 Kleptochthonius packardi A Cave Obligate Pseudoscorpion Invertebrate Arachnid G2G3 N2N3 9 Nesticus carteri A Cave Spider Invertebrate Arachnid GNR NNR 8 Nesticus cooperi Lost Nantahala Cave Spider Invertebrate Arachnid G1 N1 8 Nesticus crosbyi A Cave Spider Invertebrate Arachnid G1? NNR 8 Nesticus mimus A Cave Spider Invertebrate Arachnid G2 NNR 8 Nesticus sheari A Cave Spider Invertebrate Arachnid G2? NNR 8 Nesticus silvanus A Cave Spider Invertebrate Arachnid G2? NNR