Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2009 Calcareous Nannoplankton as Paleoceanographic and Biostratigraphic Proxies: Examples from the Mid-Cretaceous Equatorial Atlantic (ODP Leg 207) and Pleistocene of the (NBP0602A) and North Atlantic (IODP Exp. 306) Denise Kay Kulhanek

Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

CALCAREOUS NANNOPLANKTON AS PALEOCEANOGRAPHIC AND

BIOSTRATIGRAPHIC PROXIES: EXAMPLES FROM THE MID-CRETACEOUS

EQUATORIAL ATLANTIC (ODP LEG 207) AND PLEISTOCENE OF THE ANTARCTIC

PENINSULA (NBP0602A) AND NORTH ATLANTIC (IODP EXP. 306)

By

DENISE KAY KULHANEK

A Dissertation submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Degree Awarded: Fall Semester, 2009

Copyright © 2009 Denise Kay Kulhanek All Rights Reserved

The members of the committee approve the dissertation of Denise Kay Kulhanek defended on August 6, 2009.

______Sherwood W. Wise, Jr. Professor Directing Dissertation

______Philip N. Froelich, Jr. Outside Committee Member

______William C. Parker Committee Member

______Yang Wang Committee Member

The Graduate School has verified and approved the above-named committee members.

ii

To my husband Simon

iii ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help and encouragement of many, many people. First and foremost, I would like to thank my advisor, Dr. Sherwood “Woody” Wise, who encouraged me to take advantage of many different opportunities while I was a doctoral student. Without his support I would not have had the chance to sail as a calcareous nannofossil paleontologist on Integrated Ocean Drilling Program Expedition 306 to the North Atlantic. He also suggested I sail as the staff scientist on the SHALDRILL II cruise to the Antarctic Peninsula. As a result I was in charge of editing the post-cruise report, which was an invaluable experience. I also helped Woody with the calcareous nannofossil analyses during that cruise, and so obtained samples used for the study in Chapter 3 of this dissertation. Woody also encouraged my involvement with the Antarctic Marine Geology Research Facility (AMGRF), where I got to act as a stand-in for the curators who were in during the first Andrill season. I also spent a lot of time doing outreach for the AMGRF, not only giving tours to visitors, but I also worked with Tallahassee teachers to develop activities related to Antarctic geology for school-aged children. Woody may have discouraged me from taking on teaching lecture courses early in my doctoral career, but when I did decide to take on that commitment he was always ready to offer advice, and to pass on any activities that he had successfully used. He was a mentor in many ways, and I know any future success will be due in part to his guidance during my tenure at Florida State.

I would also like to thank my committee members: Drs. Bill Parker, Yang Wang, Philip “Flip” Froelich, and Richard Iverson for sharing their expertise with me. Their support and comments were invaluable during each stage of my journey. They offered insight and suggestions not only on my research, but also on future plans, for which I will be forever grateful. I would also like to thank Dr. Bill Parker for all of his help and support as I began teaching the Historical Geology and Paleontology classes.

iv My experiences as a doctoral student would not have been complete without the camaraderie and friendship of other graduate students. Their support made this long process that much more enjoyable. I would particularly like to acknowledge my colleagues in the nannofossil lab, who I could always count on to offer advice and help whenever I needed it. My thanks and gratitude go out to Shijun Jiang, Stacie Blair, Aleta Mitchell-Tapping, Susan Foley, Audra Stant, and Kristeen Roessig. Many other students touched my life while I was at Florida State. There are too many to list, but I especially want to acknowledge graduate students Mabry Gaboardi, Dana Bisatti, Reshmi Das, Muriel Hannion, Sulata Ghosh, Nicole Tibbets, Hailin Deng, Soumen Mallick, and Lindsey Geary. As an instructor, many undergraduates touched my heart, and each contributed in his or her own way to my experiences at FSU.

The faculty and staff in the Department of Geological Sciences have been a tremendous help to me. Thank you to Ted Zateslo for never giving up on the laptop I used. I know we both wanted to throw it off of the roof, but with his help it lasted until I no longer needed it. Many thanks go out to the ladies in the office: Tami Karl, Necole Bowens, Mary Gilmore, and Sharon Wynn. Each of them answered so many questions for me, and were always more than happy to listen when I needed someone to gripe to. Also thanks to Kim Riddle and the FSU Biological Science Imaging Resource for help with the scanning electron microscope.

The ODP Leg 207 study in Chapter 2 used samples and data provided by the Ocean Drilling Program. The ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. TAMU Task Order F001856 to SWW provided funding for the research. Special thanks are extended to David K. Watkins and Jim Bergen for helpful discussion regarding taxonomy, and to Simon H.H. Nielsen for useful comments on the manuscript. The manuscript was significantly improved by the formal reviews of Elisabetta Erba and Silvia Gardin, as well as comments and suggestions from the editor Taniel Danelian.

v The SHALDRIL II study in Chapter 3 was supported by NSF grant 0125526 to S.W. Wise. I would like to thank Steve Bohaty for providing the sampled clast material and the diatom biostratigraphic framework. I would also like to thank Sherwood “Woody” Wise and Simon H.H. Nielsen, who provided helpful suggestions for the initial manuscript. The manuscript was significantly improved by the comments of co-editor John Barron and reviewers David Watkins and Brian Huber.

The IODP Expedition 306 study in Chapter 4 used samples provided by the Integrated Ocean Drilling Program. The research was funded in part by NSF grant T306A33 to me and Woody Wise. Many heartfelt thanks go out to FSU undergraduate student Nicholas Myers for his tireless work sieving and filtering samples for nannofossil slide preparation. Without his help I would still be preparing samples. This study would not have been possible without the help and support of the Expedition 306 scientists, including the co-chiefs Rudy Stein and Toshi Kanamatsu, and staff scientist Carlos Alvarez Zarikian. In particular, I would like to acknowledge Antje Voelker, Jens Grützner, Rudy Stein, and Jens Hefter, whose data I compare my results to. I would also like to thank David Watkins for help with the statistical analyses, and for allowing me to use his lab at the University of Nebraska, Lincoln while writing up this chapter of my dissertation. Finally, thanks to Simon H.H. Nielsen, who (almost) never complained when I constantly badgered him with questions and pieces of manuscript.

Thanks to all my family and friends who supported me during my career as a doctoral student. My parents and brother and sister-in-law offered much love and support during this process, especially each time it seemed I would never finish. And to all my aunts, uncles, and many cousins for always asking about my research, even though they had no idea what I was talking about. Thank you to all my friends for your friendship and support during this time. Shoshana Patocka, Claire Larson, and Tawnya Blades, you were always there for me, and I will always treasure our friendship. I would especially like to thank Woody’s former students Jim Pospichal and James Arney (and James’ wife Michelle), who made sure I was fed and stayed hydrated!

vi Finally, there are not enough words in the English language to express my thanks and gratitude to my husband Simon H.H. Nielsen, who has the misfortune of also being a geologist. He has offered so much love and encouragement, especially as I was writing and thought the finish line would never appear. His comments and insight made a world of difference, especially for the Chapter 4 project. He always made time to look over bits and pieces of my manuscript, even as he was starting a new job half a world away in Japan. Tusind tak til min ægtermand. Jeg elsker dig for altid!

vii TABLE OF CONTENTS

LIST OF TABLES ...... xi

LIST OF FIGURES ...... xii

LIST OF PLATES ...... xiv

ABSTRACT ...... xv

1. INTRODUCTION ...... 1

What are Calcareous Nannoplankton? ...... 1 Calcareous Nannoplankton as Biostratigraphic Indicators ...... 3 Calcareous Nannoplankton as Paleoceanographic Indicators ...... 5 Study Locations ...... 8 Ocean Drilling Program Leg 207 ...... 8 SHALDRIL II Cruise NBP0602A ...... 8 Integrated Ocean Drilling Program Expedition 306 ...... 9 Principal Results and Publication Status by Chapter ...... 10

2. ALBIAN CALCAREOUS NANNOFOSSILS FROM OCEAN DRILLING PROGRAM SITE 1258, DEMERARA RISE ...... 13

Introduction ...... 13 Geologic and Stratigraphic Framework ...... 15 Material and Methods ...... 17 Biostratigraphy ...... 18 The Paleoceanographic Significance of Seribiscutum primitivum...... 24 Summary ...... 27 Systematic Paleontology ...... 27

3. PALEOCENE AND MAASTRICHTIAN CALCAREOUS NANNOFOSSILS FROM CLASTS IN PLEISTOCENE GLACIOMARINE MUDS FROM THE NORTHERN JAMES ROSS BASIN, WESTERN , ANTARCTICA ...... 34

Introduction ...... 34 Site NBP0602A-9 ...... 34 Materials and Methods ...... 36 Results ...... 37 Discussion ...... 39 Clast Ages ...... 39 Clast Provenance ...... 39

viii Summary ...... 40 Systematic Paleontology ...... 41

4. SURFACE WATER HYDROGRAPHY IN THE MID-LATITUDE NORTH ATLANTIC (IODP SITE U1313) FROM 480-355 ka: OBSERVATIONS FROM CALCAREOUS NANNOPLANKTON ...... 44

Introduction ...... 44 Materials and Methods ...... 48 Sample Preparation ...... 48 Age Model ...... 50 Taxonomy ...... 51 Gephyrocapsa ...... 51 Reticulofenestra ...... 54 Pseudoemiliania ...... 56 Other taxa ...... 58 Results ...... 60 Nannoplankton Assemblage ...... 60 Statistical Analysis ...... 64 Discussion ...... 65 Biostratigraphy ...... 67 Calcareous Nannoplankton Paleoecology ...... 70 Surface Water Hydrography at Site U1313 ...... 73 Nannoplankton assemblage ...... 73 Factor analysis ...... 79 Surface water stratification ...... 85 Productivity ...... 87 Summary ...... 91 Systematic Paleontology ...... 94

5. CONCLUSIONS ...... 97

Introduction ...... 97 ODP Leg 207 ...... 97 SHALDRIL II Cruise NBP0602A ...... 98 IODP Expedition 306 ...... 98 Future Work ...... 100

APPENDIX A – COPYRIGHT RELEASE FOR CHAPTER 2 ...... 101

APPENDIX B – DRIED AND SIEVED SAMPLE WEIGHTS AND PERCENT FINE FRACTION ...... 103

APPENDIX C – SAMPLE AND MICROBEAD MASSES FOR CALCULATION OF WTOT, WMICRO, AND MADDED ...... 108

ix APPENDIX D – CALCULATION OF TOTAL ABUNDANCE OF COCCOLITHS IN SEDIMENT FROM NUMBER OF COCCOLITHS AND MICROBEADS COUNTED ... 113

APPENDIX E – NANNOFOSSIL ACCUMULATION RATE (NAR) CALCULATIONS .. 118

APPENDIX F – RAW CALCAREOUS NANNOFOSSIL COUNT DATA ...... 123

APPENDIX G – DIVERSITY INDICES: SIMPLE DIVERSITY AND THE SHANNON DIVERSITY INDEX ...... 144

APPENDIX H – CABFAC FACTOR ANALYSIS FACTOR SCORES ...... 149

APPENDIX I – CABFAC FACTOR ANALYSIS VARIMAX FACTOR SCORES ...... 150

APPENDIX J – N RATIO CALCULATIONS ...... 154

REFERENCES ...... 160

BIOGRAPHICAL SKETCH ...... 189

x LIST OF TABLES

Table 2.1 Distribution of Albian calcareous nannofossils in Hole 1258C ...... 20

Table 2.2 Localities at which Seribiscutum primitivum has been reported ...... 26

Table 3.1 Distribution of Cretaceous and Paleogene calcareous nannofossil species in clasts from Site NBP0602A-9 ...... 37

Table 4.1 Eigenvalues and percent variance explained for factors 1-10 from CABFAC factor analysis ...... 64

xi LIST OF FIGURES

Figure 2.1 Bathymetry of Demerara Rise, off the northern coast of South America, and the location of the five sites drilled during ODP Leg 207 ...... 14

Figure 2.2 Albian (105 Ma) paleoceanographic coastline reconstruction showing locations of Demerara Rise and Blake Nose ...... 16

Figure 2.3 Hole 1258C core recovery log, lithologic units, graphic lithology, and key calcareous nannofossil ranges for the studied section, correlated to the calcareous planktonic microfossils zonation for the Albian-Cenomanian section considered in this study ...... 19

Figure 2.4 Distribution of S. primitivum during the Late Cretaceous (Albian to early Campanian) ...... 25

Figure 3.1 Locality map for the western Weddell Sea and region of the Antarctic Peninsula ...... 35

Figure 3.2 Photograph of Core NBP0602A-9B-2Ra, 0-135 cm ...... 36

Figure 4.1 Location of IODP Site U1313 in the North Atlantic ...... 45

Figure 4.2 Core photographs showing the studied interval, spanning MIS 13 through the initiation of MIS 10 ...... 47

Figure 4.3 Age model for Site U1313 from Voelker et al (in revision) ...... 52

Figure 4.4 The total abundance of coccoliths/gram of sediment and the Shannon 18 diversity index compared to the δOplanktonic record and percent CaCO3 ...... 61

Figure 4.5 Cumulative percent plot showing calcareous nannoplankton assemblage during the studied interval ...... 63

Figure 4.6 CABFAC factor analysis factor scores for factors one (red) and two (blue) ...... 65

Figure 4.7 Distribution of Pseudoemiliania spp. at Site U1313 ...... 69

Figure 4.8 Percentage of different Gephyrocapsa species plotted against planktonic δ18O and δ13C, lithics grains (IRD proxy), and alkenone-based SST ...... 74

xii Figure 4.9 Percentage of different Calcidiscus species plotted against planktonic δ18O and 13δC and alkenone-based SST ...... 77

Figure 4.10 Percentage of different Coccolithus species plotted against planktonic δ18O and 13δC and alkenone-based SST ...... 78

Figure 4.11 Percentage of typical warm-water taxa Helicosphaera, Oolithotus, Rhabdosphaera, and Syracosphaera plotted against planktonic δ18O and alkenone-based SST ...... 80

Figure 4.12 Scatter plots of sample factor scores versus both planktonic and benthic carbon and oxygen isotopes ...... 81

Figure 4.13 Varimax factor scores for factors 1 and 2 plotted against alkenone-based SST and planktonic and benthic δ18O ...... 83

Figure 4.14 Varimax factors scores for factors 1 and 2 plotted against planktonic and benthic δ13C ...... 84

Figure 4.15 Surface stratification indices, including the N Ratio (based on abundance of F. profunda), and lithics, dolomite, and C37:4 alkenones, all indicators of Heinrich-like events that introduce a freshwater lens to the surface ocean ...... 86

Figure 4.16 Plot of various productivity proxies from the studied interval ...... 89

Figure 4.17 Percent abundances of members of family Noelaerhabdaceae (potential alkenone producers) plotted against total concentration of alkenones in the sediment ...... 92

xiii LIST OF PLATES

Plate 2.1 Albian calcareous nannofossils from Hole 1258C ...... 31

Plate 2.2 Albian calcareous nannofossils from Hole 1258C ...... 32

Plate 2.3 Albian calcareous nannofossils from Hole 1258C ...... 33

Plate 3.1 Maastrichtian and Paleocene calcareous nannofossils from clasts in Pleistocene muds recovered at Site NBP0602A-9 in the James Ross Basin, western Weddell Sea ...... 43

Plate 4.1 Pleistocene calcareous nannoplankton from IODP Site U1313 ...... 96

xiv ABSTRACT

This dissertation is a collection of three projects utilizing calcareous nannoplankton as biostratigraphic and paleoceanographic indicators. The materials studied come from three locations: 1) Ocean Drilling Program (ODP) Leg 207 (Site 1258) on Demerara Rise; 2) SHALDRIL II Cruise NBP0602A (Site 9) in the James Ross Basin, Western Weddell Sea; and 3) Integrated Ocean Drilling Program (IODP) Expedition 306 (Site U1313) in the North Atlantic. After an introductory chapter, Chapter 2 details the results from Site 1258, drilled during ODP Leg 207 on Demerara Rise off the northern coast of South America. This cruise recovered organic-rich Albian sediments that contain abundant, moderately to well preserved calcareous nannofossils. Biostratigraphic analysis shows the section primarily spans Roth’s (1978) middle to late Albian Zone NC9. An unconformity separates these sediments from overlying uppermost Albian laminated shales from Zone NC10. The presence of Seribiscutum primitivum within the Albian section represents the first known occurrences of this species at such low latitudes, as Demerara Rise was located within 15º of the equator during the mid-Cretaceous. This species exhibits a bipolar distribution and is considered a cool-water, high-latitude species. Its presence on Demerara Rise indicates cooler water incursions either through changes in surface circulation or upwelling conditions during the opening of the Equatorial Atlantic. Chapter 3 details the results of a study of calcareous nannofossils in clasts obtained during the SHALDRIL II NBP0602A cruise to the Antarctic Peninsula. Site NBP0602A-9, drilled during the SHALDRIL II cruise of the RV/IB Nathaniel B. Palmer, includes two holes located in the northern James Ross Basin in the western Weddell Sea, very close to the eastern margin of the Antarctic Peninsula. Sediment from both holes consists of very dark grey, pebbly, sandy mud, grading to very dark greenish grey, pebbly, silty mud in the lower 2.5 m of the second hole. In addition to abundant pebbles found throughout the cores, both holes contain numerous sedimentary clasts. Biostratigraphic analysis of diatom assemblages from the glaciomarine muds yielded

xv rare to few, poorly preserved diatoms that suggest the sediment is late Pleistocene in age. The sedimentary clasts, on the other hand, are nearly barren of diatoms, but contain rare, moderately to well preserved calcareous nannofossils. The clasts contain three distinct assemblages. Two clasts are assigned an early Maastrichtian age based on the presence of Biscutum magnum and Nephrolithus corystus, whereas one clast is of late Maastrichtian age based on the presence of Nephrolithus frequens. These samples also contain other characteristic Late Cretaceous species, including Biscutum notaculum, Cribrosphaerella daniae, Eiffellithus gorkae, Kamptnerius magnificus, and Prediscosphaera bukryi. Two samples contain an early Paleocene assemblage dominated by Hornibrookina teuriensis. The Maastrichtian assemblages are similar to those found in the López de Bertodano Formation on Seymour and Snow Hill Islands, making it the likely source area for the Cretaceous clast material. Although no calcareous nannofossils have been reported from Paleocene formations on these islands, the occurrence of calcareous foraminifers suggests other calcareous plankton may be present; thus, the Paleocene clasts likely also originated from the area. The fourth chapter presents results from a Pleistocene study of calcareous nannoplankton assemblages spanning 480-355 ka at IODP Site U1313. This site was a reoccupation of Deep Sea Drilling Project Site 607, drilled on the western flank of the Mid-Atlantic Ridge. This location is near the region of steepest sea-surface temperature gradients during the last glacial maximum, and is also on the southern margin of the ice- rafted debris (IRD) belt, making it an ideal location to study paleoclimate. Calcareous nannoplankton assemblages from Marine Isotope Stage (MIS) 12-10 record changes in surface-water conditions over this interval. The assemblage is dominated by family Noelaerhabdaceae, and spans a single biostratigraphic event, the last occurrence of Pseudoemiliania, dated to 427 ka at this site. Most species indicate paleoecological preferences similar to those found in the literature, although Gephyrocapsa oceanica is more abundant during MIS 12, even though it is thought to prefer warmer waters. Similarly, Helicosphaera, another warm-water taxon, is also more abundant during MIS 12. Both prefer higher nutrient conditions that occur during the glacial stage. The first factor of a CABFAC factor analysis explained nearly 92% of the variability in the

xvi assemblage. This factor is dominated by G. oceanica, and the varimax factor scores correlate well with the alkenone-based temperature record, suggesting that the distribution of G. oceanica at Site U1313 is controlled by temperature. The N ratio, based on the ratio of lower photic zone dweller Florisphaera profunda to upwelling indicators, shows deep stratification during much of MIS 12, usually associated with an increase in IRD and freshwater proxies indicating the presence of icebergs in the area. Finally, most productivity indicators suggest higher productivity during MIS 12, in contrast to the nannofossil accumulation rate (NAR), which was lower during that time. Other phytoplankton groups may have increased productivity during MIS 12, although further work is needed to explain why the abundance of alkenones indicates higher productivity in the calcareous nannoplankton when the NAR does not.

xvii CHAPTER 1

INTRODUCTION

What are Calcareous Nannoplankton?

Coccolithophores are members of division Haptophyta, algae that possess golden-brown chloroplasts, two flagella, and a flagella-like structure known as a haptonema. The function of the haptonema is largely uncertain, but in some genera it has been shown to aid in attachment, motility, or nutrient extraction and prey capture (Inouye and Kawachi, 1994; Pienaar, 1994). Haptophyte algae also possess an exoskeleton composed of organic scales; in living coccolithophores these scales are calcified. These calcareous scales, known as coccoliths, appear to be unique to haptophytes (Bown and Young, 1994). Edvardsen et al. (2000) revised the taxonomy of division Hyptophyta, including coccolithophores in class Prymnesiophyceae, a group that also includes non-calcifying forms. Due to the combination of small cell size (15- 100 μm; Siesser, 1993) and possession of coccoliths, coccolithophores are often referred to as calcareous nannoplankton (modern forms) or calcareous nannofossils (extinct forms). There are two main groups of coccoliths: heterococcoliths and holococcoliths. The former are composed of calcite crystal elements of varying size and shape, whereas the elements of holococcoliths are much smaller (<0.1 μm) and essentially identical. This construction makes holococcoliths more susceptible to destruction as they are usually rare compared to heterococcoliths in both modern populations and the fossil record (Siesser and Winter, 1994). A third category lacks characteristics of either, and coccoliths in this group are referred to as nannoliths, which occur in two living families, the Ceratolithaceae and Braarudosphaeraceae (Billard and Inouye, 2004). Originally considered discrete species, it has since been recognized that holococcoliths are a stage in the heteromorphic life-cycle of some coccolithophores (e.g., Parke and

1 Adams, 1960; Kleijne, 1991; Thomsen et al., 1991; Cros et al., 2000a; Geisen et al., 2002) Most coccolithophores have a haplo-diplontic life cycle, with vegetative cells occurring in each stage (Billard and Inouye, 2004). Generally the diploid phase is non- motile and produces heterococcoliths, whereas the motile haploid phase produces holococcoliths, although in Family Noelaerhabdaceae the halpoid phase is non- calcifying (Young et al., 2005). Three other life cycle types are known in coccolithophores: heterococcoliths and ceratoliths (Alcober and Jordan, 1997; Sprengel and Young, 2000); heterococcoliths and aragonitic coccoliths (Cros et al., 2000b); and heterococcoliths with a non-calcifying benthic pseudofilamentous stage (Fresnel and Billard, 1991; Fresnel, 1994; Fresnel and Probert, 2005). The discovery of this heteromorphic lifestyle has led to taxonomic revisions in modern forms where these life- cycle associations can be observed in culture; thus, the currently recognized number of authentic extant biological species is in a state of flux (Billard and Inouye, 2004). In the fossil record heterococcolith-holococcolith associations cannot be discerned and therefore they must be considered different species by necessity, which is problematic for understanding coccolithophorid diversity in the past. Furthermore, some coccolithophores are polymorphic, meaning two or more types of coccoliths occur on a single cell. Polymorphism is often associated with motility, which requires a flagellar opening that is generally lined by a different type of coccolith than the rest of the cell (Young et al., 2005). Both polymorphism and heteromorphic life cycles have implications for the use of calcareous nannofossils in paleoceanographic studies. Paleontologists define species based on morphology, since observation or DNA studies are impossible with extinct species. Thus, a paleontological tabulation of an assemblage would not correlate exactly with a biological tabulation of the same assemblage, and therefore a diversity calculation would yield the diversity of morphologies rather than diversity of species. Regardless, with consistent identification, paleontologic data have proven invaluable in understanding how the Earth has evolved through time. Calcareous nannoplankton are especially useful due to their small size and cosmopolitan distribution; a miniscule amount of sediment yields enough fossils to

2 make reasonable interpretations about the age of the assemblage and environment of deposition.

Calcareous Nannoplankton as Biostratigraphic Indicators

The small size and pelagic nature of calcareous nannoplankton make them excellent biostratigraphic index fossils. Bramlette and Riedel (1954) first demonstrated the usefulness of this fossil group as stratigraphic indicators, suggesting discoasters could be used for worldwide correlation in certain Tertiary horizons. Early biostratigraphic zonation schemes were compiled primarily from land-based sections. Bramlette and Sullivan (1961) recognized six biostratigraphic units from Paleocene and Eocene rocks in California. Stradner (1963) used both outcrop and core samples from Europe to establish nannofossil associations for the Jurassic and Cretaceous. Bramlette and Wilcoxon (1967) developed a zonation for the Oligocene and Miocene based on the distribution of nannofossils in the Cipero section of Trinidad. These early biostratigraphic zonations were developed from samples collected over a limited geographic extent. Other studies attempted to make correlations between widely distributed localities (e.g., Hay and Mohler, 1967; Hay et al., 1967); however, to develop truly global zonations, samples needed to be collected and analyzed from many locations worldwide. The advent of the Deep Sea Drilling Project (DSDP) in 1968 made globally correlated biostratigraphic zonations possible, and illustrated the biostratigraphic usefulness of calcareous nannofossils to the scientific community at large, as age determinations could be made quickly and accurately within a short time after a core arrived on deck (Siesser, 1994). Cores collected by the DSDP usually contained abundant, well-preserved calcareous nannofossils in nearly continuous sections, and examination of these soon led to refinement of global zonation schemes. Martini and Worsley (1970) and Martini (1970, 1971) published the first standard zonation scheme for the Cenozoic, making it easier to use by assigning letter and number combinations to go with each zone name. This zonation combined previously published zones with newly described ones into a single, coherent unit that could be used on a worldwide

3 basis. This was followed by publication of a low-latitude zonation for the Cenozoic based on sediment collected during early DSDP legs (Bukry, 1973a, 1975). Okada and Bukry (1980) later modified and added code numbers to this zonation to increase its usefulness. At the same time, much work was also done to develop biostratigraphic zonations for the Mesozoic. Many different authors defined zones for different intervals of the Mesozoic from around the world (e.g., Čepek and Hay, 1969; Thierstein, 1971, 1973; Worsley, 1971; Roth, 1973; Bukry, 1975). Sissingh (1977) compiled a zonation for the entire Cretaceous that combined some of these previously described zones with new ones from that work. Roth (1978) also developed a standard Cretaceous zonation, adding code numbers to the zones. This zonation was later modified by addition of new subzones by Bralower et al. (1993). Although many of these standard zonations are still used today, further advances in absolute dating have added significant stratigraphic resolution to calcareous nannofossil bioevents. Gartner (1973) was one of the first to tie late Neogene nannofossil events to magnetostratigraphy in the same cores, thus obtaining absolute age dates for the first and last occurrences of some species. This method relies on the assumption that sedimentation rates are constant between the bioevent and magnetic event, which is not always the case. This method works best when comparing the same datum from many different localities, and has yielded useful magnetobiochronologies not only for calcareous nannoplankton, but for other microfossil groups as well (e.g., Berggren et al., 1995). A breakthrough in the development of stratigraphic chronologies occurred when Shackleton and Opdyke (1973) placed the oxygen isotope stratigraphy of Emiliani (1955, 1966) into the established paleomagnetic framework, allowing them to date 22 stage boundaries. Theirstein et al. (1977) used this oxygen isotope chronology to correlate and date several Pleistocene bioevents. This chronology still relied on interpolation between points with known ages (i.e., core top and Brunhes/Matuyama boundary), and thus had to assume constant sedimentation rates. Hays et al. (1976) showed that some sediment properties record Milankovitch cycles. This revolution established an independent means of dating marine sediment, and led to the development of

4 astrochronology, with a resolution of approximately 104, one order of magnitude better than magnetostratigraphy (Raffi et al., 2006). The first comprehensive astrobio- chronologies for calcareous nannofossils were completed by Wei (1993) and Raffi et al. (1993). Since then, many studies have tied bioevents to isotope stratigraphies and astrochronologies (e.g., Backman and Raffi, 1997; de Kaenel et al., 1999; Hilgen et al., 2000; Raffi, 2002; Gibbs et al., 2005). Raffi et al. (2006) published the latest comprehensive calcareous nannofossil astrobiochronology, covering the last 25 million years.

Calcareous Nannoplankton as Paleoceanographic Indicators

As phytoplankton, calcareous nannoplankton are restricted to the photic zone, and most live in the upper photic zone. Thus they record conditions in surface waters, including temperature, nutrient availability, and salinity. After death, the coccoliths accumulate in the sediment, where they are commonly preserved. Studies have shown that coccoliths are rapidly transported to the seafloor through fecal pellets (Smayda, 1970; Roth et al., 1975), and thus the sediment assemblage largely reflects nannoplankton productivity in the overlying water column (e.g., McIntyre and Bé, 1967; Geitzenauer et al., 1977). This is important since sinking rates for individual coccoliths based on Stoke’s Law are so slow that the coccoliths could be transported thousands of miles before deposition, and therefore would have no correlation to surface waters overlying the place of deposition. Because of rapid transport to the seafloor through fecal pellets, calcareous nannofossil assemblages are useful for paleoceanographic studies to interpret sea-surface conditions. McIntyre and Bé (1967) were the first to examine the distribution of calcareous nannoplankton in water and core-top samples to determine the biogeography of modern forms. They defined five provinces characterized by different nannoplankton assemblages that roughly correspond to latitudinal climate belts: tropical, subtropical, transitional, subarctic, and Arctic. Based on this work they were able to determine maximum and optimal temperature ranges for the species within these different zones. Since then, numerous studies have attempted to define the paleoecologic preferences

5 of different species, not only in modern forms (e.g., McIntyre et al., 1970; Okada and Honjo, 1973; Winter et al., 1994; Ziveri et al., 2004; Baumann et al., 2005), but also for extinct species (e.g., Roth and Krumbach, 1986; Erba et al., 1989; Watkins, 1989; Erba et al., 1992; Herrle et al., 2003). Study of extant species for application to the fossil record benefits from culture studies, where a single monospecific culture can be grown under different conditions to determine which are optimal for growth; however, the majority of calcareous nannoplankton have not been successfully cloned (Brand, 1994; Probert and Houdan, 2004), nor can small evolutionary changes in a taxon over hundreds of thousands of years be ignored. Thus, distribution of species in sediments is the dominant method for determining ecologic preferences of species, even in extant forms. Methods to determine oceanic paleotemperatures have become increasingly important for accurate prediction of future climate change. Most of these paleothermometers rely on microfossils, utilizing either assemblage data or their chemical or isotopic composition to reconstruct sea-surface temperatures (SST). One common method is use of a statistical transfer function to relate abundances of species in sediments to paleoenvironmental conditions. Variations of this technique have been applied to foraminiferal assemblages to reconstruct SST during the last glacial maximum (CLIMAP Project Members, 1981; Pflaumann et al., 2003). The δ18O composition of foraminifera is also used to reconstruct temperatures; however, δ 18O is controlled not only by temperature (Epstein et al., 1951), but also ocean water δ18O, which is influenced by global ice volume and salinity (e.g., Epstein and Mayeda, 1953; Berger et al., 1978; Chappell and Shackleton, 1986). To avoid this complication, the Mg/Ca thermometer was established when studies recognized that the Mg composition in foraminifer tests depends on temperature (e.g., Nuernberg, 1995; Rosenthal et al., 1997; Elderfield and Ganssen, 2000). Another biogeochemical proxy for SST uses alkenones, which are long-chain C37-C39 unsaturated methyl and ethyl ketones produced today by some members of class Prmynesiophyceae, including the calcareous nannoplankton Emiliania huxleyi and Gephyrocapsa oceanica (Volkman et al., 1980a,b, 1995; Marlowe et al., 1984). Prahl and Wakeham (1987) quantified the

6 relationship between alkenones and SST, thus establishing a new paleotemperature proxy. The disadvantage of many of these proxies is the time and money it takes to process samples. Calcareous nannoplankton assemblages, on the other hand, can be assessed quickly and with minimal cost; thus, development of a paleothermometer based on this group would be advantageous. Previous works have used abundances of various nannoplankton species to create qualitative temperature reconstructions (e.g., Weaver and Pujol, 1988; Takahashi and Okada, 2000). Bollmann et al. (2002) used the abundance of Gephyrocapsa morphogroups (defined by Bollmann, 1997) correlated to SST on a global basis to create a quantitative temperature proxy with a standard error similar to estimates by other proxies. Henderiks and Bollmann (2004) applied this new paleothermometer to sediments off of NW Africa and found particularly good correlation between it and alkenone-derived SST estimates. The advantage of this Gephyrocapsa paleothermometer is that it requires a very small amount of sediment, making it possible to evaluate very thinly laminated sediments. Unfortunately the proxy is only useful down to 14º C, so in mid- and high-latitude locations it would be of limited use. Furthermore, Bollmann et al. (2002) used a scanning electron microscope (SEM) to collect precise measurements on the assemblage, so this technique is not as fast or inexpensive as analysis with a light microscope (LM) would be. Further work is needed to see if LM examination would yield comparable results. These types of techniques have been applied to the fossil record, despite the difficulty of using modern analogues for extinct species. Many studies have calibrated different Mesozoic calcareous nannofossils to sea-surface temperature and nutrient preferences (e.g., Roth and Krumbach, 1986; Erba et al., 1989; Watkins, 1989; Erba, 1992; Eshet and Almogi-Labin, 1996; Street and Bown, 2000; Mutterlose and Kessels, 2000). These types of calibrations have been used to develop qualitative paleothermometers and paleonutrient proxies to better understand climate evolution (e.g., Lees, 2002; Herrle et al., 2003). Although these studies are important, it is necessary to be aware of the limitations of applying paleoecological preferences to microfossils based on proxies from other microfossils. Lees et al. (2005) caution against widespread application of these calcareous nannofossil proxies to locations and time

7 intervals significantly different from where they were originally described. Nonetheless, they do not dispute the necessity of these proxies for understanding global climate evolution, and propose a technique to geochemically “fingerprint” taxa to better understand paleoecological preferences of extinct species.

Study Locations

The studies in this dissertation span the Atlantic and cover different time intervals of the past 100 million years. Each study utilized calcareous nannoplankton as biostratigraphic or paleoceanographic indicators. Brief descriptions and objectives for each study site are outlined below.

Ocean Drilling Program Leg 207

Ocean Drilling Program Leg 207 drilled five sites on Demerara Rise off the northern coast of Suriname in South America. The primary objective of the leg was to recover sediments for study of major paleoceanographic events in the equatorial Atlantic, including the Paleocene/Eocene Thermal Maximum, the Cretaceous/Tertiary boundary mass extinction, and Cretaceous oceanic anoxic events (Shipboard Scientific Party, 2004a). Suriname was also one of the last points in South America to separate from Africa during the Cretaceous (Benkhelil et al., 1995), making Demerara Rise an ideal location to study ocean dynamics during the opening of the equatorial Atlantic. Mid-Albian organic-rich claystones from Site 1258 are. Chapter 2 of this dissertation focuses on these Albian sediments. The main goals of the study were to develop a biostratigraphic framework for the Albian sediments, and to evaluate the potential for paleoceanographic interpretation of sea-surface conditions at a time soon after the opening of the equatorial Atlantic.

SHALDRIL II Cruise NBP0602A

Cruise NBP0602A was the second SHALDRIL (SHALlow DRILling along the Antarctic margin) cruise to the Antarctic Peninsula to test a drilling rig installed on the RV/IB Nathaniel B. Palmer for penetration of glacial overburden. This cruise drilled

8 twelve sites near the Antarctic Peninsula in the James Ross Basin, western Weddell Sea. The primary goal of the cruise was to recover sediment from key intervals during evolution of the Antarctic cryosphere, including the Eocene/Oligocene boundary, upper Oligocene, and Miocene. A particularly severe ice year precluded drilling at any of the primary locations; however, drilling at secondary sites and newly selected locations based on shipboard seismic acquisition successfully recovered those intervals (Anderson et al., 2006). Site NBP0602A-9 targeted lower Oligocene sediments at a location just east of James Ross and Seymour Islands. Unfortunately ice forced drilling to cease prior to reaching the targeted interval. The two holes drilled recovered several meters of Pleistocene-aged muds based on diatom biostratigraphy (Anderson et al., 2006). The mud also included clasts that, upon shipboard examination, contained well-preserved Cretaceous calcareous nannofossils. Chapter 3 of this dissertation examines the age and provenance of these clasts.

Integrated Ocean Drilling Program Expedition 306

Integrated Ocean Drilling Program Expedition 306 was the second of two paleoclimate cruises to the North Atlantic. This cruise drilled three sites in areas of presumed high sedimentation rate (Gardar Drift and the ice-rafted debris belt) with the primary objective to develop a paleointensity-assisted chronology (PAC) for correlation at sub-Milankovitch scales (Expedition 306 Scientists, 2006a). Creation of a millennial- scale PAC is essential for studying mechanisms of abrupt climate change, as Milankovitch-scale stratigraphic resolution on the order of tens of thousands of years is inadequate for global correlation. Secondary objectives of the cruise were to recover sediment for study of abrupt climate change and climate evolution over the past several million years. Of the three sites drilled, two (Sites U1313 and U1314) yielded sedimentation rates high enough for study of millennial-scale climate change (Expedition 306 Scientists, 2006a). Site U1313 is a reoccupation of DSDP Site 607, a location vital for study of Plio-Pleistocene climate and ocean evolution (e.g., Raymo et al., 1989; Ruddiman et al., 1989). This site was drilled on the western flank of the Mid-Atlantic

9 Ridge, approximately 240 km northwest of the Azores, in 3426 m of water (Expedition 306 Scientists, 2006b). This location is between the subpolar and subtropical gyres, with average annual sea-surface temperatures (SST) of 18º C (Locarnini et al., 2006). At depth the site is today bathed in North Atlantic Deep Water, with bottom water temperatures of approximately 2.5º C (Locarnini et al., 2006). During the last glacial maximum, this site was located in the area of steepest SST gradients (Pflaumann et al., 2003), and is also on the southern edge of the ice-rafted debris (IRD) belt (Ruddiman, 1977). Thus, it is ideally situated for study of climate evolution since the inception of northern hemisphere glaciation. Chapter 4 discusses the results of a calcareous nannoplankton study from Site U1313 spanning Marine Isotope Stages (MIS) 10-13 (~355-480 ka). Sedimentation rates over this interval ranged from 3.3-6.7 cm/kyr, yielding a sample resolution of 600- 1250 years over the studied interval. The main goal of this study was to assess calcareous nannoplankton response to changing surface-water conditions at millennial scales. Results are compared to a number of proxies, including oxygen and carbon isotopes, lithics (interpreted as IRD), x-ray fluorescence, x-ray diffraction, and alkenones.

Principal Results and Publication Status by Chapter

This dissertation is comprised of three separate studies organized into chapters. Primary results and publication status for each project are given below.

Chapter 2: Albian Calcareous Nannofossils from Ocean Drilling Program Site 1258, Demerara Rise

Principal Results: This study refined the shipboard biostratigraphy of Albian sediments recovered at Site 1258C. The oldest sediment recovered (484.33 meters below seafloor (mbsf)) belongs to calcareous nannofossil Subzone NC9A (Roth, 1978; Bralower et al., 1993) based on the presence of Axopodorhabdus albianus. The first occurrence of Eiffellithus cf. E. eximius = Eiffellithus monechiae marks the base of

10 Subzone NC9B, and occurs at 477.57 mbsf. An unconformity exists below 449.05 mbsf, separating uppermost Albian sediments of Zone NC10 from underlying NC9 sediments. The length of the hiatus was approximately 2.5-5 million years based on both calcareous nannofossil and foraminifer assemblages. The presence of the cool- water, high-latitude species Seribicutum primtivum in Albian sediments at this equatorial site was a surprise. This represents the lowest latitude occurrence of this species to date, and has implications for surface-water hydrography during the opening of the equatorial Atlantic gateway. Further study is necessary to better understand why this species was able to survive in the equatorial region at that time. Authors: Denise K. Kulhanek and Sherwood W. Wise, Jr. Journal: Revue de Micropaléontologie, 49: 181-195. Status: Published June 2006. Copyright release found in Appendix A.

Chapter 3: Paleocene and Maastrichtian Calcareous Nannofossils from Clasts in Pleistocene Glaciomarine Muds from the Northern James Ross Basin, Western Weddell Sea, Antarctica

Principal Results: Clasts from Pleistocene muds recovered from Site NBP0602A-9 contain well-preserved calcareous nannofossils representing three distinct ages: early Maastrichtian, late Maastrichtian, and Paleocene. The Maastrichtian assemblages closely resemble those found in the López de Bertodano Formation on neighboring Seymour and Snow Hill Islands. Paleocene calcareous nannofossil assemblages have not been reported from the area; however, Paleogene sediments from those islands do contain other calcareous plankton, making Paleocene sediments in the Seymour Island area the likely provenance for the clasts. Author: Denise K. Kulhanek Publication: Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th ISEAS, edited by A.K. Cooper and C.R. Raymond et al., USGS Open-File Report 2007-1047, Short Research Paper 019: doi:10.3133/of2007-1047.srp019. Status: Published July 2007 (open-access).

11 Chapter 4: Surface Water Hydrography in the Mid-Latitude North Atlantic (IODP Site U1313) from 480-355 ka: Observations from Calcareous Nannoplankton

Principal Results: The calcareous nannoplankton assemblages from 480-355 ka at Site U1313 are dominated by family Noelaerhabdaceae. Gephyrocapsa oceanica is the most abundant taxon, with somewhat higher abundances during glacial stages. Based on CABFAC factor analysis, factor one (primarily controlled by G. oceanica) explains 92% of the variability in the assemblage, and this factor correlates well with alkenone-based SST and δ18O records. Thus, G. oceanica appears to respond mostly to temperature at this locality. Paleoecologic preferences of other taxa mostly correspond to those in the published literature. Calcidiscus leptoporus prefers higher nutrient conditions, although the smaller morphotype seems to prefer warmer temperatures as well. Oolithotus is a warm-water indicator at this locality. Helicosphaera, which normally prefers warmer waters, is actually more abundant during MIS 12, and so responds preferentially to nutrient availability rather than temperature. The N ratio and greater abundance of Florisphaera profunda indicate deep stratification at times during MIS 12, occurring in association with increased input of IRD and freshwater from melting ice. Weakening stratification begins a few thousand years prior to Termination V based on N ratio values close to 1 and a corresponding increase in small Gephyrocapsa. Finally, although most productivity proxies indicate higher productivity during MIS 12, the nannofossil accumulation rate indicates lower productivity of nannoplankton at that time. Increased productivity during MIS 12 may have come from other phytoplankton groups such as diatoms. More work is needed to explain why the concentration of alkenones, produced by calcareous nannoplankton, was higher during MIS 12, even though calcareous nannoplankton productivity based on coccolith accumulation rates was lower. Author: Denise K. Kulhanek Publication: In preparation for publication.

12 CHAPTER 2

ALBIAN CALCAREOUS NANNOFOSSILS FROM OCEAN DRILLING PROGRAM SITE 1258, DEMERARA RISE

Introduction

The mid-Cretaceous represents a time of climatic and paleoceanographic

change. Global CO2 production increased as a result of major mid-plate volcanism in the Pacific, which is also linked to transgression resulting in globally high sea levels (Schlanger et al., 1981). Within the oceanic realm the onset of widespread deposition of organic carbon-rich sediments, often including laminated black shales, began in the Aptian. At the same time global oceanic circulation was going through many changes as the breakup of Pangaea culminated. During the Albian, North America and Eurasia were still connected (Poulsen et al., 2001), and the South Atlantic was very narrow. Reconstructions by Barron (1987) and Smith et al. (1994) indicate there was still a connection between part of northeastern South America and western Africa. Continued spreading, however, led to the opening of shallow connections between the North and South Atlantic by the late Albian and deep connections by the Turonian (Handoh et al., 1999; Poulsen et al., 2001). The mid-Cretaceous also represents a time of change for calcareous nannofloras. Calcareous nannoplankton from the Early Cretaceous show provincialism, and it is possible to distinguish between the Boreal and Tethyan realms (Mutterlose, 1992a,b). Furthermore, Mutterlose and Kessels (2000) recognize three assemblages from the Early Cretaceous: a bipolar, high-latitude assemblage; a mid- to low-latitude, cool-water assemblage; and a low-latitude, warm-water assemblage. The distinction between these realms began to disappear during the Aptian-Albian, although the calcareous nannofossil Seribiscutum primitivum shows a bipolar, high-latitude distribution for the Albian-Santonian (e.g., Roth and Krumbach, 1986; Wise, 1988; Mutterlose and Wise, 1990; Mutterlose, 1992a), just as Crucibiscutum salebrosum does

13 during the Valanginian-Hauterivian (e.g., Mutterlose, 1992a; Mutterlose and Kessels, 2000; Street and Bown, 2000). Sediment recovered during Ocean Drilling Program (ODP) Leg 207 offers the opportunity to study changes in calcareous nannofossil assemblages in an equatorial setting, close to the final connection between South America and Africa. This study documents the Albian calcareous nannofossil biostratigraphy for Site 1258 and investigates Albian paleobiogeography based on the fossils recovered.

11° 80°W 60° 40°

20°N 4000

10° 0°

1258 1257 1259 1260 9° 1261

3000

8° 2000

1000

7°N 56°W 55° 54° 53° 52° Figure 2.1. Bathymetry of Demerara Rise, off the northern coast of South America (inset), and location of the five sites drilled during ODP Leg 207 (after Suganuma and Ogg, 2006, modified). Site 1258 is the focus of this investigation.

14 Geologic and Stratigraphic Framework

ODP Leg 207 drilled five sites on Demerara Rise off Suriname, South America (Fig. 2.1) with the principal objective of recovering sediment useful for paleoceanographic studies of the tropical Atlantic (Shipboard Scientific Party, 2004a). While the primary targets for these studies include the Paleocene/Eocene thermal maximum, the Cretaceous/Tertiary boundary, and the Cenomanian/Turonian boundary oceanic anoxic event, study of the oldest sediments recovered during the leg can provide insight into surface water conditions during the opening of the Equatorial Atlantic Gateway. Based on tectonic reconstructions, Suriname was one of the last South American points in contact with the western African margin during rifting (Benkhelil et al., 1995). Recovery of Barremian basaltic volcanics from industry wells on eastern Demerara Rise indicates rifting began during the Early Cretaceous, with marine deposition beginning in the Neocomian (Shipboard Scientific Party, 2004a). Today Demerara Rise is a prominent submarine plateau located at approximately 9ºN latitude, 54ºW longitude. The plateau is composed of Cretaceous to Recent marine sediments up to 3 km thick, and is 380 km long and 220 km wide from the shelf break to escarpment. Much of the rise sits in shallow water <700 m deep, although water depths increase to >4500 m along the northwest margin (Fig. 2.1). During the Albian, most tectonic reconstructions place Demerara Rise near the equator (within ~5º; Fig. 2.2) (e.g., Smith et al., 1994; Shipboard Scientific Party, 2004a); however, recent work by Suganuma and Ogg (2006) placed Demerara Rise near 15º N (±5º) at that time. Shipboard sedimentological analyses indicated the environment of deposition was shallow, but fully marine, during the Albian, and the occurrence of bioclastic limestones interpreted as tempestites (storm deposits) suggests the paleowater depth was above wave base (Shipboard Scientific Party, 2004b). The oldest sediments recovered during Leg 207 are Albian calcareous clays from Site 1258 (Shipboard Scientific Party, 2004a,b). The site is located on the western slope of Demerara Rise in 3192 m of water (Fig. 2.1). This site occurs at the deepest end of the Leg 207 transect and is located on a ridge of outcropping Paleogene sediments.

15 60° N

30° N Blake Nose

0° ODP Leg 207

30° S

60° S

Albian (105 Ma) Figure 2.2. Albian (105 Ma) paleogeographic coastline reconstruction (after Smith et al., 1994, modified) showing locations of Demerara Rise and Blake Nose.

One of the primary objectives at this site is to reconstruct the history of the opening of the Equatorial Atlantic (Shipboard Scientific Party, 2004b), and analysis of calcareous nannofossil assemblages can provide insight into the surface water conditions present during that time. Site 1258 recovered sediments ranging in age from the Albian to Miocene in three holes. This site is ideal for detailed study of Cretaceous calcareous nannofossil assemblages as it yielded one of the most shallowly buried Cretaceous sections from the leg, resulting in better-preserved fossils. Holes 1258A and 1258B were drilled to 447.5 meters below the seafloor (mbsf) and 460.9 mbsf, respectively. Hole 1258C was spot cored to obtain specific sections for an Eocene splice and a third recovery of the K/T boundary (Shipboard Scientific Party, 2004b). The hole was then continuously cored from 384.8 to 485.0 mbsf, obtaining the oldest material from this site. The Albian section at this site consists of organic-rich claystones with phosphatic concretions. These sediments are separated from the overlying black shales by an upper Albian disconformity. The Albian sediments contain up to 5% marine organic matter (Shipboard Scientific Party, 2004b) but lack obvious laminations. The clay-rich

16 Albian sequences yield well-preserved microfossils, and shipboard observations suggested an age of late early Albian for the base of the section (Core 207-1258C- 34R), although this study indicates an age of late middle Albian.

Material and Methods

Thirty samples spanning the Albian section at Hole 1258C were obtained for this study. These samples were prepared using standard smear slide techniques, and examined using a Zeiss Axioskop under 1250x magnification. A minimum of 400 fields of view (FOV) was observed for each sample. The following scale is used to document nannofossil abundances of each species or group:

V = very abundant (101 or more/FOV); A = abundant (11-100/FOV); C = common (1-10/FOV); F = few (one specimen/2-10 FOV); R = rare (one specimen/more than 10 FOV).

Nannofossil preservation is documented as follows:

G = good: little or no evidence of dissolution and/or overgrowth, little or no alteration of primary morphological features, and specimens are identifiable to the species level; M = moderate: minor dissolution or crystal overgrowth observed, some alteration of primary morphological features, but most specimens are identifiable to the species level; P = poor: strong dissolution or crystal overgrowth, significant alteration of primary morphological features, and many specimens are unidentifiable at the species and/or generic level.

17 Results are correlated to the calcareous nannofossil biostratigraphic zonation of Roth (1978), with subzonal additions by Bralower et al. (1993). Absolute ages for biostratigraphic events are from Leckie et al. (2002) and Watkins et al. (2005) (Fig. 2.3). Calcareous nannofossil species considered in this paper are listed in Systematic Paleontology, where they are arranged alphabetically by generic epithets. Bibliographic references for these taxa can be found in Perch-Nielsen (1985), Bown (1998), and Watkins and Bergen (2003).

Biostratigraphy

Preservation, abundances, and distribution of calcareous nannofossils are given in Table 2.1. Most samples contain abundant, moderately to moderately well preserved nannofossils. The oldest sample examined, 207-1258C-34R-3, 63-64 cm (484.33 mbsf), yields rare Axopodorhabdus albianus and few Prediscosphaera columnata, and is assigned to Roth’s (1978) A. albianus (NC9) Zone (Fig. 2.3 and Table 2.1). This is a somewhat younger age than that based on shipboard examination, which suggested a late early Albian age (Zone NC8). Bralower et al. (1993) defined subzones based on Roth’s original zonation, dividing NC9 into NC9A (defined by the first occurrence (FO) of A. albianus) and NC9B (based on the FO of Eiffellithus cf. E. eximius = Eiffellithus monechiae). Eiffellithus monechiae occurs sporadically throughout the studied interval, with a FO in Sample 207-1258C-33R-2, 7-8cm (477.57 mbsf) (Fig. 2.3 and Table 2.1). Biscutum constans, Zeugrahbdotus erectus, and to a lesser extent, Watznaueria barnesae dominate the assemblages from Zone NC9. Although abundant, W. barnesae never exceeds more than 40% of the assemblage. This indicates that dissolution is not a significant problem at this site, as high percentages of this solution-resistant species can indicate an assemblage altered by diagenesis (Roth and Bowdler, 1981). The former two species are considered high-fertility indicators (e.g., Roth and Krumbach, 1986; Erba et al., 1989; Watkins, 1989; Erba, 1992; Erba et al., 1992), whereas W. barnesae is an indicator of low fertility (e.g., Roth and Krumbach, 1986; Erba et al., 1992; Herrle, 2002; Herrle et al., 2003) or high dissolution.

18

Figure 2.3. Hole 1258C core recovery log, lithologic units, graphic lithology, and key calcareous nannofossil ranges for the studied section, correlated to the calcareous planktonic microfossil zonation for the Albian-Cenomanian section considered in this study. Planktonic foraminifer zonation is primarily that given in Bralower et al. (1993), which is based on Caron (1985) and Sliter (1989, 1992). The addition of Rotalipora globotruncanoides to the R. brotzeni Zone is from Sigal (1977). The calcareous nannofossil zonation is that of Roth (1978), with subzones informally defined by Bralower et al. (1993). The integrated zonation is by Bralower et al. (1995). Foraminifer and calcareous nannofossil biostratigraphic event absolute ages are given in Leckie et al. (2002) and Watkins et al. (2005) for ages denoted by an asterisk (*). Calcareous nannofossil events are in bold.

19 Table 2.1. Distribution of Albian calcareous nannofossils in Hole 1258C.

Notes: Species are listed alphabetically by first occurrence in the studied section. Preservation: G = good, M = moderate, P = poor. Abundance: V = very abundant, A = abundant, C = common, F = few, R = rare, ? = questionable.

20 Table 2.1 – continued

Notes: Species are listed alphabetically by first occurrence in the studied section. Preservation: G = good, M = moderate, P = poor. Abundance: V = very abundant, A = abundant, C = common, F = few, R = rare, ? = questionable.

21 A disconformity separates the underlying middle to upper Albian (NC9) section from overlying uppermost Albian (NC10) sediments. This disconformity is apparent based on the distinct assemblage change present in Sample 207-1258C-27R-2, 14-15 cm (449.05 mbsf) (Fig. 2.3 and Table 2.1). This sample contains common eiffellithids, including Eiffellithus turriseiffelii, the FO of which marks the base of Zone NC10 (100.95 Ma; Fig. 2.3). Hayesites albiensis, which has a last occurrence (LO) within NC10A (100.03Ma; Fig. 2.3), last occurs in the sample below (207-1258C-27R-3, 6-7 cm; 450.47 mbsf), indicating the base of Zone NC10A is missing at Hole 1258C (Fig. 2.3 and Table 2.1). Additionally, the three samples studied above the disconformity contain a form assigned to Corrollithion aff. C. kennedyi, as well as a questionable C. kennedyi s.s., but no definite C. kennedyi (Table 2.1). The FO of C. kennedyi occurs just above the Albian/Cenomanian boundary and marks the base of Zone NC10B (99.55 Ma; Fig. 2.3); therefore, much of Zone NC10A is absent at Site 1258 (Fig. 2.3). The uppermost Albian assemblage is somewhat similar to the Zone NC9 assemblage as it is dominated by B. constans and Z. erectus, although P. columnata is also abundant within these sediments. Another difference is the assemblage contains several eiffellithid species described by Watkins and Bergen (2003), who found evidence of late Albian eiffellithid adaptive radiation at Blake Nose in the western North Atlantic (Fig. 2.2). They described four new species, and distinguished between small forms of E. turriseiffelii (5.5-8.0 μm) (FO 100.95 Ma; Fig. 2.3) and more typical larger forms >8.0 μm, which first appeared later than the smaller forms(FO 100.52 Ma). Three of the new species (Eiffellithus equibiramus, E. parvus, and E. vonsalisiae), as well as the small and large morphotypes of E. turriseiffelii, occur in the sediments above the disconformity in Hole 1258C. The length of the hiatus at Site 1258 can be approximated using the absolute ages for nannofossil and foraminifer biostratigraphic events given by Leckie et al. (2002) and Watkins et al. (2005) (Fig. 2.3). The absolute ages for events younger than 102 Ma are derived from cyclostratigraphy at Blake Nose using an age model following the timescale of Gradstein et al. (2004), which places the Albian/Cenomanian boundary at 99.6 Ma (Watkins et al., 2005). The ages of events older than 102 Ma are based on the interpreted ranges of taxa from numerous deep-sea and land sections correlated to the

22 Gradstein et al. (1994) timescale, which places the boundary at 98.9 Ma (Leckie et al., 2002). These absolute ages cannot be directly compared to each other; however, utilizing the ages given by Watkins et al. (2005) for the latest Albian makes it possible to use the ranges of the new eiffellithid taxa to help constrain the age of the section at Demerara Rise using the latest timescale and still offer an estimate of the length of the hiatus at Site 1258. The age of the sediments above the disconformity is better constrained than the age of those below. The FO of E. monechiae (105.0 Ma) is the last calcareous nannofossil datum to occur in the section below the hiatus (Fig. 2.3 and Table 2.1); the next zonal event is the FO of E. turriseiffelii (100.95 Ma), although at Blake Nose the FO of E. equibiramus occurs somewhat earlier (101.76 Ma; Fig. 2.3). Neither of these species is present in sediments below the disconformity (Fig. 2.3 and Table 2.1), although this only constrains the age to between 101.76 and 105 Ma. Preliminary planktonic foraminifer biostratigraphy from shipboard examination of samples at Site 1258C (Shipboard Scientific Party, 2004b) can further constrain the age of the section based on the absence of Rotalipora subticinensis, which has a FO within Subzone NC9B at 102.4 Ma (Fig. 2.3). Further study of the planktonic foraminifers is needed though, as Biticinella breggiensis has a FO coeval with E. monechiae (105.0 Ma; Fig. 2.3), but in Hole 1258C does not occur until Sample 207-1258C-27R-1, 85-89 cm (448.35 mbsf) (Shipboard Scientific Party, 2004b), which is above the disconformity. This discrepancy could indicate that these two species do not have the same FOs, or B. breggiensis may be absent in sediments below the hiatus due to other (possibly environmental) reasons. Sediments above the hiatus can be better dated based on calcareous nannofossil biostratigraphy. These sediments are younger than the last occurrence of H. albiensis (100.03 Ma) and older than the first occurrences of Gartnerago nanum (99.85 Ma) and C. kennedyi (99.55 Ma), which are not found in the samples above the hiatus (Fig. 2.3 and Table 2.1). Additionally, E. vonsalisiae (LO 99.72 Ma; Fig. 2.3), E. equibiramus (LO 99.66 Ma; Fig 2.3), E. paragogus (LO 99.61 Ma; Fig. 2.3), and E. parvus (LO 99.52 Ma; Fig. 2.3) are all present in these sediments (Fig. 2.3 and Table 2.1), offering further evidence that sediments above the hiatus are latest Albian in age.

23 Based on this information, the amount of time missing from the section at Site 1258 is a minimum of ~2 m.y. and a maximum of ~5 m.y. (Fig. 2.3).

The Paleoceanographic Significance of Seribiscutum primitivum

Thierstein (1974) described Cribrosphaerella primitiva from Deep Sea Drilling Project (DSDP) Leg 26 drilled in the southeastern Indian Ocean. Filewicz, Wind, and Wise established the genus Seribiscutum (Wise and Wind, 1976) and recombined C. primitiva to S. primitivum based on Albian sediments drilled during DSDP Leg 36 on the Falkland Plateau. They speculated that S. primitivum preferred a high-latitude, cool- water habitat, based on its occurrences in the southern Indian Ocean, the Falkland Plateau, and southern Sweden (Forchheimer, 1968). A number of studies (e.g., Roth and Krumbach, 1986; Wise, 1988; Mutterlose and Wise, 1990; Mutterlose, 1992a) have illustrated the bipolar distribution of S. primitivum and thus considered it a cool-water, high-latitude species. Mutterlose (1992c) speculated that the absence of S. primitivum and C. salebrosum (a species that exhibited a similar bipolar distribution during the Berriasian-Hauterivian) from low latitudes could be explained by one of the following:

• These species are cool-water morphotypes of tropical species; • They are extremely rare in low latitudes and their presence has been thus far overlooked; or • They were able to migrate between the northern and southern high latitudes during brief periods of cooling.

The sporadic presence of S. primitivum within the Albian section at Site 1258 (Table 2.1) documents this species’ occurrence at low latitudes. Figure 2.4 shows the location of sites where S. primitivum has and has not been found in Upper Cretaceous sediments (see Table 2.2 for site references). Prior to this study, DSDP Site 369 off the northwest coast of Africa represented the lowest-latitude occurrence of S. primitivum (~18º N at 100 Ma according to Roth and Krumbach, 1986: table 1, or ~22º N at 105 Ma based on the reconstruction in Fig. 2.4). At that site, the species consisted of only 0.2%

24 Cenomanian (95 Ma)

6 60° N 3 1 4 2 5 7 8 30° N 9

10 0°

30° S 19 11 14 18 13 15 17 60° S 12 16 20

Sites with S. primitivum Sites without S. primitivum

Figure 2.4. Distribution of S. primitivum during the Late Cretaceous (Albian to early Campanian). Data is plotted on a paleogeographic reconstruction showing paleocoastlines during the Cenomanian (95 Ma) by Smith et al. (1994). Distribution of S. primitivum is updated from Roth and Krumbach (1986); Wise (1988); and Mutterlose and Wise (1990). Numbers on map correspond to numbered localities in Table 2.2.

of the assemblage in sediments spanning Zone NC8/9, and was absent from Zone NC10/11 sediments. Seribiscutum primitivum is typically rare or absent throughout the section at Site 1258; however, it occurs in few numbers (1 specimen/2-10 FOV) in Samples 207-1258C-29R-1, 97-98 cm, -28R-1, 30-31 cm, and -27R-3, 81-82 cm. The presence of this species may indicate the incursion of cooler surface waters to this site at different times during the Albian. These cooler waters may be the result of upwelling or changes in surface circulation patterns, and may shed light on the dynamics of the opening of the Equatorial Atlantic. The qualitative data obtained for this study show there is an increase in abundance from common to abundant for the high-fertility indicators B. constans and Z. erectus, while the low-fertility indicator W. barnesae is only common in samples which contain few S. primitivum. Semi-quantitative analysis should be useful for further examining the presence of S. primitivum at this site.

25 Table 2.2. Localities at which S. primitivum has been reported (see Fig. 2.4). Locality Abundance Time Intervala Reference 1 Utah, Wyoming Present Cenomanian Roth and Krumbach (1986) (USA) 2 Kansas (USA) Rare Santonian Covington (1986) 3 Moray Firth Abundant Albian Jakubowski (1987) 4 Southern England 0.3-0.7% NC8-NC11 Roth and Krumbach (1986) 5 Normandy Coast, Rare Cenomanian- Amedro et al. (1978) France Santonian Paris Basin, France Present Albian Manivit (1979) Mont Risou, Hautes- Rare-Frequent Albian- Gale et al. (1996); Kennedy Alpes, France Cenomanian et al. (2004) 6 Borehole Höllviken I, 2-7% Albian- Forchheimer (1968) Sweden Cenomanian 7 Kirchrode I borehole, 0.3-1.3% NC8-NC10 Čepek (2001) Northwest Germany 8 Col de Pré-Guittard, Consistently NC8 Kennedy et al. (2000) France present Vocontian Basin, Not given NC8 Herrle and Mutterlose France (2003) 9 DSDP Site 369 0.20% NC8/9 Roth and Krumbach (1986) 10 ODP Site 1258 Rare-Common NC9 This study 11 DSDP Site 327 3.80% NC8/9 Roth and Krumbach (1986) DSDP Site 327 24.50% NC10/11 Roth and Krumbach (1986) DSDP Site 330 1.60% NC8/9 Roth and Krumbach (1986) 12 ODP Site 693 9.90% NC7/8 Mutterlose and Wise (1990) 13 Cauvery Basin Common NC9 Kale and Phansalkar (1989) 14 DSDP Site 217 Few Campanian Lees (2002) ODP Site 758 Rare-Few Campanian Lees (2002) 15 Kerguelen Plateau Present Cenomanian- Thierstein (1977) Turonian ODP Sites Few Turonian- Watkins et al. (1996) 747/748/750 Coniacian 16 ODP Site 738 Rare-Common Turonian- Lees (2002) Campanian 17 DSDP Site 258 29.90% NC8/9 Roth and Krumbach (1986) DSDP Site 258 15% NC10/11 Roth and Krumbach (1986 DSDP Site 258 Rare-Few Turonian- Watkins et al. (1996) Santonian DSDP Site 258 Rare-Abundant Albian- Lees (2002) Cenomanian 18 DSDP Site 259 2.60% NC8/9 Roth and Krumbach (1986) 19 ODP Site 765 Rare NC8 Mutterlose (1992c) ODP Site 765 Rare-Few Albian- Lees (2002) Cenomanian ODP Site 765 Rare-Few NC7/8 Mutterlose (1992c) 20 Queensland, Abundant NC8/9 Shafik (1985) Australia a Nannofossils zones (NC) are from Roth (1978).

26 Summary

Hole 1258C yields abundant, moderate to moderately well preserved calcareous nannofossils useful for Albian biostratigraphy and paleobiogeographic studies. The recovered section includes approximately 40 m of middle to upper Albian (NC9) sediments, unconformably overlain by uppermost Albian (NC10) laminated shales. The presence of the cool-water, high-latitude species S. primitivum is a particularly interesting find, and indicates that cooler water was sporadically present at this site during the Albian, allowing the high-latitude species to migrate to lower latitudes and cross the equatorial zone for brief periods.

Systematic Paleontology

Calcareous nannofossils considered in this report. Taxa are listed in alphabetical order according to genus. Plate and figure references refer to pictures given in this work.

Amphizygus brooksii Bukry, 1969. Plate 2.3, Figs. 19, 20. Axopodorhabdus albianus (Black, 1967) Wind and Wise in Wise and Wind, 1977. Plate 2.3, Figs. 16-18. Axopodorhabdus dietzmannii (Reinhardt, 1965) Wind and Wise, 1983 Biscutum constans (Górka, 1957) Black in Black and Barnes, 1959. Plate 2.1, Figs 1, 2. Braarudosphaera africana Stradner, 1961 Braarudosphaera hockwoldensis Black, 1973. Plate 2.1, Figs. 41, 42. Braarudosphaera stenorhetha Hill, 1976 Broinsonia signata (Noël, 1969) Noël, 1970 Bukrylithus ambiguus Black, 1971. Plate 2.1, Figs. 15, 16. Chiastozygus platyrhethus Hill, 1976. Plate 2.2, Figs. 25, 26. Chiastozygus sp. 1. Plate 2.2, Figs. 27-29. Chiastozygus tenuis Black, 1971

27 Corollithion aff. C. kennedyi Crux, 1981 Corollithion kennedyi Crux, 1981 Corollithion protosignum Worsley, 1971. Plate 2.1, Figs. 31, 32. Corollithion signum Stradner, 1963. Plate 2.1, Figs. 33, 34. Cretarhabdus aff. C. conicus Bramlette and Martini, 1964 Cretarhabdus crenulatus Bramlette and Martini, 1964 Cretarhabdus loriei Gartner, 1968. Plate 2.3, Figs. 26, 27. Cribrosphaerella ehrenbergii (Arkhangelsky, 1912) Deflandre in Piveteau, 1952 Crucibiscutum hayii (Black, 1973) Jakubowski, 1986. Plate 2.1, Figs. 4-6. Crucicribrum anglicum Black, 1973. Plate 2.3, Figs. 13-15. Diazomatholithus lehmanii Noël, 1965 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968. Plate 2.1, Fig. 3. Eiffellithus collis Hoffmann, 1970 Eiffellithus equibiramus Watkins and Bergen, 2003. Plate 2.1, Figs. 22-24. Eiffellithus monechiae Crux, 1991 Eiffellithus paragogus Gartner, 1993 Eiffellithus parvus Watkins and Bergen, 2003. Plate 2.1, Figs. 25-27. Eiffellithus turriseiffelii (Deflandre in Deflandre and Fert, 1954) Reinhardt, 1965. Plate 2.1, Figs. 19-21. Eiffellithus vonsalisiae Watkins and Bergen, 2003 Ellipsagelosphaera britannica (Stradner, 1963) Perch-Nielsen, 1968 Eprolithus floralis (Stradner, 1962) Stover, 1966. Plate 2.3, Figs. 1-4. Flabellites oblongus (Bukry, 1969) Crux in Crux et al., 1982. Plate 2.3, Figs. 7-9. Gartnerago nanum Thierstein, 1974 Glaukolithus diplogrammus (Deflandre in Deflandre and Fert, 1954) Reinhardt, 1964. Plate 2.2, Figs. 19-21. Grantarhabdus bukryi Black, 1972. Plate 2.3, Fig. 25. Grantarhabdus coronadventis (Reinhardt, 1966) Grün in Grün and Allemann, 1975. Plate 2.3, Figs. 30-32. Hayesites albiensis Manivit, 1971. Plate 2.1, Figs. 28-30. Helenea chiastia Worsley, 1971. Plate 2.3, Figs. 10-12.

28 Helicolithus cf. H. compactus (Bukry, 1969) Varol and Girgis, 1994. Plate 2.2, Figs. 9, 10. Helicolithus compactus (Bukry, 1969) Varol and Girgis, 1994 Helicolithus trabeculatus (Górka, 1957) Verbeek, 1977 Hemipodorhabdus spp. Isocrystallithus compactus Verbeek, 1976 Lapideacassis spp. Plate 2.2, Figs. 33, 34. Lithraphidites carniolensis Deflandre, 1963. Plate 2.3, Figs. 33-35. Loxolithus armilla (Black in Black and Barnes, 1959) Noël, 1965 Manivitella pemmatoidea (Deflandre in Manivit, 1965) Thierstein, 1971. Plate 2.3, Figs. 28, 29. Micrantholithus hoschulzii (Reinhardt, 1966) Thierstein, 1971 Nannoconus spp. Octopodorhabdus spp. Pickelhaube furtiva (Roth, 1983) Applegate, Covington, and Wise in Covington and Wise, 1987 Placozygus cf. P. fibuliformis (Reinhardt, 1964) Hoffmann, 1970 Placozygus sp. 1 Prediscosphaera columnata (Stover, 1966) Perch-Nielsen, 1984. Plate 2.1, Figs. 37. 38. Prediscosphaera spinosa (Bramlette and Martini, 1964) Gartner, 1968. Plate 2.1, Figs. 39, 40. Radiolithus planus Stover, 1966. Plate 2.3, Figs. 5, 6. Repagulum parvidentatum (Deflandre and Fert, 1954) Forchheimer, 1972. Plate 2.1, Figs. 13, 14. Rhagodiscus achlyostaurion (Hill, 1976) Doeven, 1983. Plate 2.2, Figs. 7, 8. Rhagodiscus angustus (Stradner, 1963) Reinhardt, 1971. Plate 2.2, Figs. 1-3. Rhagodiscus asper (Stradner, 1963) Reinhardt, 1967. Plate 2.2, Figs. 4-6. Rhagodiscus splendens (Deflanre, 1953) Verbeek, 1977 Rotelapillus laffittei (Noël, 1957) Noël, 1973. Plate 2.1, Figs. 35, 36. Scapholithus fossilis Deflandre in Deflandre and Fert, 1954

29 Seribiscutum primitivum (Thierstein, 1974) Filewicz, Wind, and Wise in Wise and Wind, 1977. Plate 2.1, Figs. 7-10. Sollasites horticus (Stradner, Adamiker, and Maresch in Stradner and Adamiker, 1966) Čepek and Hay, 1969. Plate 2.1, Figs. 11, 12. Staurolithites? mutterlosei Crux, 1989 Stradnerlithus geometricus (Górka, 1957) Bown and Cooper, 1989 Tegalithus tesselatus (Stradner in Stradner et al., 1968) Crux 1986 Tegumentum stradneri Thierstein in Roth and Thierstein, 1972 Tetrapodorhabdus coptensis Black, 1971. Plate 2.3, Figs. 23, 24. Tetrapodorhabdus decorus (Deflandre in Deflandre and Fert, 1954) Wind and Wise in Wise and Wind, 1977. Plate 2.3, Figs. 21, 22. Thoracosphaera spp. Tranolithus gabalus Stover, 1966 Tranolithus orionatus (Reinhardt, 1966a) Reinhardt 1966b. Plate 2.2, Figs. 22-24. Triquetrorhabdulus? sp. Vagalapilla stradneri = Vekshinella stradneri Rood, Hay, and Barnard, 1971 Watznaueria barnesae (Black, 1959) Perch-Nielsen, 1968. Plate 2.1, Figs. 17, 18. Watznaueria biporta Bukry, 1969 Watznaueria fossacincta (Black, 1971) Bown in Bown and Cooper, 1989 Watznaueria ovata Bukry, 1969 Zeugrhabdotus aff. Z. erectus (Deflandre in Deflandre and Fert, 1954) Reinhardt, 1965 Zeugrhabdotus 'elegans' (Gartner 1968) Burnett in Gale et al., 1996. Plate 2.2, Figs. 13-15. Zeugrhabdotus embergeri (Noël, 1958) Perch-Nielsen, 1984. Plate 2.2, Figs. 30-32. Zeugrhabdotus erectus (Deflandre in Deflandre and Fert, 1954) Reinhardt, 1965. Plate 2.2, Figs. 11, 12. Zeugrhabdotus fissus Grün and Zweili, 1980 Zeugrhabdotus xenotus (Stover, 1966) Burnett in Gale et al., 1996. Plate 2.2, Figs. 16- 18.

30

Plate 2.1. Albian calcareous nannofossils from Hole 1258C. Figures with black backgrounds are in cross- polarized light; all others are in phase contrast illumination. Figs. 1 and 2. B. constans; 1258C-32R-1, 68- 69 cm. Fig. 3. D. ignotus; 1258C-33R-3, 51-52 cm. Figs. 4-6. C. hayii; 1258C-30R-1, 71-72 cm. Figs. 7- 10. S. primitivum; 7 and 8, 1258C-27R-3, 81-82 cm; 9 and 10, 1258C-28R-1, 30-31 cm. Figs. 11 and 12. S. horticus; 1258C-32R-1, 68-69 cm. Figs. 13 and 14. R. parvidentatum; 1258C-33R-3, 51-52 cm. Figs. 15 and 16. B. ambiguus; 1258C-31R-2, 144-145 cm. Figs. 17 and 18. W. barnesae; 1258C-33R-3, 51-52 cm. Figs. 19-21. E. turriseiffelii; 1258C-27R-1, 65-66 cm. Figs. 22-24. E. equibiramus; 1258C-27R-1, 115-116 cm. Figs. 25-27. E. parvus; 1258C-27R-1, 65-66 cm. Figs. 28-30. H. albiensis; 1258C-33R-3, 51-52 cm. Figs. 31 and 32. C. protosignum; 1258C-33R-3, 51-52 cm. Figs. 33 and 34. C. signum; 1258C-29R-1, 97-98 cm. Figs. 35 and 36. R. laffittei; 1258C-32R-1, 68-69 cm. Figs. 37 and 38. P. columnata; 1258C-32R-1, 68-69 cm. Figs. 39 and 40. P. spinosa; 1258C-32R-1, 68-69 cm. Figs. 41 and 42. B. hockwoldensis; 1258-31R-2, 144-145 cm.

31

Plate 2.2. Albian calcareous nannofossils from Hole 1258C. Figures with black backgrounds are in cross- polarized light; all others are in phase contrast illumination. Figs. 1-3. R. angustus; 1258C-33R-3, 51-52 cm. Figs. 4-6. R. asper; 1258C-33R-3, 51-52 cm. Figs. 7 and 8. R. achlyostaurion; 1258C-27R-3, 81-82 cm. Figs. 9 and 10. Helicolithus cf. H. compactus; 1258C-31R-2, 144-145 cm. Figs. 11 and 12. Z. erectus; 1258C-32R-1, 68-69 cm. Figs. 13-15. Z. “elegans”; 1258C-33R-3, 51-52 cm. Figs. 16-18. Z. xenotus; 1258C-31R-2, 144-145 cm. Figs. 19-21. G. diplogrammus; 1258C-33R-3, 51-52 cm. Figs. 22- 24. T. orionatus; 1258C-31R-2, 144-145 cm. Figs. 25 and 26. C. platyrhethus; 1258C-33R-3, 51-52 cm. Figs. 27-29. Chiastozygus sp. 1; 1258C-33R-3, 51-52 cm. Figs. 30-32. Z. embergeri; 1258C-32R-1, 68- 69 cm. Figs. 33 and 34. Lapideacassis sp.; 1258C-32R-1, 68-69 cm.

32

Plate 2.3. Albian calcareous nannofossils from Hole 1258C. Figures with black backgrounds are in cross- polarized light; all others are in phase contrast illumination. Figs. 1-4. E. floralis; 1, side view, 1258C-32R- 1, 68-69 cm; 2-4, plan view, 1258C-32R-1, 68-69 cm. Figs. 5 and 6. R. planus; 1258C-32R-1, 68-69 cm. Figs. 7-9. F. oblongus; 1258C-33R-3, 51-52 cm. Figs. 10-12. H. chiastia; 1258C-33R-3, 51-52 cm. Figs. 13-15. C. anglicum; 1258C-33R-3, 51-52 cm. Figs. 16-18. A. albianus; 1258C-33R-3, 51-52 cm. Figs. 19 and 20. A brooksii; 1258C-31R-2, 144-145 cm. Figs. 21 and 22. T. decorus; 1258C-27R-1, 65-66 cm. Figs. 23 and 24. T. coptensis; 1258C-33R-3, 51-52 cm. Fig. 25. G. bukryi; 1258C-33R-3, 51-52 cm. Figs. 26 and 27. C. lorei; 1258C-33R-3, 51-52 cm. Figs. 28 and 29. M. pemmatoidea; 1258C-32R-1, 68-69 cm. Figs. 30-32. G. coronadventis; 1258C-33R-3, 51-52 cm. Figs. 33-35. L. carniolensis; 1258C-33R-3, 51- 52 cm.

33 CHAPTER 3

PALEOCENE AND MAASTRICHTIAN CALCAREOUS NANNOFOSSILS FROM CLASTS IN PLEISTOCENE GLACIOMARINE MUDS FROM THE NORTHERN JAMES ROSS BASIN, WESTERN WEDDELL SEA, ANTARCTICA

Introduction

The SHALDRIL II Cruise NBP0602A was the second cruise to the Antarctic margin on which a drilling rig was installed on the RV/IB Nathaniel B. Palmer to allow penetration of glacial overburden. This cruise drilled 12 sites in the James Ross Basin in the western Weddell Sea, very close to the Antarctic Peninsula (Fig. 3.1), with the objective of obtaining cores from key intervals during the evolution of the Antarctic cryosphere, including the upper Eocene/lower Oligocene, upper Oligocene, and Miocene. Although a particularly difficult ice year precluded drilling at any one site for extended periods of time, the cruise was a success, obtaining cores from each of the targeted intervals. With multiyear sea-ice coverage approaching 100% near the proposed sites, several attempts yielded core, but did not reach the targeted interval. Site NBP0602A-9 targeted lower Oligocene sediments at a location just east of James Ross Island (Fig. 3.1). Two holes were attempted at Site 9, but both had to be abandoned due to approaching ice prior to reaching the target interval situated some 20 meters below the seafloor (mbsf). Hole 9A reached 4.23 mbsf, recovering approximately 2 m of core, whereas Hole 9B penetrated to 10 mbsf, recovering 5.6 m of core. Although neither hole reached the intended target, both yielded numerous sedimentary clasts that, upon shipboard examination, contain well-preserved calcareous nannofossils.

Site NBP0602A-9

Sediment from both Holes NBP0602A-9A and -9B consists of very dark grey to very dark greenish grey pebbly sandy or silty mud. Pebble lithologies in both holes

34

Figure 3.1. Locality map for the western Weddell Sea and James Ross Island region of the Antarctic Peninsula, Site NBP0602A-9 is indicated with a star. Outcrops of the Maastrichtian- Paleocene López de Bertodano Formation, Paleocene Sobral Formation, and Eocene La Meseta Formation in the James Ross Island region are shown. The inset figure shows the location of James Ross Island on the Antarctic Peninsula. (Modified from Pirrie et al., 1997.)

include volcanics, quartzites, and poorly indurated sedimentary clasts, although they are not present in Hole 9B below 8.7 mbsf (Anderson et al., 2006). The mud matrix contains a mixed assemblage of rare to few poorly preserved diatoms. The presence of extant taxa and the absence of Rouxia spp. suggest a late Pleistocene age for the drilled sections, whereas the occurrence of older taxa (including Actinocyclus ingens and Denticulopsis vulgaris) is attributed to reworking (Anderson et al., 2006). Sedimentary clasts range in size from a few millimeters to two centimeters in diameter, and consist of sandy mud with only trace numbers of broken diatoms that are probably contamination for the surrounding matrix. Shipboard examination of two clasts from Hole 9A found a rare, but diverse assemblage of moderately to well-preserved Maastrichtian calcareous nannofossils.

35 Core NBP0602A-9B-2Ra Depth (cm) 0 Barren 10 Age unknown 20 Paleocene

30 Upper Maastrichtian Lower Maastrichtian 40

50

60

70

80

90

100

110

120

130

Figure 3.2. Photograph of Core NBP0602A-9B-2Ra, 0-135 cm. Sampled clasts are circled and color- coded based on the age of calcareous nannofossils in the clast.

Materials and Methods

Eight clasts from Hole NBP0602A-9B were sampled and examined for calcareous nannofossils (Fig. 3.2). Samples were prepared following standard smear slide procedures, and examined on a Zeiss Axioskop microscope at 1250x. At least 800

36 fields of view (FOVs) were examined for each sample. Calcareous nannofossils were very rare, and therefore reported as total number of specimens found during examination. Calcareous nannofossil species considered in this paper are listed in Systematic Paleontology, where they are arranged alphabetically by generic epithets. Bibliographic references for these taxa can be found in Perch-Nielsen (1985) and Bown (1998).

Results

Five of the clasts contain biostratigraphically useful assemblages, two are barren or nearly so, and one contains a mixed assemblage of Cretaceous and Paleogene calcareous nannofossils (Table 3.1). Calcareous nannofossils are quite rare, but

moderately to well preserved within the clasts. The first sample, NBP0602A-9B-2Ra, 12

cm, is barren of calcareous nannofossils. Sample NBP0602A-9B-2Ra, 21 cm contains a well-preserved Paleocene assemblage. The most abundant species in this clast is Hornibrookina teuriensis, a species typical of Paleocene southern high latitudes (Wei and Pospichal, 1991). Biostratigraphically useful species include Cruciplacolithus

Table 3.1. Distribution of Cretaceous and Paleogene calcareous nannofossil species in clasts from Site NBP0602A-9. Numbers represent total number of specimens observed during examination. K/T survivors are species that survived the K/T boundary mass extinction event. K/T Cretaceous Survivors Paleogene spp. sp. sp.

Sample Total Abundance Preservation Cruciplacolithus tenuis Hornibrookina teuriensis Lanternithus duocavus Neobiscutum Neocrepidolithus Reticulofenestra

NBP0602A-9B-2Ra, 12 cm 0 -

NBP0602A-9B-2Ra, 21 cm 37 G 5 2 1 1 1 21 2 4

NBP0602A-9B-2Ra, 71 cm 7 G 1 1 1 1 2 1

NBP0602A-9B-2Ra, 79 cm 23 M-G 1 2 3 3 3 2 2 5 2

NBP0602A-9B-2Ra, 84 cm 20 G 1 4 2 1 5 3 1 ? 1 2

NBP0602A-9B-2Ra, 107 cm 4 M-G 1 2 1

NBP0602A-9B-2Ra, 111 cm 1 G 1 NBP0602A-9B-2Ra, 126 cm 13 M-G 2 9 1 1 Notes: Preservation: G = good; M = moderate.

37 intermedius, Cr. tenuis, and Chiasmolithus danicus. Several specimens assigned to Neocrepidolithus spp. occur in the sample, as does Braarudosphaera bigelowii and the holococcolith Lanternithus duocavus. Sample NBP0602A-9B-2Ra, 126 cm contains a very similar Paleocene assemblage, with H. teuriensis the most abundant species. In addition to B. bigelowii and a single Neocrepidolithus spp., this sample contains a very small placolith assigned to Neobiscutum.

Sample NBP0602A-9B-2Ra, 71 cm contains a mixed assemblage of Cretaceous and Paleogene species. Calcareous nannofossils are very rare throughout the sample; only seven specimens were observed in the 800 FOVs examined. Two fragments of Thoracosphaera spp. and a B. bigelowii fragment are not biostratigraphically useful. Biscutum notaculum and a fragment of Kamptnerius magnficus are indicative of a Cretaceous age. This sample also contains a well preserved specimen of Octolithus multiplus, which ranges from the Maastrichtian to the Paleogene.

Sample NBP0602A-9B-2Ra, 79 cm contains a late Maastrichtian assemblage. The most abundant species in this sample is represented by Prediscosphaera bukryi, which has a range restricted to the late Campanian-Maastrichtian. Other biostratigraphically useful species present are Nephrolithus frequens and Cribrosphaerella daniae. This clast also contains Acuturris scotus, B. bigelowii, B. notaculum, Eiffellithus gorkae, Misceomarginatus pleniporus, and fragments of K. magnificus.

Sample NBP0602A-9B-2Ra, 84 cm also contains rare Maastrichtian calcareous nannofossils. The presence of Biscutum magnum and Nephrolithus corystus indicate a somewhat older age than the previous sample. The most abundant species is K. magnificus, several specimens of which are whole and well preserved. The overall assemblage is generally similar to that of the previous sample, and includes A. scotus, E. gorkae, and Prediscosphaera spinosa. Other species present include Thoracosphaera spp., small Cyclagelosphaera reinhardtii, and a single broken

specimen of what appears to be Rhagodiscus splendens. Sample NBP0602A-9B-2Ra, 107 cm contains a sparse assemblage that includes N. corystus, B. bigelowii, and O. multiplus. The presence of N. corystus suggests this clast is the same age as the clast

38 from 84 cm. Only a single specimen of B. bigelowii was found in the final clast (Sample

NBP0602A-9B-2Ra, 111 cm).

Discussion

Clast Ages

Five of the seven clasts that contain calcareous nannofossils can be assigned to a biostratigraphic zone based on the assemblages present (Fig. 3.2). The Paleocene samples (NBP0602A-9B-2Ra, 21 cm and 126 cm) are assigned to early Paleocene Antarctic Zone NA4 (Wei and Pospichal, 1991) based on the presence of Ch. danicus and absence of Prinsius martinii in the former clast. Although the latter clast did not yield any biostratigraphic markers, the assemblage is very similar to that in the former, and thus is presumed to come from the same horizon.

Sample NBP0602A-9B-2Ra, 79 cm contains a late Maastrichtian assemblage assigned to the C. daniae Subzone of the N. frequens Zone of Pospichal and Wise (1990) based on the presence of these species, and the absence of N. corystus.

Sample NBP0602A-9B-2Ra, 84 cm contains an early Maastrichtian assemblage assigned to the B. magnum Zone of Pospichal and Wise (1990) based on the presence of this species. Although Sample NBP0602A-9B-2Ra, 107 cm did not contain B. magnum, it does contain an older assemblage compared to the clast at 79 cm based on the presence of N. corystus, which has a last occurrence shortly after the first occurrence of N. frequens. The presence of N. corystus therefore supports an early to earliest late Maastrichtian age for this clast, potentially from the same horizon as the clast from 84 cm.

Clast Provenance

Cretaceous and Paleocene sediments occur in outcrops on Antarctic Peninsular islands along the western margin of the James Ross Basin (e.g., Rinaldi, 1982; Macellari and Huber, 1982; Macellari, 1988; Pirrie et al., 1997; Crame et al., 2004). The fossiliferous López de Bertodano Formation, which crops out on Seymour, Snow Hill,

39 and James Ross Islands (Fig. 3.1) spans the upper lower Maastrichtian to the Danian based on diatom, foraminifer, and calcareous nannofossil assemblages (e.g., Huber et al., 1983; Harwood, 1988; Huber, 1988; Crame et al., 2004). The overlying Sobral Formation is also Paleocene in age based on diatoms (Harwood, 1988) and foraminifers (Huber, 1988). There have been very few studies that report Cretaceous calcareous nannofossils from outcrops on Seymour Island (Huber et al., 1983; Concheyro et al., 1991; and Concheyro et al., 1995) and (Concheyro et al., 1995 and Robles Hurtado and Concheyro, 1995). Huber et al. (1983) reported well-preserved calcareous nannofossils from the López de Bertodano Formation on Seymour Island. The assemblage consists of Maastrichtian taxa, with the exception of N. corystus (latest Campanian to middle Maastrichtian), and is dominated by B. bigelowii. Concheyro et al. (1991) also report a well-preserved Maastrichtian flora from this formation on Seymour Island. Robles Hurtado and Concheyro (1995) find a similar, but poorly preserved Maastrichtian assemblage from the López de Bertodano Formation of Snow Hill Island. Species composition is similar to those reported from the Cretaceous clasts in this study. This, coupled with the proximity of Seymour and Snow Hill Islands, suggests the López de Bertodano Formation in those locations is the likely source for the Maastrichtian clasts. No calcareous nannofossils have been reported from Paleocene sequences in this area, although calcareous foraminifers do occur above a dissolution facies in the lowermost Paleocene López de Bertodano Formation and in the lowermost unit of the overlying Sobral Formation on Seymour Island (Huber, 1988). Despite a dearth of reported nannofossils from the area, the Paleocene rocks of Seymour Island are the most likely provenance for the two Paleocene clasts found in this study.

Summary

Clasts found in Pleistocene glaciomarine muds of Site NBP0602A-9 contain diverse Maastrichtian and Paleocene calcareous nannofossil assemblages. These assemblages represent three distinct ages: early Maastrichtian, late Maastrichtian, and

40 early Paleocene. The Maastrichtian assemblages are similar to those found in the López de Bertodano Formation on neighboring Seymour and Snow Hill Islands, making it the likely source area for the clast material. Although no calcareous nannofossils have been reported from Paleocene formations in the area, the occurrence of calcareous foraminifers suggests other calcareous plankton may be present; thus the Paleocene clasts likely also originated from the Seymour Island area.

Systematic Paleontology

Calcareous nannofossils considered in this report. Taxa are listed in alphabetical order according to genus. Plate and figure references refer to pictures given in this work.

Acuturris scotus (Risatti, 1973) Wind and Wise in Wise and Wind, 1977. Biscutum magnum Wind and Wise in Wise and Wind, 1977. Plate 3.1, Figs. 50-52. Biscutum notaculum Wind and Wise in Wise and Wind, 1977. Plate 3.1, Figs. 41-44. Braarudosphaera bigelowii (Gran and Braarud, 1935) Deflandre, 1947. Plate 3.1, Figs. 15-17. Chiasmolithus danicus (Brotzen, 1959) van Heck and Perch-Nielsen, 1987. Plate 3.1, Figs. 13, 14. Cribrosphaerella daniae Perch-Nielsen, 1973. Plate 3.1, Figs. 35, 36. Cruciplacolithus intermedius van Heck and Prins, 1987. Plate 3.1, Figs. 7-9. Cruciplacolithus tenuis (Stradner, 1961) Hay and Mohler in Hay et al., 1967. Plate 3.1, Figs. 10-12. Cyclagelosphaera reinhardtii (Perch-Nielsen, 1968) Romein, 1977. Eiffellithus gorkae Reinhardt, 1965. Plate 3.1, Figs. 30, 31. Hornibrookina teuriensis Edwards, 1973. Plate 3.1, Figs. 1-6. Kamptnerius magnficus Deflandre, 1959. Plate 3.1, Figs. 47-49. Lanternithus duocavus Locker, 1967. Plate 3.1, Figs. 25, 26. Misceomarginatus pleniporus Wind and Wise in Wise and Wind, 1977. Plate 3.1, Figs. 32-34.

41 Neobiscutum sp. Neocrepidolithus spp. Plate 3.1, Figs. 18-24. Nephrolithus corystus Wind, 1983. Nephrolithus frequens Górka, 1957. Plate 3.1, Figs. 27-29. Octolithus multiplus (Perch-Nielsen, 1973) Romein, 1979. Plate 3.1, Figs. 45, 46. Prediscosphaera bukryi Perch-Nielsen, 1973. Prediscosphaera spinosa (Bramlette and Martini, 1964) Gartner, 1968. Plate 3.1, Figs. 37-40. Reticulofenestra sp. Rhagodiscus splendens (Deflandre, 1953) Verbeek, 1977. Thoracosphaera spp.

42 1 2 3 4 5 6

7 8 9 10 11 12 13 14

21 23 25

15 16 17 18 19 20 22 24 26

27 28 29 30 31 32 33 34

37 39 41 43

45 46 38 40 42 44 35 36

47 48 49 50 51 52 Plate 3.1. Maastrichtian and Paleocene calcareous nannofossils from clasts in Pleistocene muds recovered at Site NBP0602A-9 in the James Ross Basin, western Weddell Sea. Micrographs taken with an Olympus DP11 digital camera on a Zeiss Axioskop 2, using a 100x objective and 1.25 optivar. Light micrography: XP = cross-polarized light, PL = plain-transmitted light, PH = phase-contrast light. H. teuriensis, NBP0602A-9B-2Ra, 21 cm, Fig. 1 (XP), Fig. 2 (PL), Fig. 3 (PH); different specimen Fig. 4 (XP), Fig. 5 (PL), Fig. 6 (PH). C. intermedius, NBP0602A-9B-2Ra, 21 cm, Fig. 7 (XP), Fig. 8 (PH), Fig. 9 (PL). C. tenuis, NBP0602A-9B-2Ra, 21 cm, Fig. 10 (XP), Fig. 11 (PL), Fig. 12 (PH). C. danicus, NBP0602A-9B-2Ra, 21 cm, Fig. 13 (XP), Fig. 14 (PH). B. bigelowii, NBP0602A-9B-2Ra, 21 cm, Fig. 15 (XP), Fig. 16 (PL), Fig. 17 (PH). Neocrepidolithus spp., NBP0602A-9B-2Ra, 21 cm, Fig. 18 (XP), Fig. 19 (PH); different specimen Fig. 20 (XP); different specimen Figs. 21, 22 (XP), Fig. 23 (PL), Fig. 24 (PH). L. duocavus, NBP0602A-9B-2Ra, 21 cm, Figs. 25, 26 (XP). N. frequens, NBP0602A-9B-2Ra, 79 cm, Fig. 27 (XP), Fig. 28 (PL), Fig. 29 (PH). E. gorkae, NBP0602A-9B-2Ra, 79 cm, Fig. 30 (XP), Fig. 31 (PH). M. pleniporus, NBP0602A-9B-2Ra, 79 cm, Figs. 32, 33 (XP), Fig. 34 (PH). C. daniae, NBP0602A-9B-2Ra, 79 cm, Fig. 35 (XP), Fig. 36 (PH). P. spinosa, NBP0602A-9B-2Ra, 79 cm, Figs. 37, 38 (XP), Fig. 39 (PL), Fig. 40 (PH). B. notaculum, NBP0602A-9B-2Ra, 79 cm, Figs. 41, 42 (XP), Fig. 43 (PL), Fig. 44 (PH). O. multiplus, NBP0602A-9B-2Ra, 71 cm, Figs. 45, 46 (XP). K. magnificus, NBP0602A-9B-2Ra, 79 cm, Fig. 47 (XP), Fig. 48 (PL), Fig. 49 (PH). B. magnum, NBP0602A-9B-2Ra, 84 cm, Fig. 50 (XP), Figs. 51, 52 (PH).

43 CHAPTER 4

SURFACE WATER HYDROGRAPHY IN THE MID-LATITUDE NORTH ATLANTIC (IODP SITE U1313) FROM 480-355 ka: OBSERVATIONS FROM CALCAREOUS NANNOPLANKTON

Introduction

Understanding Pleistocene climate evolution is integral to predicting future climate change, and much of this understanding has come from marine records (e.g., Emiliani, 1955, 1966; Hays et al., 1976; Raymo et al., 1992; Broecker, 1994; McManus et al., 1999). Calcareous nannoplankton are excellent recorders of sea-surface conditions as most live in the upper photic zone, and different species can be used to define biogeographic provinces based on paleoecologic preferences (e.g., McIntyre and Bé, 1967; Okada and Honjo, 1973; Winter et al., 1994). McIntyre (1967) noted that coccolithophores could be used as indicators of Pleistocene glaciation in the North Atlantic based on southward shifts of populations during cold intervals. Since then, many studies have utilized calcareous nannoplankton to better understand glacial/interglacial-scale variability in surface waters (e.g., Gartner, 1972; Ruddiman and McIntyre, 1976; Pujos, 1992; Okada and Wells, 1997; Kameo et al., 2004). More recently, calcareous nannoplankton have been used to characterize short- term climate oscillations during the last glacial cycle (e.g., Colmenero-Hidalgo et al., 2004; Di Stefano and Incarbona, 2004; Legge et al., 2008; Grelaud et al., 2009). These include abrupt, short-term warmings first recognized in Greenland ice cores known as Dansgaard-Oeschger cycles (Dansgaard et al., 1993; Bond et al., 1993) and ice-rafting episodes later dubbed “Heinrich Events” (Heinrich, 1988; Broecker et al., 1992). These events are well documented over the last glacial cycle, but recognizing these millennial- scale climate oscillations in the open ocean beyond that is limited by sedimentation rates and available chronologies for global correlation. Thus, Integrated Ocean Drilling Program (IODP) Expeditions 303 and 306 specifically targeted locations with high sedimentation rates in the North Atlantic to develop a paleointensity-assisted

44 chronology for study of millennial-scale climate change over the past few million years (Expedition 303 Scientists, 2006; Expedition 306 Scientists, 2006a). Results from these expeditions have extended the record of Heinrich-like events back ~640 ka to Marine Isotope Stage (MIS) 16, near the end of the mid-Pleistocene transition from 40-kyr- to 100-kyr-dominated glacial cycles (Hodell et al., 2008). Several studies have characterized surface-water conditions at Site U1313 during that time using stable isotopes, x-ray diffraction (XRD), and alkenone proxies (Stein et al., 2009; Voelker et al., 2009; Voelker et al., in revision). Integrated Ocean Drilling Program Site U1313 (41° N, 32° 57.4’ W; Fig. 4.1) reoccupied the position of Deep Sea Drilling Project (DSDP) Site 607, an important site for studying late Pliocene and Pleistocene ocean and climate evolution (e.g., Raymo et al., 1989; Ruddiman et al., 1989; Hagelberg and Pisias, 1991; Raymo et al., 1992; Wara et al., 2000; Flesche Kleiven et al., 2002). This site is located in the mid-latitude North

Figure 4.1. Location of IODP Site U1313 in the North Atlantic. Warm surface currents are shown in red, whereas cold surface currents are in blue. NAC = North Atlantic Current; GS = Gulf Stream; AzC = Azores Current; CC = Canary Current; PC = Portugal Current; IrC = Irminger Current; EGC = East Greenland Current; WGC = West Greenland Current; LaC = Labrador Current.

45 Atlantic between the subpolar and subtropical gyres, and was drilled in 3426 m of water on the western flank of the Mid-Atlantic Ridge, approximately 240 miles northwest of the Azores (Fig. 4.1). Mean annual sea-surface temperature (SST) at this location is ~18° C, with winter temperatures (January-March) ~16° C and summer temperatures (July- September) ~22° C (Locarnini et al., 2006). The depth of the seasonal thermocline is at 60-80 m (Voelker et al., in revision). During the last glacial maximum (LGM), this locality was near the area of steepest SST gradients (Pflaumann et al., 2003). It is also on the southern margin of the glacial ice-rafted debris (IRD) belt of Ruddiman (1977), the zone of highest IRD input during Heinrich Events (Bond et al., 1992). Thus this site is well- situated to study changes in surface water conditions at millennial timescales. Sediment from Site U1313 shows clear glacial-interglacial variability. Interglacial deposits consist of white calcareous nannofossil oozes, whereas glacial sediments are grey and typically consist of muddy calcareous nannofossil oozes (Expedition 306 Scientists, 2006b). This study targets the time interval of 480-355 ka, which includes a complete glacial/interglacial cycle (MIS 12/11), as well as the initiation of MIS 10 and end of MIS 13 (Fig. 4.2). Marine Isotope Stage 11 is one of the longest (McManus et al., 1999; Hodell et al., 2000) and perhaps warmest (Burckle, 1993; Howard, 1997) interglacials of the last half-million years. The orbital configuration at that time was also very similar to today (Berger and Loutre, 1991), making MIS 11 a potential analog for the Holocene (Berger, 1999). This study aims to quantify millennial-scale calcareous nannoplankton variability in the mid-latitude North Atlantic during MIS 12-11. These data are compared to isotope, lithics, x-ray fluorescence (XRF), and alkenone records from the same locality to link calcareous nannoplankton species to specific paleoclimatic variables such as SST, salinity, and nutrient conditions. Factor analysis is used to further quantify the relationship between the nannofossil assemblage and environmental parameters.

46

Figure 4.2. Core photographs showing the studied interval, spanning the end of MIS 13 through the initiation of MIS 10. The splice for the composite section between Holes A and D is shown in red. Blue lines mark stage boundaries, and green lines mark the base and top of the studied interval.

47 Materials and Methods

Sample Preparation

For this study five cc samples were collected every 2 cm from the Site U1313 secondary splice, consisting of holes A and D, from 14.70-20.70 meters below seafloor (mbsf). This corresponds to 15.88-22.44 corrected meters composite depth (cmcd) based on the correction made to the shipboard composite section by Voelker et al. (in revision) through comparison of lithics (>315 μm) counts and planktonic foraminifera faunal assemblages for each hole. Samples were prepared following the spiking with microbeads and spraying (SMS) method of Bollmann et al. (1999). Initially a small amount (~100 mg) of sediment was dried in an oven at 65° C overnight. The dried sample was weighed, and then wet- sieved through a 38-μm sieve using water buffered to a pH of 8.0-8.5 to concentrate the fine fraction. Sieving the samples removes larger particles (especially foraminifera) and allows a smaller amount of sediment to be used for spraying. After sieving the >38-μm fraction was reserved, dried, and weighed to determine the percent fine fraction. The <38-μm fraction was filtered through a 0.45-μm filter using a vacuum filtration system (step 7 of Andruleit, 1996) to remove the water, leaving the sediment on the filter. The filter was dried in an oven, and the sediment removed and stored in a glass vial with screw-top lid. To prepare samples for spraying, approximately 1.250 mg of sample was weighed on a Mettler Toledo AT21 Comparator microbalance with a precision of 10-6. The weighed sample was placed in a plastic centrifuge tube with screw-top lid. Between 4.5-6.0 mg of Duke Scientific borosilicate 5-μm microbeads were weighed and added to the sample. More microbeads were required for samples from interglacial stages, whereas fewer microbeads were added to samples from glacial stages due to differences in the total number of coccoliths from each stage. The sample was then suspended in 3.5-4.0 mL of isopropyl alcohol and placed in an ultrasonic bath at 35 kHz for 30 seconds. A plastic pipette was used to thoroughly mix the sample and look for clumps of sediment. The sample was then returned to the ultrasonic bath for another 15

48 seconds. If clumps remained, sonification continued at 20-second intervals until the sample was thoroughly mixed. An Ernest Fullam EFFA spray mounter was used to spray the samples onto a coverslip. The spray attachment fits onto a can of compressed air. A plastic pipette tip was placed inside the spraying device, and then a glass capillary tube for the sample was placed into the pipette tip. A glass coverslip was taped onto a vertical wall of Plexiglas 20 cm from the tip of the spraying device. The sample was drawn into a 5-cc syringe for injection into the capillary tube. The solution was then sprayed 5-10 times onto the coverslip. During the process, close attention was paid to the solution to watch for running on the coverslip. Four slides were processed for each sample, and the ones with little or no running were marked for examination. Running of the suspension could result in size fractionation of the sample on the coverslip, and so was avoided as much as possible. The coverslips were dried on a warming plate, and then affixed to glass slides using Norland Optical Adhesive 61 and cured under an ultraviolet light for at least ten minutes. A total of 177 slides were examined on a Zeiss Axioskop II at 1250x magnification. For much of the study, every other sediment sample was examined, yielding a sampling resolution of 4 cm. For each sample, random fields of view were examined until at least 500 calcareous nannoplankton (excluding Florisphaera profunda) and 100 microbeads had been counted. Coccoliths in side view were counted separately as they could not be identified to species level. These specimens were included in the coccoliths/gram calculation, but excluded from the assemblage data. The following equations were used to calculate the coccoliths/gram for each sample (data given in Appendices B, C, and D):

Ccount × M added 1 C TOT = M added = Wmicro × M TOT M TOT = M count ×WTOT 4 3 ρ M × ×π × r 3 Where:

CTOT = coccoliths/gram of sediment

Ccount = number of coccoliths counted

49 Madded = number of microbeads added

Mcount = number of microbeads counted

WTOT = mass of sample added

Wmicro = mass of microbeads added 9 MTOT = number of microbeads/gram = 4.35 x 10 3 ρM = average density of microbeads = 2.5 g/cm r = average radius of microbeads = 2.8 x 10-4 cm

Nannofossil accumulation rates (Appendix E) were calculated using the equation given by Flores and Sierro (1997), which is based on the procedure of Mayer et al. (1992):

NAR = CTOT ∗ d ∗ S

Where: NAR = nannofossil accumulation rate (nannofosssils/cm2/kyr)

CTOT = coccoliths/gram of sediment d = estimated dry bulk density (g/cm3) S = linear sedimentation rate (cm/kyr)

The dry bulk density was estimated using the dry mass of samples prepared for isotope analysis (see below), with an estimated volume of 10 cm3, as the samples were collected using 10 cc sampling tubes.

Age Model

Voelker et al. (in revision) used the >315-μm fraction over the same interval in the secondary splice of Site U1313 to pick foraminifera for stable isotope analysis. Planktonic δ13C and δ18O were measured on 8-10 specimens of Globorotalia inflata. Benthic measurements were completed on 2-4 specimens of Cibicidoides wuellerstorfi or C. mundulus (during MIS 11). In a few samples where C. wuellerstorfi was absent, Uvigerina sp. was collected for inclusion in the δ18O record. Voelker et al. (in revision)

50 established the age model for Site U1313 (Fig. 4.3) by correlating the high-resolution benthic δ18O record directly to the LR04 time scale based on 57 globally distributed benthic δ18O records (Lisiecki and Raymo, 2005). Tie points mainly correspond to isotopic maxima and are illustrated in Fig. 4.3. Resulting sedimentation rates vary between 3.3-6.7 cm/kyr, with the highest rates occurring during glacial stages (Fig. 4.3).

Taxonomy

Gephyrocapsa. Kamptner (1943) established the genus Gephyrocapsa based on a single species (G. oceanica), which he later split into two varieties (Kamptner, 1956). Since then, more than 25 species have been described (see Bollmann, 1997 table 1), although some of these taxa are not commonly used. The taxonomy of Gephyrocapsa is complicated, first because not all researchers agree on the basic definition of the genus. Bukry (1973b) and Pujos (1985a) define the genus based on the rim structure and crystallography, thereby including forms that lack a cross bar within Gephyrocapsa; however, most researchers include only forms with a cross bar (e.g., Gartner, 1977; Rio, 1982; Perch-Nielsen, 1985; Pujos, 1987; Driever, 1988; Gartner, 1988; Raffi et al., 1993; Geisen et al., 2004). At the species level, inconsistent use of classification criteria further complicates the taxonomy. The original description of G. oceanica includes criteria for the size of the coccolith (2.9-5.7 μm), size of the central area (2.4-4.2 μm), and angle of the bridge (20°-40°) to the short axis (Kamptner, 1943); however, Gartner (1972) noted the variability of morphologies assigned to the species. For instance, Hay and Beaudry (1973) include only forms with a bridge angle <20° to the short axis, whereas other researchers include forms with variable bridge angles (Bukry, 1973b; Gartner, 1977). Similar inconsistencies in the classification criteria exist for Gephyrocapsa caribbeanica. This is in part because the original description is partially based on features difficult to observe under a light microscope, including the number of elements in the distal shield and the structure of the bridge (Hay et al., 1967). As a result, various definitions of the species occur throughout the literature. Even though the original description indicates that the central area is partially or completely filled with elements (Hay et al., 1967), some researchers use only the bridge angle to identify G. caribbeanica, including forms

51

Figure 4.3. Age model for Site U1313 from Voelker et al. (in revision), created by correlating the 18 benthic δ O record from Site U1313 (b) to the LR04 global stack (a) (Lisiecki and Raymo, 2005). Tie points in the U1313 record are indicated by black dots. The marine isotope substage stratigraphy and Termination V (T V) are shown in (a) and (b). Resulting sedimentation rates are shown in (c).

52 with an angle <45° to the long axis of the coccolith regardless of size of the central area (McIntyre et al., 1970; Takayama and Sato, 1986). Others require a small central area, with bridge angle less important since it is difficult to measure when the opening is small (Bukry, 1973b; Rio, 1982). The small size of the individual coccoliths also hinders the taxonomy of Gephyrocapsa, making identification of many species dependent on the use of scanning electron microscopy. Gartner (1972, 1977) noted that many small taxa cannot be consistently identified under a light microscope, including Gephyrocapsa aperta, G. ericsonii, G. protohuxleyi, G. kamptneri, and G. sinuosa. Therefore, these taxa are often lumped together for purposes of light microscope studies. Although many researchers routinely do this, definitions of “small Gephyrocapsa” vary: <2.5 μm (Matsuoka and Okada, 1989), <3.0 μm (Gartner, 1988;Flores et al., 1999), <3.5 μm (Rio, 1982), or <4.0 μm (Takayama and Sato, 1986; Raffi et al., 1993). As a result, comparison amongst datasets is problematic. This convoluted taxonomy has led some researchers to use various morphogroups rather than species for biostratigraphic and paleoecologic purposes (e.g., Rio, 1982; Takayama and Sato, 1986; Gartner, 1988; Matsuoka and Okada, 1989, 1990; Raffi et al., 1993; de Kaenel et al., 1999; Okada, 2000; Raffi, 2002). These groups vary significantly from author to author, but most make distinctions based on overall size. Several species of Gephyrocapsa are identified in this study, and each is further divided based on overall size. Gephyrocapsa caribbeanica includes forms with a nearly closed central area and bridge at any angle to the major axis. Gephyrocapsids with a more open central area were initially divided into two groups: G. muellerae for forms with bridge angle <30° to the major axis, and G. oceanica for forms with a larger bridge angle. Since G. muellerae is very rare over the studied interval, it is included with G. oceanica in the final dataset. This study found the lower size limit for identifying these species in the light microscope to be between 2.5 and 3.0 μm. Therefore, all forms less than ~2.75 μm are included in Gephyrocapsa spp. (small). Specimens larger than that are identified as G. oceanica or G. caribbeanica according to the criteria above. These species are further grouped into forms <4 μm and >4 μm. No specimens larger than 5.5 μm were identified in this study.

53 Reticulofenestra. Reticulofenestrids have been an important component within the nannoplankton community since the Eocene. Species (and sometimes genera) are differentiated primarily based on the central area and rim structure (Young, 1990). Backman (1980) emended the description of Dictyococcites to include placoliths with a closed or nearly closed central area in line with the distal shield. Some researchers follow this convention (Perch-Nielsen, 1985; Pujos, 1985b, 1987; Matsuoka and Okada, 1989; Varol, 1998), whereas others consider Dictyococcites a junior synonym of Reticulofenestra (Stradner and Edwards, 1968; Roth, 1970; Wise, 1983; Driever, 1988; Gallagher, 1989; Takayama, 1993). Young (1990) supports the latter view, suggesting that it represents ecophenotypic variation, as closed-center forms are more common at higher latitudes. Similarly, Crenalithus is considered a junior synonym of Reticulofenestra by many authors (Backman, 1980; Pujos, 1985b, 1987; Driever, 1988). An emended description by de Kaenel et al. (1999) distinguishes Crenalithus from Reticulofenestra as the former may have up to four slits in the distal shield, although this characteristic can be difficult to identify using light microscopy. Regardless of the generic epithet used, reticulofenestrid taxonomy is not entirely straightforward, and different species names are sometimes used for nearly identical forms of different ages (e.g., Driever, 1988; Matsuoka and Okada, 1989). Most taxonomic schemes are based on the overall length of the placolith and the nature of the central area. Backman (1980) presented a straight-forward identification key based on morphometric analysis of numerous reticulofenestrid specimens. He differentiates between forms with open (Reticulofenestra) and closed (Dictyococcites) central areas. Within Reticulofenestra, he identifies four Neogene species based on size and central area configuration: R. minuta (<3 μm); R. minutula and R. haqii (3-5 μm); and R. pseudoumbilica (>5 μm). He could not always differentiate between R. minutula and R. haqii, but morphometric patterns suggested they are different species, and he therefore retained both in his work. The latter species is characterized by a smaller central area opening, but some consider it a variant of R. minutula (Pujos, 1985b; Gallagher, 1989). Backman (1980) also considered Crenalithus doronicoides a junior synonym of R. minutula, although Pujos (1985b, 1987) identifies it as a distinct species, and distinguishes it based on larger size and less open central area. Furthermore,

54 biostratigraphic work indicates that the extinction of R. pseudoumbilicus >7 μm is a globally significant event in the mid-Pliocene (Rio et al., 1990; Gibbs et al., 2005), and therefore larger forms (>7 μm) are separated from smaller forms (5-7 μm) by most workers. Regardless of which genus is used, most workers recognize two Neogene reticulofenestrids with closed central areas, primarily distinguished by size and stratigraphic relationship. The smaller form is identified as R. producta/D. productus or R. productella/D. productellus, and is <4 μm (Matsuoka and Okada, 1989) or <4.5 μm in length (Backman, 1980; Pujos, 1985b, 1987; Gallagher, 1989). There is some complication as to which name has priority. Kamptner (1963) first identified the taxon as Ellipsoplacolithus productus, but because the genus was described as provisional, it was not valid (Loeblich and Tappan, 1966). Sachs and Skinner (1973) noted that the genus name was invalid, but the species name could be used again with a valid genus, and so combined it into Coccolithus productus. Some workers considered this invalid, and designated the first valid name for the taxon as Crenalithus productellus (Bukry, 1975). Backman (1980), however, found productellus to be a junior homonym of productus, and therefore uses D. productus to refer to this species, as do some other workers (Pujos, 1985b, 1987; Matsuoka and Okada, 1989). Others consider productus invalid, and use productellus instead (Gallagher, 1989; Hine and Weaver, 1998). There is similar disagreement over the specific epithet for the larger form, as both Dictyococcites antarcticus and Dictyococcites perplexus are used in the literature; however, Backman (1980) noted that the larger form occurs in the Miocene and earliest Pliocene, whereas the smaller form is present in younger sediments. Thus the larger form is not considered in this study. Driever (1988) noted that Reticulofenestra is generally not applied to Quaternary and Recent coccolithophores, even though there is little (if any) difference from Neogene predecessors. Instead, those forms are sometimes referred to as Crenalithus (Driever, 1988; Matsuoka and Okada, 1989). This is apparent in published ranges for open-central area taxa (R. minuta and R. minutula), which generally do not extend beyond the Pliocene (e.g., Gallagher, 1989). As there seems to be little difference from

55 Neogene forms, this author applies the commonly used Pliocene names to reticulofenestrids. For the purposes of this study, initial data collection differentiated reticulofenestrid species based on size and the nature of the central area. The length of all specimens was estimated at 1-μm increments between 2 and 7 μm using both an eye-piece micrometer and a digital camera with software equipped for precise on- screen measurements. These data are combined here into the following species:

Closed central area: Placolith length: R. producta <4 μm R. producta large >4 μm Open central area: R. minuta <3 μm R. minutula 3-5 μm R. pseudoumbilicus small 5-7 μm R. pseudoumbilicus >7 μm

Pseudoemiliania. Pseudoemiliania lacunosa is commonly applied to round or elliptical placoliths with a varying number of slits in the shield; however, the legitimacy of this name has been questioned. Pseudoemiliania lacunosa was first proposed by Gartner (1969) and replaced Ellipsoplacolithus lacunosa, which Loeblich and Tappan (1966) considered invalid as it was originally described as a provisional taxon (Kamptner, 1963). Loeblich and Tappan (1970) then invalidated Pseudoemiliania because the type species was invalid. Gartner (1977) discussed the Pseudoemiliania problem at length, and indicated that it was valid based on ICBN Article 66, Note 2, and most researchers accept Pseudoemiliania as a valid taxon (e.g., Backman, 1980; Perch-Nielsen, 1985; Matsuoka and Okada, 1989; Young, 1998). Unfortunately, further confusion occurred when Bukry (1971) applied the taxonomic concept of P. lacunosa to a species originally described by Cohen (1964) as Coccolithites annulus, although Cohen did not include any mention of slits or I-shaped elements in the original description of this species. Bukry (1971) transferred C. annulus

56 to Emiliania, and later indicated that P. lacunosa was a junior synonym of E. annula (Bukry, 1973b). At this time he also created a new species (Emiliania ovata) for elliptical forms with at least one cycle of I-shaped elements. Gartner (1977) noted this misinterpretation of C. annulus, citing additional evidence based on the age of the cores Cohen (1964) examined, as they do not extend far enough back in time to include the LO of P. lacunosa. Backman (1980) further argued that Pseudoemiliania does not have I-shaped shield elements, which justifies the need to distinguish between these two genera. A number of studies have examined the distribution of different morphologies of P. lacunosa. Hay (1970) distinguished between elliptical and round forms, and noted that they have different stratigraphic ranges. Bukry (1973b) noted this when he established E. ovata for elliptical forms, which Young (1998) transferred to Pseudoemiliania. Backman (1980), however, indicated that the stratigraphic ranges of the two morphologies are too similar to justify splitting them into two different species. A detailed morphometric study comparing shape, size, and number of slits by Matsuoka and Okada (1989) also found little evidence to justify creating new species based on shape or number of slits, and they recommended using P. lacunosa for all forms. Although Young (1990) used the genus Reticulofenestra instead of Pseudoemiliania, he noted that larger circular forms become more common through time, and therefore designated two varieties: R. lacunosa var. lacunosa (circular form with >12 slits) and R. lacunosa var. ovata (elliptical form with <12 slits). These varieties were later combined into Pseudoemiliania, and the description of P. lacunosa var. ovata emended to include forms <6.5 μm; whereas elliptical forms >6.5 μm with less than 12 slits were assigned to Pseudoemiliania pacifica (de Kaenel et al., 1999). Pseudoemiliania occurs in low numbers in the lowermost portion of the studied interval. Both elliptical and circular forms of different sizes with varying numbers of slits are present, and during the initial examination effort was made to distinguish different morphotypes based on size, shape, and number of slits. Since this genus was relatively rare throughout much of the section, in the end only two forms were identified: P. lacunosa for circular to subcircular forms with many slits, and P. ovata for elliptical forms (after Young, 1998). More work is necessary to determine if morphologic variations in

57 size, shape, and number of slits has either biostratigraphic or paleoecologic meaning at this locality.

Other Taxa. Other taxa are present in such low abundances that most are grouped at the genus level. This is true for Calciosolenia, Pontosphaera, Rhabdosphaera, Syracophaera, and Thoracosphaera. A number of studies have shown that morphotypes often grouped under a single species name are in fact separate species or subspecies, and that some of these species may be important for paleoecological reconstructions (e.g., Knappertsbusch et al., 1997; Renaud et al., 2002; Ziveri et al., 2004). These species were identified separately during data collection, although some were so rare that they are recombined in the final data. A number of studies recognize two or three morphotypes of Calcidiscus leptoporus based on size of the coccolith (Knappertsbusch et al., 1997; Renaud and Klaas, 2001) or size and nature of the sutures and central area (Baumann and Sprengel, 2000; Renaud et al., 2002). The relationship of these morphotypes to environmental parameters is not entirely clear, although some studies found correlation between some environmental parameters (temperature, nutrients, primary production) and size (e.g., Knappertsbusch et al., 1997; Renaud and Klaas, 2001; Renaud et al., 2002). Further evidence that at least two of these morphotypes represent either distinct species or subspecies came from studies of modern plankton. Kleijne (1991) associated C. leptoporus with the holococcolith Crystallolithus rigidus. Geisen et al. (2002) confirmed this association, but also found a single specimen in combination with Syracolithus quadriperforatus. The heterococcolith in this association correlated to the C. leptoporus large (>8 μm) variety, and thus they proposed two new subspecies: C. leptoporus subsp. leptoporus for the intermediate (5-8 μm) form and C. leptoporus subsp. quadriperforatus for the large form. They also suggested an informal designation of C. leptoporus subsp. small for the small (<5 μm) form until more was known about it. Sáez et al. (2003) confirmed that the intermediate and large morphotypes are distinct species that diverged at ~10.8 Ma based on DNA sequencing, and thus raised the subspecies to species level: C. leptoporus and C. quadriperforatus. These species concepts are used

58 in this study. In addition, C. leptoporus is further divided into two forms: C. leptoporus small (for forms <5 μm) and C. leptoporus for the larger (5-8 μm) morphotype. Two circular Umbilicosphaera species are commonly recognized in Pleistocene and Recent sediments: U. sibogae and U. foliosa. Originally described as distinct species, Okada and McIntyre (1977) recombined Cycloplacolithus foliosus into U. sibogae var. foliosa based on rare co-occurrences of both forms on a single coccosphere. Some workers continued to follow this convention (e.g., Okada and Wells, 1997; Baumann and Sprengel, 2000; Broerse et al., 2000; Ziveri et al., 2004), but recent studies indicate they are different species. Based on molecular DNA studies, Sáez et al. (2003) concluded that they were indeed distinct biological species that diverged at ~6 Ma, and Geisen et al. (2004) confirmed that all data (both morphometric and molecular) indicate this. In this study, they are considered separate species, and distinguished primarily on the size of the central area. Umbilicosphaera sibogae has a larger central area relative to overall size compared to U. foliosa, which has a smaller central area. Additionally, an elliptical form (U. hulburtiana) occurs sporadically throughout the section. The long-ranging taxon Coccolithus pelagicus is commonly found in northern high latitudes in Pleistocene and Recent deposits (e.g., McIntyre and Bé, 1967; McIntyre et al., 1970; Okada and McIntyre, 1977; Andruleit, 1997); however, Cachão and Moita (2000) documented its occurrence at lower latitudes in an upwelling area off of Portugal. Since then two morphotypes have been recognized based on morphology and paleoecologic preferences: a smaller, subarctic form and a larger, temperate form. Geisen et al. (2002) confirmed these morphotypes have different holococcolith phases, and recommended dividing them into two subspecies: C. pelagicus subsp. pelagicus and C. pelagicus subsp. braarudi. Sáez et al. (2003) raised them to species level based on molecular DNA studies that suggested they separated into distinct species at 1.6–2.7 Ma. Generally coccoliths of the Arctic form are smaller, with closed central areas, whereas the temperate form has larger coccoliths with an open central area spanned by a bar. Geisen et al. (2004) demonstrated that the central area characteristics are secondary and may not always distinguish between the two species, which can be reliably identified based on coccosphere size and holococcolith phase. In many areas,

59 this is not a problem as the geographic ranges of these species are separated; however, they do co-occur in the central North Atlantic between ~35°-55°N (Ziveri et al., 2004). Since the current study is within this area of overlap, C. pelagicus is used for smaller forms with a mostly closed central area, and C. braarudii for larger forms with a bridge. Small early growth forms (see Young, 1998, plate 8.4 fig. 5) are combined with C. pelagicus. Total abundance of these species is very low (<1%) throughout the studied interval, therefore they are usually combined into Coccolithus spp. Several species of Helicosphaera are identified in the studied interval: H. carteri, H. inversa, and H. pavimentum. The former was at one time considered to consist of three varieties that had originally been described as separate species: H. carteri var. carteri, H. carteri var. hyalina, and H. carteri var. wallichi (e.g., Jordan and Young, 1990; Jordan and Kleinje, 1994). These varieties were thought to only differ in central area pore structure. Sáez et al. (2003) concluded that H. cateri var. carteri and H. carteri var. hyalina are distinct biological species based on DNA evidence, and gave them both species status. Geisen et al. (2004) argued H. carteri var. wallichii should also be restored to species rank. Initial data collection in this study distinguished between all three species; however, H. hyalina and H. wallichii were identified only rarely, and so are combined with H. carteri. For statistical analyses, all Helicosphaera are combined as H. inversa and H. pavimentum are only sporadically present throughout the studied section.

Results

Nannoplankton Assemblage

All examined samples contain abundant moderately to well-preserved calcareous nannoplankton. The total number of coccoliths varies from 25 x 109 – 180 x 109 coccoliths/g, with highest values recorded during MIS 11 (Fig. 4.4). The total abundance decreases steadily during MIS 12, although the lowest values occur approximately 10- 15 kyr prior to Termination V (T V). At T V, the number of coccoliths increases rapidly into MIS 11. Average values stay high for about 35 kyr before a gradual decrease

60

Figure 4.4. The total abundance of coccoliths/gram of sediment and the Shannon diversity index 18 compared to the δ Oplanktonic record and percent CaCO3. Stage boundaries are indicated by vertical grey lines. Isotope and carbonate data from Voelker et al. (in revision).

61 begins during the latter part of the interglacial. The beginning of MIS 10 shows a similar pattern to the initiation of MIS 12. The total abundance of coccoliths starts out relatively high (80 x 109 – 90 x 109 coccoliths/g) before decreasing to lower values after a few thousand years. Members of the family Noelaerhabdacaea dominate, comprising more than 90% of the assemblage throughout the examined interval (Fig. 4.5; Appendix F). Gephyrocapsa is the most abundant genus, making up 55-80% of the assemblage, whereas Reticulofenestra is consistently present at lower numbers in all samples (15- 40% of the assemblage). Pseudoemiliania occurs in the lower part of the section, and the last occurrence of this genus is the only biostratigraphically useful event within the studied interval. The remainder of the assemblage consists of typical Pleistocene species. Calcidiscus is the most abundant of the background genera, making up 0.5- 3.5% of the assemblage. Other consistently present genera include Helicosphaera, Umbilicosphaera, Syracosphaera, Rhabdosphaera, Oolithotus, and Coccolithus. Sporadic occurrences of Pontosphaera, Calciosolenia, and Thoracosphaera (a calcareous dinoflagellate usually included with other calcareous nannoplankton) are also found throughout the studied interval. Florisphaera profunda, a lower photic zone species typically abundant in tropical and sub-tropical Pleistocene and Recent sediments (e.g., Okada and Honjo, 1973; Winter et al., 1994), occurs in low numbers (0.5-4.5%) throughout the record. The Shannon diversity index was calculated for the studied interval, and is shown in Fig. 4.4 (data given in Appendix G). This index takes into account both the number of individuals as well as the evenness of their distribution, and varies from 0 (communities with a single taxon) to higher numbers for communities with many taxa consisting of fewer individuals (more even distribution). Highest values of the Shannon index occur during the latter part of MIS 11 and beginning of MIS 10, indicating a more even distribution of species within these intervals. Average values of the Shannon index are relatively constant during much of MIS 12 and 11, although the index has higher amplitude variability during MIS 12. This index also decreases significantly near the end of the studied interval during MIS 10. At this point, G. oceanica begins to replace G.

62

Figure 4.5. Cumulative percent plot showing calcareous nannoplankton assemblage during the studied interval. Individual Noelaerhabdaceae species are shown separately, whereas most other genera are grouped under “Subordinate Taxa”. Stage boundaries are indicated by vertical grey lines.

63 caribbeanica in the assemblage (Fig. 4.5), significantly decreasing the evenness of species distribution.

Statistical Analysis

CABFAC factor analysis was run on the assemblage data using PAST (PAleontological STatistics) ver. 1.90. This type of analysis uses the Imbrie and Kipp (1971) method of factor analysis and environmental regression. Environmental data (such as sea-surface temperature) may be included in the first column, which is used to produce a transfer function for paleoenvironmental reconstruction. The analysis yielded 10 factors, with the first and second factors explaining 91.61% and 4.46% of the variation, respectively (Table 4.1).

Table 4.1. Eigenvalues and percent variance explained for factors 1-10 from CABFAC factor analysis. Factor Eigenvalue % Variance 1 162.15 91.61 2 7.9026 4.46 3 2.4654 1.39 4 1.6809 0.95 5 0.96438 0.54 6 0.76591 0.43 7 0.58874 0.33 8 0.20824 0.12 9 0.1227 0.07 10 0.068871 0.04

Factor scores for the first two factors are plotted in Fig. 4.6, and factor values for the first four factors are given in Appendix H. Factor one is primarily controlled by the distribution of G. oceanica, with smaller contributions from G. oceanica >4 μm and R. minutula. The second factor is dominated by the distributions of Gephyrocapsa spp. small, G. caribbeanica, and R. producta. The scores for these species are opposite those of the dominant species from the first factor. Varmiax factor scores for each sample are given in Appendix I.

64

Figure 4.6. CABFAC factor analysis factor scores for factors one (red) and two (blue).

Discussion

The total abundance of coccoliths in the sediment shows a remarkable correlation to the planktonic18 Oδ record at this site (Fig. 4.4). As would be expected, there is also similarity to the percent carbonate, which is generally higher during

65 interglacials than glacials, although it stays high through the end of MIS 11 and even into the beginning of MIS 10, whereas the total number of coccoliths begins to decrease prior to the end of MIS 11 (Fig. 4.4). The total number of coccoliths in the sediment very roughly indicates that there was more calcareous nannoplankton production during warmer intervals at Site U1313. This estimate is rough as a single cell is covered by a variable number of coccoliths, which in the living species Emiliania huxleyi can range from <10 to >50 (Geisen et al., 2004). Assuming the number of coccoliths/cell is not influenced by environmental parameters that vary on glacial/interglacial timescales this estimate is useful. Utilizing a diversity index for calcareous nannoplankton fossil assemblages is problematic for a number of reasons. First, some taxonomic units include more than one biological species. This is particularly challenging for Pleistocene light microscope studies, as some species are difficult to identify without higher magnification. In this study this includes the small Gephyrocapsa, as well as some species of Syracosphaera, Rhabdosphaera, and Pontosphaera. Furthermore, some of those species are so rare that they are grouped into genera during data collection. Second, since nannoplankton cells are covered by varying numbers of coccoliths, counting the number of coccoliths in the sediment does not correspond to the number of cells in the overlying water column. Finally, there is a preservational bias towards more heavily calcified coccoliths, such that delicate forms are more likely to dissolve before being preserved in the fossil assemblage (McIntyre and McIntyre, 1971; Roth and Berger, 1975). Nevertheless, assuming a constant preservational bias, diversity can be useful for quantifying changes in the assemblage throughout the studied interval. The Shannon diversity index indicates more variability in diversity of the assemblage during MIS 12 than during MIS 11. This likely relates to the variability in surface-water conditions during glacial stages, as ice reached Site U1313 at time during MIS 12 based on the presence of lithics interpreted as IRD (Voelker et al., in revision). Melting ice would create a cold, low-salinity surface lens, drastically changing surface conditions, which would affect organisms living in the uppermost part of the water column. The amplitude of diversity variation decreases during MIS 11, when surface water conditions were less variable than during the prior glacial stage. The increases in

66 diversity at 388 ka and 370 ka correspond to an increase in the percentage of Reticulofenestra relative to Gephyrocapsa (Fig. 4.5), increasing the evenness of the assemblage. These two intervals may correspond to a decrease in preservation rather than a true change in the assemblage, as a Gephyrocapsa missing a bridge due to dissolution is difficult to distinguish from a Reticulofenestra under the light microscope. The decrease in diversity beginning at 363 ka occurs when G. oceanica begins to replace G. caribbeanica in the assemblage (Fig. 4.5), significantly decreasing the evenness of species distribution.

Biostratigraphy

The studied section spans a single biostratigraphic event, the last occurrence of P. lacunosa. Thierstein et al. (1977) noted that this datum was a globally synchronous event within MIS 12, and dated it to 458 ka. They used the midpoint between the 0% and 1% abundance level of P. lacunosa to establish the last occurrence datum, so the actual last occurrence of the taxon within the core occurred at a somewhat shallower (younger) depth. This age agrees well with previous work by Gartner and Emiliani (1976) that also placed the event within MIS 12, approximating the age as 400 ka (or 440 ka according to the timescale of Shackleton and Opdyke, 1973). Earlier work also placed the LO of P. lacunosa within MIS 12, but resulted in much younger ages (275 ka: Gartner, 1972; 300-350 ka: Gartner, 1973), due in part to difficulties extrapolating absolute ages if sedimentation rates change. More recent work has resulted in a range of ages, although they generally cluster between 400-460 ka. Takayama and Sato (1986) tied the LO of P. lacunosa to the magnetostratigraphy for six sites drilling during DSDP Leg 94 (North Atlantic). Although the ages varied considerably (150-460 ka), they calculated the average age for this datum as 390 ka. The age of the datum for Site 607 (which was reoccupied during IODP Exp. 306) was 320-350 ka, and can be directly compared to the results of this study (see below). Berger et al. (1994) orbitally tuned the oxygen isotope record of ODP Site 806 (Ontong Java Plateau, equatorial Pacific) using obliquity cycles as the clock, and then calculated the ages of nannofossil datums based on the biostratigraphy of Takayama (1993). This yielded an age of 433 ± 20 ka for the LO of P. lacunosa. The

67 largest variation in age estimates for this datum came from the eastern equatorial Pacific. Shackleton et al. (1995a) correlated biostratigraphic events to the timescale developed for ODP Leg 138 based on astronomical tuning of gamma ray attenuation porosity evaluator (GRAPE) density cycles (Shackleton et al., 1995b). The biostratigraphy of Raffi and Flores (1995) was used to tie Neogene nannofossil datums to the newly developed timescale. The results yielded an age range of 344-749 ka for the LO of P. lacunosa. Two approaches were used to “average” these ages from the different sites, resulting in datum estimates of 450 ka and 580 ka. Based on the apparent diachroneity of the datum, Shackleton et al. (1995a) recommended a datum age of 460 ka based on published literature. Most recently, Raffi et al. (2006) reviewed the astrobiochronology for Neogene calcareous nannofossil datums, tying them to the 2004 timescale (Lourens et al., 2004). The results indicate the highest occurrence of P. lacunosa is synchronous in the equatorial Pacific and Atlantic (436 ka and 440 ka, respectively), with a slightly older age of 467 ka in the eastern Mediterranean. A detailed morphometric analysis by de Kaenel et al. (1999) found that circular forms of P. lacunosa >7 μm disappear prior to smaller, elliptical forms in the western Mediterranean, and could therefore be used as an additional biostratigraphic datum. The former event was dated to 439 ka, whereas the LO of P. lacunosa occurred at 406 ka. Although other researchers may not distinguish amongst different morphotypes of P. lacunosa, prior work has shown that at least some may have stratigraphic significance. Matsuoka and Okada (1989) completed a detailed morphometric analysis examining the distribution of different sizes of round and elliptical Pseudoemiliania with varying numbers of slits. They concluded that these different morphotypes do not represent different species, and for most morphotypes, changes in relative abundance were similar between groups, although forms >7 μm had restricted occurrences. Circular forms were rare, but did disappear prior to elliptical forms. Further work is necessary to confirm if these observations can be applied on a global basis. At Site U1313, Pseudoemiliania comprises less than 2% of the assemblage (Fig. 4.7). No additional counts were completed so occurrences of P. lacunosa and P. ovata are those found during the count of at least 500 specimens for collection of assemblage data. The abundance of the genus tapers off below 1% beginning at 463 ka, with a LO

68

Figure 4.7. Distribution of Pseudoemiliania spp. at Site U1313. Pseudoemiliania lacunosa is given by the solid red line, and P. ovata by the dashed blue line. The last occurrence of this genus is a biostratigraphic marker during the Pleistocene.

at 427 ka, excluding a single P. ovata at 381 ka. Following the method used by Thierstein et al. (1977), the mid-point between the 0% and 1% abundance level of Pseudoemiliania yields a LO of 445.24 ka, which is in reasonably good agreement with their estimate of 458 ka. Last occurrence, however, usually implies the last appearance of a taxon within a given section. At Site U1313, the last P. lacunosa occurs at 19.68 mcd (433.68 ka) (Fig. 4.7), yielding an age in very good agreement with the age given in de Kaenel et al. (1999) for the LO of P. lacunosa >7 μm in the Mediterranean at 439 ka. Their best estimate for the disappearance of medium-size, elliptical Pseudoemiliania lacunosa (= P. ovata), which represents the LO of the genus, is 406 ka. At Site U1313 single specimens of P. ovata were found at 19.44 mcd (427 ka) and 17.34 mcd (381.03 ka). The former is the best estimate for the LO of Pseudoemiliania at this locality; however, with a gap of nearly 50 kyr between the two occurrences, further work is necessary to refine the LO of the genus at this locality.

69 Calcareous Nannoplankton Paleoecology

Numerous studies have attempted to define the paleoecologic preferences of Pleistocene and Recent calcareous nannoplankton from plankton samples (e.g., McIntyre and Bé, 1967; McIntyre et al., 1970; Knappertsbusch, 1993; Winter et al., 1994; Samtleben et al., 1995; Andruleit et al., 2005), sediment traps (e.g., Samtleben and Bickert, 1990), and sediment samples (e.g., McIntyre and Bé, 1967; Bukry, 1974; Roth and Coulbourn, 1982; Giraudeau, 1992; Samtleben et al., 1995; Bollmann, 1997; Di Stefano and Incarbona, 2004; Ziveri et al., 2004; Boeckel et al., 2006). These studies commonly relate species to different temperature, nutrient, salinity, and water stratification regimes or preferred depth habitat. Not surprisingly, some species are related to more than one, sometimes opposing, sets of surface-water conditions. Recent work with monospecific cultures has indicated that the relationship between a single species and environmental conditions is often complex. For instance, some studies

have suggested decreased nannoplankton calcification with increasing pCO2 (Riebesell et al., 2000; Zondervan et al., 2001; Delille et al., 2005); however, Iglesias-Rodriguez et al. (2008) showed that ocean acidification as a result of increasing pCO2 increases calcification in E. huxleyi. This increased calcification resulted in an increase in length of individual coccoliths, thus size changes may result from a variety of changing environmental parameters. Nonetheless, the use of calcareous nannoplankton as paleoenvironmental indicators is a vital tool for understanding how climate has evolved over the past several million years. Gephyrocapsa dominated the nannoplankton assemblage from the earliest Pleistocene until it was replaced by E. huxleyi at approximately 100 ka (Gartner, 1977), and it is the most abundant genus at Site U1313. Paleoecologic preferences of different species within this group are complicated by problematic taxonomy, but in general interpretations of different researchers are similar for most species. Gephyrocapsa muellerae, which evolved less than 270 kyr ago according to Bréhéret (1978), is a temperate to cold-water species (Winter et al., 1994; Di Stefano and Incarbona, 2004; Ziveri et al., 2004; Incarbona et al., 2008), with preferences for either moderate (Winter et al., 1994; Boeckel et al., 2006) or high (Andruleit et al., 2005) nutrient levels. A few specimens of a gephyrocapsid with an open central area spanned by a low-angle bridge

70 occur in the studied interval, but are rare enough to not be considered separately from other open central area forms assigned to G. oceanica. Further SEM studies are necessary to determine if the low angle bridge morphotypes should be assigned to G. muellerae, thus pushing back the first occurrence of this species. Few studies delineate a paleoenvironmental preference for G. caribbeanica. McIntyre et al. (1970) considered it a cold-water species; however, they identify it based on a bridge angle of <45° to the long axis, and therefore it may in fact be G. muellerae. Di Stefano and Incarbona (2004) concluded that G. caribbeanica has similar paleoecologic preferences to G. muellerae and considered it a cold-water species. Roth and Coulbourn (1982) studied surface sediments from the North Pacific, and also found G. caribbeanica to be associated with cold waters. Occurrences of G. caribbeanica (as defined in this study) in the water column have only been reported from sediment traps in the Norwegian Sea (Samtleben and Bickert, 1990), making it difficult to use the modern distribution to infer its past paleoecologic preferences. Gephyrocapsa oceanica is generally considered a warm-water species (e.g., McIntyre et al., 1970; Roth and Coulbourn, 1982; Roth, 1994; Di Stefano and Incarbona, 2004; Ziveri et al., 2004; Incarbona et al., 2008), with a lower distribution limit of 14° C (McIntyre and Bé, 1967) or 15° C (Boeckel et al., 2006), although some studies have found it tolerates a wide range of conditions (e.g., Okada and Honjo, 1973; Winter, 1982). There is a clearer association with nutrient availability, with G. oceanica preferring mesotrophic or eutrophic conditions (Roth and Coulbourn, 1982; Winter, 1982; Giraudeau, 1992; Roth 1994; Young, 1994; Ziveri et al., 2004; Andruleit et al., 2005). Fewer studies have looked at how salinity affects G. oceanica, although a couple indicate tolerances for lower salinities (Knappertsbusch, 1993; Di Stefano and Incarbona, 2004), whereas a single study from the Red Sea indicated it can tolerate salinities up to 45-51‰ (Winter, 1982). Furthermore, Andruleit et al. (2005) found G. oceanica could tolerate unstable surface-water conditions, such as turbulence from upwelling. The paleoecologic preferences of the small Gephyrocapsa group are not definitive as the category contains a number of species that cannot be identified under the light microscope. Roth and Coulbourn (1982) found G. ericsonii (one of the small

71 gephyrocapsids) more abundant in temperate regions, whereas Winter (1982) indicated it was more abundant in somewhat warmer conditions. Gartner (1988), on the other hand, compared the dominance of small Gephyrocapsa during the mid-Pleistocene to the dominance of small E. huxleyi in subpolar regions today, and speculated that small Gephyrocapsa prefers cool temperatures. Several studies indicate that these taxa prefer higher nutrient conditions (Roth and Coulbourn, 1982; Young, 1994), and therefore may indicate upwelling (Gartner, 1988). Although subordinate taxa are not very abundant in the assemblage at Site U1313, some are useful for paleoenvironmental interpretations. Calcidiscus is the most abundant of the background genera. Early studies found this species to have wide tolerances (e.g., McIntyre and Bé, 1967), but it is now recognized that the modern species C. leptoporus includes several morphotypes, one of which has been described as the new species C. quadriperforatus (Geisen et al., 2002; Sáez et al., 2003). The intermediate morphotype of C. leptoporus is more abundant in temperature to subpolar regions (Ziveri et al., 2004; Boeckel et al., 2006), whereas the larger C. quadriperforatus prefers water temperatures >15° C (Ziveri et al., 2004). Most studies agree that C. leptoporus prefers higher nutrient availability (Young, 1994; Ziveri et al., 2004; Boeckel et al., 2006), although a single study associated C. leptoporus with oligotrophic conditions (Giraudeau, 1992). Andruleit et al. (2005) found C. quadriperforatus to be an upwelling indicator. As discussed previously, C. pelagicus has long been considered a cold-water species during the Pleistocene (e.g., McIntyre and Bé, 1967; Samtleben and Bickert, 1990; Roth, 1994; Winter et al., 1994; Samtleben et al., 1995), although a morphotype (now a separate species, C. braarudi) is found in temperate regions of high productivity (Ziveri et al., 2004). Both species occur at Site U1313, and could potentially be a useful proxy for SST. Umbilicosphaera sibogae and U. foliosa both appear to prefer temperate to subtropical regions (e.g., McIntyre and Bé, 1967; Roth and Coulbourn, 1982; Ziveri et al., 2004), although not all studies distinguish between the two species. This could help to explain why the nutrient preferences of U. sibogae range from low (Giraudeau, 1992) to high (Roth, 1994; Young, 1994). Boeckel et al. (2006) distinguished between the two

72 species and found that U. sibogae preferred oligotrophic conditions, whereas U. foliosa preferred mesotrophic conditions. Most other background genera prefer warm waters: Helicosphaera (e.g., McIntyre and Bé, 1967; Roth and Coulbourn, 1982; Roth, 1994; Ziveri et al, 2004; Boeckel et al., 2006), Oolithotus (e.g., McIntyre and Bé, 1967; Roth and Coulbourn, 1982), Rhabdosphaera (e.g., McIntyre and Bé, 1967; Roth and Coulbourn, 1982; Di Stefano and Incarbona, 2004), and Syracosphaera (e.g., Roth and Coulbourn, 1982; Ziveri et al., 2004), with varying nutrient preferences. Oolithotus has also been found in the lower photic zone (LPZ) (e.g., McIntyre and Bé, 1967; Knappertsbusch, 1993; Takahashi and Okada, 2000), and is sometimes grouped with F. profunda, a definite LPZ inhabitant (e.g., Okada and Honjo, 1973; Knappertsbusch, 1993; Young, 1994; Winter et al., 1994; Di Stefano and Incarbona, 2004).

Surface Water Hydrography at Site U1313

Nannoplankton Assemblage. Gephyrocapsa oceanica and G. caribbeanica are the most abundant species at Site U1313. The overall abundance of the latter stays relatively constant (average ~30%) throughout the record until ~ 361 ka, at which point its abundance begins to decrease steadily until the end of the studied interval at 356 ka 18 (Fig. 4.8). At this locality G. caribbeanica shows little correlation with the δ Oplanktonic record or alkenone-based SST. The time interval studied is within the global G. caribbeanica bloom, which spans MIS 9-13 (Bollmann et al., 1998; Flores et al., 2003) or MIS 8-14 (Baumann and Freitag, 2004). During this interval, G. caribbeanica became a major carbonate producer, although the mechanisms for the dominance of this taxon are unclear. The decrease within MIS 10 at Site U1313 may represent a locally early termination to the dominance interval, or it may be a temporary decrease. Regardless, at this locality, G. caribbeanica does not appear to be a cold-water species. Gephyrocapsa oceanica abundance varies from about 20-40% throughout much of the studied interval. It is most abundant during MIS 12, with a sharp decline immediately following T V. The lower abundance of this species continued for about 25 kyr, with a return to higher abundances for about 15 kyr near the end of MIS 11. As G. caribbeanica began to decrease in abundance, G. oceanica increased, comprising

73

18 13 Figure 4.8. Percentage of different Gephyrocapsa species plotted against planktonic δ O and δ C, lithics grains (IRD proxy), and alkenone-based SST. Stage boundaries are indicated by vertical grey bars. Grey dashed line on the G. oceanica and G. caribbeanica records indicates the distribution of the <4 μm form (below line) and the >4 μm form (above line).otope Is and lithics data from Voelker et al. (in revision). Alkenone-based SST from Stein et al. (2009).

74 greater than 50% of the assemblage by 355 ka. The abundance of G. oceanica is nearly 18 a mirror image of the δ Oplanktonic and alkenone-based SST records, suggesting that G. oceanica did not respond to warmer temperatures, but is in fact more abundant during colder intervals (Fig. 4.8). Gephyrocapsa oceanica may have responded to increased nutrient availability during colder intervals, confirming it is a eutrophic species. Additionally, the presence of lithics (>315 μm) interpreted as ice-rafted debris at Site U1313 (Voelker et al., in revision) suggests ice reached the locality at times during MIS 12. If this ice arrived in the form of icebergs, they could have disrupted the upper photic zone to tens of meters or more water depth (Shulenberger, 1983; Jenkins, 1999). As the ice melted it would have provided a source of freshwater to the surface ocean. Gephyrocapsa oceanica has been shown to tolerate lower salinities (Knappertsbusch, 1993: Di Stefano and Incarbona, 2004), as well as unstable surface conditions (Andruleit et al., 2005). Most lithics peaks during MIS 12 co-occur with an increase in the abundance of G. oceanica (Fig. 4.8), suggesting that this species may have thrived in the lower salinity, unstable and/or stratified surface waters following Heinrich-like events. Although ice-rafted debris accumulation continues at a reduced rate during T V, G. oceanica abundance decreases rapidly as SST warm towards MIS 11. The decrease of G. oceanica during T V coincides with an increase in Gephyrocapsa spp. small (Fig. 4.8). This group also prefers higher nutrient conditions, but may prefer relatively warm SST (McIntyre et al., 1970; Roth and Coulbourn, 1982). The increase in abundance correlates to rapid warming during T V (Stein et al., 2009; 13 Voelker et al., in revision). A slower rise in the δCplanktonic at T V indicates a slower decrease in nutrient availability to lower values during MIS 11. The small Gephyrocapsa group may have been able to out-compete G. oceanica for nutrients during the termination, possibly due to warmer SST. The larger forms (>4 μm) of both G. oceanica and G. caribbeanica are more abundant during glacials MIS 12 and 10, as well as during a short term cooling event beginning at approximately 395 Ma during MIS 11 (Fig. 4.8). The distribution of these larger coccoliths may be similar to the large morphotype (>4 μm) of E. huxleyi, which is considered a cold-water indicator by Colmenero-Hidalgo et al. (2004). The decreased

75 abundance of larger gephyrocapsids during early MIS 11 is good evidence that at Site U1313 these forms are cold-water indicators. Calcidiscus comprises up to 3.5% of the assemblage, with C. leptoporus the most abundant of the three morphotypes identified (Fig. 4.9). Calcidiscus leptoporus is somewhat more abundant during MIS 12, with intervals of lower abundance during MIS 11, although the small amount of variation makes it difficult to draw any conclusions. Based on the higher abundances of C. leptoporus during MIS 12, it may prefer higher nutrient levels and cooler temperatures, as SST during MIS 11.3 (397-418 ka) reached U K ' 19° based on the 37 temperature proxy (Stein et al., 2009). Little is know about the paleoecologic preferences of the small (<5 μm) morphotype C.of leptoporus, although Boeckel et al. (2006) found it tolerated a broad range of conditions. At Site U1313, C. leptoporus (small) is usually rare (<0.50%), but two broad peaks in abundance (>1%) occur during MIS 11. The first immediately follows T V and lasts for nearly 15 kyr. This 13 coincides with a rapid increase in SST and a slow increase in the δCplanktonic, which Voelker et al. (in revision) interpreted as excess availability of nutrients during that time. The second abundance peak occurs near the end of MIS 11 (~390-380 ka), and also 13 coincides with a rapid increase in SST and a very slow rise in δ Cplanktonic (Fig. 4.9). This suggests that the small morphotype of C. leptoporus outcompetes C. leptoporus when nutrients are available, but SST is warmer (>16° C). Calcidiscus quadriperforatus is quite rare throughout the studied interval, with abundances usually <0.5%. Although it is thought to prefer warmer SST (Ziveri et al., 2004), it is actually more abundant during MIS 12 than MIS 11, although this could be a function of higher nutrient levels at that time, rather than lower temperatures (Fig. 4.9). Coccolithus pelagicus and C. braarudi individually rarely reach more than 0.5% of the assemblage, and together no more than 1%. In general, both are more abundant during glacials when SST was colder and nutrient availability higher (Fig. 4.10). Both species disappear immediately following T V, with very rare occurrences during MIS 11.3 even though SST was at its warmest at that time (Stein et al., 2009). The total abundance of both species increases again following the initiation of MIS 10. Coccolithus is rare enough in the overall assemblage that inferring sea-surface conditions based on the relative proportions of the two species is not possible. A count

76

18 13 Figure 4.9. Percentage of different Calcidiscus species plotted against planktonic δ O and δ C and alkenone-based SST. Stage boundaries are indicated by vertical grey bars. Isotope data from Voelker et al. (in revision). Alkenone-based SST from Stein et al. (2009).

77

18 13 Figure 4.10. Percentage of different Coccolithus species plotted against planktonic δ O and δ C and alkenone-based SST. Stage boundaries are indicated by vertical grey bars. Isotope data from Voelker et al. (in revision). Alkenone-based SST from Stein et al. (2009).

78 of the background assemblage should reveal if the ratios of the two species could be a useful paleoecologic proxy at this locality, as demonstrated by Narciso et al. (2006). Four other genera constitute much of the remaining subordinate taxa: Helicosphaera, Oolithotus, Rhabdosphaera, and Syracosphaera. As mentioned previously, all are considered warm-water taxa. Both Rhabdosphaera and Syracosphaera show relatively constant abundances throughout the studied interval regardless of SST (Fig. 4.11), and so cannot be used for paleoecologic interpretation based on these data. Oolithotus is nearly absent from MIS 12, more abundant during MIS 11, with decreased abundances during early MIS 10, suggesting that is in fact a warm-water taxon. On the other hand, Helicosphaera shows nearly the opposite distribution pattern: it is more abundant during MIS 10 and 12, with decreased abundances throughout much of MIS 11. A single peak in abundance during that interglacial coincides with decreased SST (Fig. 4.11). Helicosphaera is thought to prefer either mesotrophic (Young, 1994; Ziveri et al., 2004; Boeckel et al., 2006) or eutrophic (Giraudeau, 1992) conditions, and the distribution of this species may reflect the greater availability of nutrients during cold intervals, rather than a response to decreased SST. Further examination of the subordinate taxa should help to delineate the paleoecologic preferences of these taxa at this locality.

Factor Analysis. CABFAC factor analysis was preformed on the calcareous nannofossil assemblage to better quantify the variability in the data set. The first two factors explain 95% of this variability, with the first explaining the bulk of it (Table 4.1). The CABFAC varimax factor scores for factors one and two are plotted against the planktonic and benthic isotope data in Fig. 4.12. Both factors correlate well with the 18 18 δ O records. Correlation is strongest with the δObenthic, an ice volume proxy, with R (coefficient of correlation) = 0.699 for factor 1 and R = 0.719 for factor 2. The 18 δ Oplanktonic record incorporates ice volume, SST, and salinity. The latter is relatively constant in the open ocean, although meltwater from ice during glacial periods could 18 create a freshwater lens. The δOplanktonic for this study was measured on the foraminifera G. inflata, a thermocline dweller whose isotopic composition records conditions at the base of the seasonal thermocline (Cléroux et al., 2007) where salinity

79

Figure 4.11. Percentage of typical warm-water taxa Helicosphaera, Oolithotus, Rhabdosphaera, 18 and Syracosphaera plotted against planktonic δ O and alkenone-based SST. Stage boundaries are indicated by vertical grey bars. Isotope data from Voelker et al. (in revision). Alkenone-based SST from Stein et al. (2009).

80

Figure 4.12. Scatter plots of sample factor scores versus both planktonic and benthic carbon and oxygen isotopes. Regression lines and R values are shown for each. Isotope data from Voelker et al. (in revision).

81 changes would be muted even during glacial periods. Factors one and two show 18 reasonably good correlation with δOplanktonic, with R = 0.622 and R = 0.656 respectively. 18 Assuming that most of the δ Oplanktonic records changes in SST and ice volume, both factors correlate well with SST and ice volume variation. Figure 4.13 compares factors one and two with δ18O and alkenone-based SST plotted against age. There is very good correspondence, especially between both U K ' factors and the 37 temperature index. Correlation is somewhat better during MIS 10 and 12, where short-term variability in SST is mostly captured by the factor analysis (arrows in Fig. 4.13). Short-term variability during MIS 11 is not as apparent in factors one and two, although the overall trends between the factors and SST are similar. Correlation breaks down at approximately 364 ka (yellow box in Fig. 4.13), which corresponds to the rapid increase in abundance of G. oceanica and decrease in G. caribbeanica. Since G. oceanica is the dominant species controlling factor one, and G. caribbeanica is one of the important species for factor two, it is not surprising that the correlation breaks down at that point. The robust correlation with SST strongly suggests that the species associated with each factor are responding to changes in SST: G. oceanica for factor one, Gephyrocapsa spp. small, G. caribbeanica, and R. producta for factor two, although the former explains the bulk (92%) of the variability. 13 There is essentially no correlation between factors one and two and δ Cplanktonic 13 (R = 0.234 and R = 0.253, respectively) (Fig. 4.12). The δ Cplanktonic at the thermocline is dependent on a number of factors, including CO2 exchange with the atmosphere, mixing in the water column, and the amount of photosynthesis in the photic zone (Duplessy et al., 1988). Although only partially controlled by surface-water productivity, 13 the lack of correlation between the factors and δCplanktonic (Fig. 4.14) suggests that neither is strongly controlled by nutrient availability in the surface waters. This is somewhat surprising as G. oceanica is generally thought to prefer eutrophic conditions (e.g., Young, 1994; Ziveri et al., 2004; Andruleit et al., 2005), but at Site U1313 seems to be more strongly controlled by SST. 13 There is much better correlation between the factors and δ Cbenthic, with R = 0.669 for factor one and R = 0.718 for factor two (Fig. 4.12). The distribution of δ13C in the deep ocean primarily reflects the initial source water composition and mixing and

82

Figure 4.13. Varimax factor scores for factors 1 and 2 plotted against alkenone-based SST, and 18 planktonic and benthic δ O. Stage boundaries are shown as vertical grey bars. Black arrows indicate short-term SST variability captured by the CABFAC factor analysis. The yellow box indicates where the correlation begins to break down. Isotope data from Voelker et al. (in revision). Alkenone-based SST from Stein et al. (2009).

83

13 Figure 4.14. Varimax factor scores for factors 1 and 2 plotted against planktonic and benthic δ C. Stage boundaries are shown as vertical grey bars. Values below 0.2‰ during glacials on the 13 δ Cbenthic record indicate when Site U1313 was likely influenced by Southern sourced waters (=AABW). Isotope data from Voelker et al. (in revision).

aging as bottom water masses circulate. The aging effect results from oxidation of 13 organic matter, which depletes the δ Cbenthic signal, since biological processes preferentially uptake 12C (Corliss et al., 2006). In the North Atlantic deep water

84 residence times are short, so the aging effect is only about 100 years (Broecker, 1979); 13 therefore, the δ Cbenthic primarily reflects bottom water source (Voelker et al., in 13 revision). Antarctic Bottom Water (AABW) Cδ values in the modern North Atlantic are below 0.8‰, whereas glacial values are below 0.2‰ at water depths greater than 3000 m (Curry and Oppo, 2005). Thus AABW bathed Site U1313 during much of MIS 12. During MIS 11 and for short periods of time during MIS 12, North Atlantic Deepwater (NADW) covered the site (Fig. 4.14) (Voelker et al., in revision). The strong correlation 13 between factors one and two and the δ Cbenthic record is because the latter record reflects glacial/interglacial variability in bottom water source largely due to ice-sheet forcing (Raymo et al., 1990). Since factors one and two correlate to the glacial/interglacial variability in SST and ice volume at Site U1313, the correlation with 13 the δ Cbenthic is coincidental.

Surface Water Stratification. To further examine surface water conditions during the studied interval, F. profunda was compared to other indicators of surface- water conditions. Florisphaera profunda today inhabits the LPZ in tropical and subtropical environments (Okada and Honjo, 1973; Winter et al., 1994). Molfino and McIntyre (1990a,b) demonstrated that the abundance of F. profunda is linked to changes in nutricline/thermocline depth: low abundances of F. profunda correlate to a shallow nutricline, whereas higher abundances correlate to a deep nutricline. Thus, F. profunda is frequently used as a proxy for water stratification or paleoproductivity (e.g., Beaufort et al., 1997; Flores et al., 2000; Boeckel et al., 2006; López-Otalvaro et al., 2008). Flores et al. (2000) established the N ratio to track nutricline/thermocline position based on the relative proportions of the main eutrophic species (small reticulofenestrids/Noelaerhabdaceae) and F. profunda. Higher values (closer to 1) of this ratio indicate strong upwelling and shallow stratification, whereas lower values (closer to 0) indicate weak upwelling and deep stratification. Figure 4.15 compares the abundance of F. profunda and the corresponding N ratio (Appendix J) to proxies for Heinrich-like events at Site U1313, including lithics

(Voelker et al., in revision), dolomite, and C37:4 alkenone abundances (Stein et al., 2009). Lithic fragments such as quartz and feldspar are general indicators of continental-

85

Figure 4.15. Surface stratification indices, including the N Ratio (based on abundance of F. profunda), and lithics, dolomite, and C37:4 alkenones, all indicators of Heinrich-like events that 18 introduce a freshwater lens to the surface ocean. The planktonic δ O and alkenone-based SST are also shown. Vertical grey bars indicate stage boundaries. Lithics and isotope data from Voelker et al. (in revision). Alkenone and dolomite data from Stein et al. (2009).

86 derived material from a variety of source areas around the North Atlantic, whereas

dolomite has been traced to a source area in Hudson Strait. Higher percentages of C37:4 alkenones indicate lower salinity surface waters at Site U1313 from input of freshwater due to melting ice (Stein et al., 2009). These Heinrich-like events create intermittently stratified surface waters through introduction of fresh meltwater. Lower values of the N ratio during MIS 12 are indicative of deep stratification, although they do not always correlate to IRD peaks. The N ratio decreases beginning at 463 ka, after a small increase in lithics, but at the same time as a freshwater pulse indicated by an increase

in C37:4. The N ratio indicates weakening of stratification in tandem with a decrease in the freshwater signal at 455 ka. Stratification strengthens again at 450 ka, which corresponds to the beginning of a slow increase in freshwater input, but no peak in IRD

proxies. Peaks in IRD and C37:4 at 439 ka do not have a corresponding decrease in the N ratio, whereas a final decrease in the N ratio begins following a small spike in freshwater at 430 ka, and continues for a approximately 5 kyr, corresponding to the final advance of ice associated with T V. Interestingly, according to the N ratio the end to deep stratification occurred 4 kyr prior to T V. This event is associated with an increase in small Gephyrocapsa (Fig. 4.8). The use of F. profunda and the N ratio as a proxy for stratification at Site U1313 is complicated by the ecological preferences of the species. Florisphaera profunda prefers water temperature in the LPZ above 10° C (Okada and Honjo, 1973). Based on the alkenone SST curve (Stein et al., 2009), temperatures in the UPZ (where most coccolithophores live) dropped below 10° C at times during MIS 12 and 10 (Fig. 4.15), and temperatures in the LPZ would have been at least a degree or two cooler based on modern gradients (Locarnini et al., 2006). Thus growth of F. profunda may have been inhibited at some intervals during glacial stages. Nevertheless, the N ratio does indicate deep stratification at Site U1313 intermittently during MIS 12. This stratification probably resulted from input of fresh meltwater from ice, as supported by the IRD and alkenone records (Stein et al., 2009).

Productivity. Quantifying surface-water productivity is not straightforward, and many proxies are used with varying degrees of success, including the δ13C record (e.g.,

87 Mackensen et al., 1993; Corliss et al., 2006), total organic carbon (TOC) (e.g., Müller and Suess, 1979; Budziak et al., 2000), alkenones (e.g., Budziak et al., 2000), Sr/Ca (e.g., Billups et al., 2004), and accumulation of barite (e.g., Paytan et al., 1996). The nannofossil accumulation rate (NAR) is a proxy for paleoproductivity of calcareous nannoplankton (e.g., López-Otálvaro et al., 2008). Figure 4.16 shows the NAR compared to other productivity proxies, including δ13C, TOC, and total alkenone concentrations. In addition, the percent CaCO3 and Si/Al and Fe/AL ratios are plotted. The latter indicates input of Saharan dust to the ocean (Rea, 1994; Petit et al., 1999), and both iron and silica have been shown to increase phytoplankton productivity (e.g., Kumar et al., 1995; Bopp et al., 2003; Calvo et al., 2004). The NAR steadily decreases during MIS 12, reaching its lowest values during the final 25 kyr of the glacial interval. The index increases rapidly at T V, reaching high values within 5 kyr. Nannofossil accumulation remains generally high throughout much of MIS 11. A short period of lower NAR between 392-388 ka coincides with MIS 11.24, a cold substage during the interglacial (Fig. 4.3). Accumulation rates return to lower values near the MIS 11/10 transition, and then increase again during the beginning of MIS 10 (Fig. 4.16). The NAR indicates lower nannoplankton productivity during cold

stages, particularly MIS 12 and 11.24. The CaCO3 record generally supports this

interpretation. Calcareous nannoplankton are one of the main contributors to CaCO3

(McIntyre and McIntyre, 1971), and the record at Site U1313 indicates higher CaCO3 accumulation during MIS 11 than 12. Other productivity proxies at Site U1313 indicate higher paleoproductivity during MIS 12 rather than MIS 11. Stein et al. (2009) interpreted the higher TOC and alkenone concentrations during MIS 12 as evidence for increased paleoproductivity during that interval (Fig. 4.16), possibly due to a more southerly position of the polar front introducing nutrient-rich subpolar waters to the study area. Futhermore, Voelker et al. 13 (in revision) suggested that the δ Cplanktonic record indicates increased nutrient availability during MIS 12 (Fig. 4.16). Additionally, dust supply to Site U1313 was higher during MIS 12 based on higher concentrations of Fe (Fig. 4.16). The source for this increased dust was likely Saharan Africa, as increased Saharan dust input to the North Atlantic has been recorded for the LGM (Sarnthein et al., 1981). Iron has been shown to

88

Figure 4.16. Plot of various productivity proxies from the studied interval. The NAR was calculated as part of this study. Stage boundaries are marked by vertical grey bars. Values below 0.2‰ 13 during glacials on the δCbenthic record indicate when Site U1313 was likely influenced by Southern sourced waters (=AABW). Isotope and XRF measurements (Fe, Si, and carbonate) from Voelker et al. (in revision). Alkenone and TOC measurements from Stein et al. (2009).

89 limit productivity (e.g., Martin and Fitzwater, 1988; Martin, 1990; Martin et al., 1994) even when excess nutrients (nitrogen and phosphorus) are available. Thus an increase in available Fe leads to increased utilization of nutrients and therefore an increase in productivity. Furthermore, Harrison (2000) showed that increased dust led to an increase in Si availability, shifting the composition of phytoplankton communities in favor of diatoms over cocolithophorids. The increased availability of Fe and Si does suggest potential for increased phytoplankton productivity during MIS 12, which is supported by the alkenone, TOC, 13 and δ Cplanktonic records. The NAR and CaCO3 records, however, indicate that calcareous nannoplankton productivity was actually reduced during MIS 12. Therefore this study would suggest that the increased phytoplankton productivity during MIS 12 was due to an increase in diatom production, rather than calcareous nannoplankton. A quantitative study of the diatom assemblage over this interval is necessary to confirm increased diatom productivity; however, shipboard diatom analysis did indicate higher quantities of diatoms at glacial terminations (S. Nielsen, pers. comm.). Reduced calcareous nannoplankton productivity is not supported by the alkenone record (Fig. 4.16), which is problematic and must be explained. Alkenones are long-chain C37-C39 unsaturated methyl and ethyl ketones known to be produced today by some members of class Prmynesiophyceae, including the calcareous nannoplankton E. huxleyi and G. oceanica (Volkman et al., 1980a,b, 1995; Marlowe et al., 1984). Brassell et al. (1986) showed that the relative abundances of two of these compounds correlated with the δ18O signal, offering a new stratigraphic method. Prahl and Wakeham (1987) quantified the relationship between alkenone abundance and SST, U K ' which Prahl et al. (1988) simplified to the 37 temperature index. Thus alkenones have become important for paleoclimate studies (e.g., Rostek et al., 1997; Mix et al., 2000; Calvo et al., 2001; Villanueva et al., 2001; Beltran et al., 2007). Marlowe et al. (1990) examined the distribution of alkenones compared to the coccolith record in marine sediments and suggested that predecessors to E. huxleyi and G. oceanica may have been a source of alkenones since the Eocene. Thus potential past alkenone producers include members of family Noelaerhabdaceae. Nevertheless, Marlowe et al. (1990) do not exclude the possibility that other organisms may have contributed to the alkenone

90 record in the past, which is supported by the occurrence of an unusual distribution of alkenones in Albian-Cenomanian sediments that may derive from a different source organism (Farrimond et al., 1986). Figure 4.17 compares the distribution of alkenones to the abundance of known alkenone producer G. oceanica, as well as abundances of other members of Noelaerhabdaceae. There is some correlation between the distributions of alkenones and G. oceanica, as both are more abundant during MIS 12; however, there are also many differences. For instance, the abundance of G. oceanica is high, even before alkenone concentration increases at 455 ka. Furthermore, a peak in G. oceanica abundance during the latter half of MIS 11 corresponds to only a negligible increase in alkenones. Finally, the abundance of G. oceanica begins to increase rapidly during MIS 10, well before the increase in alkenone abundance associated with that interglacial (Stein et al., 2009). There is also no apparent correlation between other potential alkenone producers and the alkenone concentrations recorded at Site U1313 (Fig. 4.17). Malinverno et al. (2008) compared the concentrations of alkenones to calcareous nannoplankton standing stock in water samples from the Gulf of California. The abundance of E. huxleyi and G. oceanica correlated broadly to alkenone concentrations, so they concluded that the abundance of these species could account for all alkenone production, even though E. huxleyi and G. oceanica represented only a small fraction of hyptophyte algae in the water column. Furthermore, total alkenone abundance was similar between summer and winter seasons, even though E. huxleyi and G. oceanica were more abundant during the winter. More studies such as this need to be completed to further understanding of the correlation between calcareous nannoplankton assemblages and alkenone concentrations.

Summary

The interval spanning 480-355 ka at Site U1313 contains abundant, moderately to well preserved calcareous nannoplankton. The assemblage is dominated by family Noelaerhabdaceae, with Gephyrocapsa the dominant taxon. The total abundance of

91

Figure 4.17. Percent abundances of members of family Noelaerhabdaceae (potential alkenone producers) plotted against total concentration of alkenones in the sediment. Stage boundaries are marked by vertical grey bars. Alkenone data from Stein et al. (2009).

92 coccoliths in the sediment correlates well with the δ18O record, and indicates that calcareous nannoplankton were more abundant during interglacials at this mid-latitude North Atlantic site. The last occurrence of Pseudoemiliania, a biostratigraphic marker taxon, falls very near the end of MIS 12 at 427 ka. Gephyrocapsa oceanica, generally considered a warm-water, eutrophic taxon, is more abundant during glacial periods. Productivity proxies indicate higher nutrient availability during glacials, so G. oceanica may be more strongly influenced by nutrient conditions than SST at Site U1313. Factor analysis, however, found that 92% of the variation in the assemblage could be explained primarily by the distribution of G. oceanica. Varimax factor scores for the samples correlate well with the δ18O record and alkenone-based SST estimates, suggesting that the distribution of this species is strongly controlled by temperature. Background taxa represent less than 10% of the assemblage, but may be more useful for making paleoecologic interpretations upon further analysis. The two morphotypes of C. leptoporus both appear to prefer elevated nutrient levels; however, C. leptoporus small out-competes C. leptoporus when temperatures are warmer than approximately 16º C. Oolithotus spp. is significantly more abundant during MIS 11, confirming that this genus prefers warmer temperatures. Helicosphaera, on the other hand, is more abundant during MIS 12, even though it is usually considered a warm- water taxon. It also prefers higher nutrient levels, thus this genus may be more sensitive to nutrient levels rather than temperature, as nutrient availability was higher during MIS 12 than MIS 11. Higher abundances of the LPZ taxon F. profunda indicate deep stratification; whereas lower abundances indicate shallow stratification or upwelling. The N ratio indicates deep stratification at times during MIS 12. Most periods of deep stratification correspond to periods of increased IRD and freshwater input based on lithics, dolomite, and C37:4 alkenones. Melting ice would have created a freshwater cap, deepening stratification, and at the same time introducing more nutrients to the surface waters. Based on an increase in the N ratio, and corresponding increase in small Gephyrocapsa spp., weakening in stratification likely began several thousand years prior to T V, even though IRD input into the area continued.

93 Most productivity indicators suggest nutrient levels were higher during MIS 12 than 11. Dust input was higher at that time, bringing iron to the deep ocean. Total organic carbon and total abundances of alkenones were also higher, indicating greater phytoplankton productivity. This is in contrast to the NAR, which indicates slower accumulation of coccoliths during MIS 12 than MIS 11. Some of the additional productivity during MIS 12 may have come from other phytoplankton groups, such as diatoms, which tend to out-compete coccolithophores when nutrient availability is high. Additional work, however, is needed to satisfactorily explain why alkenone abundances were higher during MIS 12, even though coccolith accumulation rates were lower.

Systematic Paleontology

Calcareous nannoplankton considered in this chapter. Taxa are listed in alphabetical order according to genus. Bibliographic references for these taxa can be found in Perch-Nielsen (1985), Wei and Thierstein (1991); Bown (1998), Sáez et al. (2003) and Jordan et al. (2004). Plate and figure references refer to pictures given in this work.

Calcidiscus leptoporus (Murray and Blackman, 1898) Loeblich and Tappan, 1978. Plate 4.1, Fig. 13. Calcidiscus quadriperforatus (Kamptner, 1937) Quinn and Geisen in Sáez et al., 2003. Calciosolenia spp. Coccolithus braarudii (Gaarder, 1962) Baumann, Cachão, Young, and Geisen in Sáez et al., 2003. Plate 4.1, Fig. 19. Coccolithus pelagicus (Wallich, 1871) Schiller, 1930. Plate 4.1, Fig. 22. Florisphaera profunda Okada and McIntyre, 1980. Plate 4.1, Figs. 17, 18. Gephyrocapsa aperta Kamptner, 1963. Gephyrocapsa caribbeanica Boudreaux and Hay in Hay et al., 1967. Plate 4.1, Figs. 7- 9. Gephyrocapsa ericsonii McIntyre and Bé, 1967. Gephyrocapsa kamptneri Deflandre and Fert, 1954.

94 Gephyrocapsa oceanica Kamptner, 1943. Plate 4.1, Figs. 3-6. Gephyrocapsa protohuxleyi McIntyre, 1970. Gephyrocapsa spp. small. Plate 4.1, Figs. 1, 2. Hayaster perplexus (Bramlette and Riedel, 1954) Bukry, 1973. Helicosphaera carteri (Wallich, 1877) Kamptner, 1954. Plate 4.1, Fig. 25. Helicosphaera inversa (Gartner, 1980) Theodoridis, 1984. Plate 4.1, Fig. 24. Helicosphaera pavimentum Okada and McIntyre, 1977. Holodiscolithus macroporus (Deflandre in Deflandre and Fert, 1954) Roth, 1970. Oolithotus antillarum (Cohen, 1964) Reinhardt in Cohen and Reinhardt, 1968. Oolithotus fragilis (Lohmann, 1912) Martini and McIntyre, 1977. Pontosphaera spp. Pseudoemiliania lacunosa (Kamptner, 1963) Gartner, 1969. Plate 4.1, Fig. 12. Pseudoemiliania ovata (Bukry, 1973) Young, 1998. Reticulofenestra minuta Roth, 1970. Reticulofenestra minutula (Gartner, 1967) Gartner, 1969. Plate 4.1, Fig. 10. Reticulofenestra producta (Kamptner, 1963) Wei and Thierstein, 1991. Plate 4.1, Fig. 11. Reticulofenestra pseudoumbilicus (Gartner, 1967) Gartner, 1969. Rhabdosphaera spp. Plate 4.1, Fig. 23. Syracosphaera spp. Plate 4.1, Fig. 16. Tetralithoides symeonidesii Theodoridis, 1984. Thoracosphaera spp. Plate 4.1, Figs. 20, 21. Umbellosphaera tenuis (Kamptner, 1937) Paasche in Markali and Paasche, 1955. Umbilicosphaera foliosa (Kamptner, 1963 ex Kleijne, 1993) Geisen in Sáez et al., 2003. Umbilicosphaera hulburtiana Gaarder, 1970. Plate 4.1, Fig. 15. Umbilicosphaera sibogae (Weber-van Bosse, 1901) Gaarder, 1970. Plate 4.1, Fig. 14.

95

Plate 4.1. Pleistocene calcareous nannoplankton from IODP Site U1313. Micrographs taken with an Olympus DP71 digital camera on an Olympus BX51 microscope, using a 100x objective and 1.25 optivar. All micrographs taken in cross-polarized light. Figs. 1-2. Gephyrocapsa spp. small; 1, U1313D-2H-5, 78- 79 cm; 2, U1313D-2H-4, 82-83 cm. Figs. 3-4. G. oceanica; 3, U1313D-2H-5, 78-79 cm; 4, U1313A-3H-4, 90-91 cm. Figs. 5-6. G. oceanica >4 μm; 5, U1313D-2H-4, 82-83 cm. Figs. 7-8. G. caribbeanica; 7, U1313D-2H-6, 32-33 cm; 8, U1313D-2H-4, 82-83 cm. Fig. 9. G. caribbeanica >4 μm; U1313D-2H-5, 78- 79 cm. Fig. 10. R. minutula; U1313D-2H-4, 82-83 cm. Fig. 11. R. producta; U1313A-3H-4, 90-91 cm. Fig. 12. P. lacunosa; U1313A-3H-4, 90-91 cm. Fig. 13. C. leptoporus; U1313A-3H-4, 142-143 cm. Fig. 14. U. sibogae; U1313D-2H-4, 82-83 cm. Fig. 15. U. hulburtiana; U1313A-3H-4, 90-91 cm. Fig. 16. Syracosphaera sp.; U1313D-2H-5, 78-79 cm. Figs. 17-18. F. profunda; 17, U1313D-2H-5, 78-79 cm; 18, U1313A-3H-4, 90-91 cm. Fig. 19. C. braarudii; U1313A-3H-4, 90-91 cm. Figs. 20-21. Thoracosphaera sp.; U1313D-2H-4, 82-83 cm. Fig. 22. C. pelagicus; U1313D-2H-4, 82-83 cm. Fig. 23. Rhabdosphaera sp.; U1313D-2H-5, 78-79 cm. Fig. 24. H. inversa; U1313D-2H-6, 20-21 cm. Fig. 25. H. carteri; U1313D- 2H-4, 82-83 cm.

96 CHAPTER 5

CONCLUSIONS

Introduction

This dissertation consists of three separate projects organized into chapters. Each project utilizes calcareous nannoplankton as biostratigraphic and/or paleoceanographic indicators. Main conclusions for each chapter are outlined below.

ODP Leg 207

Ocean Drilling Program (ODP) Leg 207 drilled five sites on Demerara Rise, located off the northern coast of Suriname in South America. Demerara Rise was one of the last points in contact with Africa during rifting (Benkhelil et al., 1995), making it an ideal location to study the opening of the equatorial Atlantic during the Cretaceous. Site 1258, drilled in 3192 m of water, recovered the oldest sediments, and because they were shallowly buried, microfossil preservation is quite good. The goal of this study was to revise the shipboard biostratigraphy and evaluate the paleoceanographic potential of calcareous nannofossils found in Albian sediments from Site 1258. Hole 1258C yields abundant, moderate to moderately well preserved calcareous nannofossils useful for Albian biostratigraphy and paleobiogeographic studies. The recovered section includes approximately 40 m of middle to upper Albian (NC9) sediments, unconformably overlain by uppermost Albian (NC10) laminated shales. The presence of the cool-water, high-latitude species Seribiscutum primitivum is a particularly interesting find, and indicates that cooler water was sporadically present at this site during the Albian, allowing the high-latitude species to migrate to lower latitudes and cross the equatorial zone for brief periods.

97 SHALDRIL II Cruise NBP0602A

SHALDRIL II Cruise NBP0602A to the Antarctic Peninsula utilized a rotary drilling rig to penetrate glacial overburden in order to recover sediments from key intervals of the evolution of the Antarctic cryosphere. Site NBP0602A-9 targeted lower Oligocene sediments in the James Ross Basin, just east of James Ross Island. Approaching ice forced drilling to terminate prior to reaching the objective; however, both holes recovered several meters of Pleistocene glaciomarine muds with abundant sedimentary clasts. The clasts found in the Pleistocene sediment of Site NBP0602A-9 contain diverse Maastrichtian and Paleocene calcareous nannofossil assemblages. These assemblages represent three distinct ages: early Maastrichtian, late Maastrichtian, and early Paleocene. The Maastrichtian assemblages are similar to those found in the López de Bertodano Formation on neighboring Seymour and Snow Hill Islands, making it the likely source for the clast material. Although no calcareous nannofossils have been reported from Paleocene formations in the region, the occurrence of calcareous foraminifers suggests other calcareous plankton may be present. Thus, the Paleocene clasts likely also originated from the Seymour Island area.

IODP Expedition 306

Integrated Ocean Drilling Program (IODP) Expedition 306 was the second of two cruises to the North Atlantic that targeted locations with high sedimentation rates for paleoclimate studies. Site U1313 was a reoccupation of Deep-Sea Drilling Project Site 607, and was drilled on the western flank of the Mid-Atlantic Ridge in 3426 m of water. This site is located near the area of steepest sea-surface temperature (SST) gradients during the last glacial maximum (Pflaumann et al., 2003), and is also on the southern margin of the ice-rafted debris (IRD) belt (Ruddiman, 1977), making it an ideal location to study surface water hydrography during the Pleistocene. This study targeted the interval from 480-355 ka, which includes a full glacial/interglacial cycle (Marine Isotope

98 Stages (MIS) 12-11), to quantify millennial-scale calcareous nannoplankton variability through comparison to other proxy records. The interval spanning 480-355 ka at Site U1313 contains abundant, moderately to well preserved calcareous nannoplankton. The assemblage is dominated by family Noelaerhabdaceae, with Gephyrocapsa the dominant taxon. The total abundance of coccoliths in the sediment correlates well with the18 O δ record, and indicates that calcareous nannoplankton were more abundant during interglacials at this mid-latitude North Atlantic site. The last occurrence of Pseudoemiliania, a biostratigraphic marker taxon, falls very near the end of MIS 12 at 427 ka. Gephyrocapsa oceanica, generally considered a warm-water, eutrophic taxon, is more abundant during glacial periods. Productivity proxies indicate higher nutrient availability during glacials, so G. oceanica may be more strongly influenced by nutrient conditions than SST at Site U1313. Factor analysis, however, found that 92% of the variation in the assemblage could be explained primarily by the distribution of G. oceanica. Varimax factor scores for the samples correlate well with the δ18O record and alkenone-based SST estimates, suggesting that the distribution of this species is controlled by temperature. Background taxa represent less than 10% of the assemblage, but may be more useful for making paleoecologic interpretations upon further analysis. The two morphotypes of Calcidiscus leptoporus both appear to prefer elevated nutrient levels; however, C. leptoporus small out-competes C. leptoporus when temperatures are warmer than approximately 16º C. Oolithotus is significantly more abundant during MIS 11, confirming that this genus prefers warmer temperatures. Helicosphaera, on the other hand, is more abundant during MIS 12, even though it is usually considered a warm-water taxon. It also prefers higher nutrient levels; thus, this genus may be more sensitive to nutrient levels rather than temperature, as nutrient availability was higher during MIS 12 than MIS 11. Higher abundances of the lower photic zone taxon Florisphaera profunda indicate deep stratification; whereas lower abundances indicate shallow stratification or upwelling. The N ratio indicates deep stratification at times during MIS 12. Most periods of deep stratification correspond to periods of increased IRD and freshwater input based

99 on lithics, dolomite, and C37:4 alkenones. Melting ice would have created a freshwater cap, deepening stratification, and at the same time introducing more nutrients to the surface waters. Based on an increase in the N ratio, and corresponding increase in small Gephyrocapsa spp., upwelling likely began several thousand years prior to T V, even though IRD input into the area continued. Most productivity indicators suggest nutrient levels were higher during MIS 12 than 11. Dust input was higher at that time, bringing iron to the deep ocean. Total organic carbon and total abundances of alkenones were also higher, indicating greater phytoplankton productivity. This is in contrast to the nannofossil accumulation rate (NAR), which indicates slower accumulation of coccoliths during MIS 12 than MIS 11. Some of the additional productivity during MIS 12 may have come from other phytoplankton groups, such as diatoms, which tend to out-compete coccolithophores when nutrient availability is high. Additional work, however, is needed to satisfactorily explain why alkenone abundances were higher during MIS 12, even though coccolith accumulation rates were lower.

Future Work

The ODP Leg 207 and IODP Expedition 306 studies are ongoing. Samples spanning the Albian and Cenomanian from Sites 1258 and 1260 have been processed for detailed paleoceanographic analysis. Smear slides have been prepared for the same samples examined in the IODP Site U1313 study. These samples will be used for analysis of the distribution of subordinate taxa. Furthermore, samples need to be prepared and analyzed to extend this study to MIS 15.

100 APPENDIX A

COPYRIGHT RELEASE FOR CHAPTER 2

101

102 APPENDIX B

DRIED AND SEIVED SAMPLE WEIGHTS AND PERCENT FINE FRACTION

Weigh Weigh Pan + Pan + Dried Dried Coarse Coarse Hole-Core-Section, Depth Weigh Sample Sample Fraction Fractio % Fine Interval (cm) (cmcd) Pan (g) (g) (g) (g) n (g) Fraction 1313D-2H-4, 70-71 15.88 1.9878 2.0851 0.0973 2.0083 0.0205 78.93 1313D-2H-4, 74-75 15.92 2.1011 2.2116 0.1105 2.1308 0.0297 73.12 1313D-2H-4, 78-79 15.96 2.0494 2.1433 0.0939 2.0793 0.0299 68.16 1313D-2H-4, 82-83 16.00 2.0653 2.1620 0.0967 2.0870 0.0217 77.56 1313D-2H-4, 86-87 16.04 2.0650 2.1601 0.0951 2.0841 0.0191 79.92 1313D-2H-4, 90-91 16.08 2.0679 2.1579 0.0900 2.0916 0.0237 73.67 1313D-2H-4, 94-95 16.12 2.0711 2.1861 0.1150 2.1024 0.0313 72.78 1313D-2H-4, 96-97 16.14 2.0802 2.1797 0.0995 2.1069 0.0267 73.17 1313D-2H-4, 100-101 16.18 2.0703 2.2299 0.1596 2.0981 0.0278 82.58 1313D-2H-4, 104-105 16.22 2.0602 2.1485 0.0883 2.0797 0.0195 77.92 1313D-2H-4, 108-109 16.26 2.0884 2.2183 0.1299 2.1206 0.0322 75.21 1313D-2H-4, 112-113 16.30 2.0404 2.1675 0.1271 2.0694 0.0290 77.18 1313D-2H-4, 116-117 16.34 2.0926 2.2336 0.1410 2.1169 0.0243 82.77 1313D-2H-4, 120-121 16.38 2.0890 2.2170 0.1280 2.1068 0.0178 86.09 1313D-2H-4, 124-125 16.42 2.0580 2.1821 0.1241 2.0791 0.0211 83.00 1313D-2H-4, 128-129 16.46 2.0854 2.2008 0.1154 2.1123 0.0269 76.69 1313D-2H-4, 132-133 16.50 2.0438 2.1183 0.0745 2.0580 0.0142 80.94 1313D-2H-4, 136-137 16.54 2.0456 2.1380 0.0924 2.0628 0.0172 81.39 1313D-2H-4, 140-141 16.58 2.0254 2.0934 0.0680 2.0399 0.0145 78.68 1313D-2H-4, 144-145 16.62 2.0293 2.1072 0.0779 2.0460 0.0167 78.56 1313D-2H-4, 148-149 16.66 2.1012 2.2085 0.1073 2.1633 0.0621 42.12 1313D-2H-5, 2-3 16.70 2.0306 2.1340 0.1034 2.0842 0.0536 48.16 1313D-2H-5, 6-7 16.74 2.0548 2.1419 0.0871 2.0799 0.0251 71.18 1313D-2H-5, 10-11 16.78 2.0272 2.1577 0.1305 2.0880 0.0608 53.41 1313D-2H-5, 14-15 16.82 2.0421 2.2263 0.1842 2.0806 0.0385 79.10 1313D-2H-5, 18-19 16.86 2.0436 2.0978 0.0542 2.0650 0.0214 60.52 1313D-2H-5, 22-23 16.90 2.0570 2.1119 0.0549 2.0782 0.0212 61.38 1313D-2H-5, 26-27 16.94 2.0491 2.1187 0.0696 2.0801 0.0310 55.46 1313D-2H-5, 30-31 16.98 2.1019 2.2902 0.1883 2.1681 0.0662 64.84 1313D-2H-5, 34-35 17.02 2.0135 2.2407 0.2272 2.0488 0.0353 84.46 1313D-2H-5, 38-39 17.06 2.0588 2.2297 0.1709 2.1074 0.0486 71.56 1313D-2H-5, 42-43 17.10 2.0347 2.1281 0.0934 2.0599 0.0252 73.02 1313D-2H-5, 46-47 17.14 2.0424 2.1757 0.1333 2.0785 0.0361 72.92 1313D-2H-5, 50-51 17.18 2.0692 2.1908 0.1216 2.0991 0.0299 75.41 1313D-2H-5, 54-55 17.22 2.0587 2.2041 0.1454 2.0876 0.0289 80.12

103 Weigh Weigh Pan + Pan + Dried Dried Coarse Coarse Hole-Core-Section, Depth Weigh Sample Sample Fraction Fractio % Fine Interval (cm) (cmcd) Pan (g) (g) (g) (g) n (g) Fraction 1313D-2H-5, 58-59 17.26 2.0879 2.2108 0.1229 2.1295 0.0416 66.15 1313D-2H-5, 62-63 17.30 2.0735 2.2558 0.1823 2.1269 0.0534 70.71 1313D-2H-5, 66-67 17.34 2.0255 2.1938 0.1683 2.0761 0.0506 69.93 1313D-2H-5, 70-71 17.38 2.0627 2.1656 0.1029 2.0931 0.0304 70.46 1313D-2H-5, 74-75 17.42 2.0678 2.2778 0.2100 2.1473 0.0795 62.14 1313D-2H-5, 78-79 17.46 2.0738 2.3173 0.2435 2.1207 0.0469 80.74 1313D-2H-5, 82-83 17.50 2.0795 2.1685 0.0890 2.1057 0.0262 70.56 1313D-2H-5, 86-87 17.54 2.0265 2.2581 0.2316 2.0570 0.0305 86.83 1313D-2H-5, 90-91 17.58 2.0636 2.1539 0.0903 2.0821 0.0185 79.51 1313D-2H-5, 94-95 17.62 2.0004 2.1470 0.1466 2.0217 0.0213 85.47 1313D-2H-5, 98-99 17.66 2.0493 2.2498 0.2005 2.0871 0.0378 81.15 1313D-2H-5, 102-103 17.70 2.0862 2.3294 0.2432 2.1289 0.0427 82.44 1313D-2H-5, 106-107 17.74 2.0251 2.1402 0.1151 2.0455 0.0204 82.28 1313D-2H-5, 110-111 17.78 2.0350 2.1688 0.1338 2.0595 0.0245 81.69 1313D-2H-5, 114-115 17.82 2.0382 2.1557 0.1175 2.0627 0.0245 79.15 1313D-2H-5, 118-119 17.86 2.0533 2.1625 0.1092 2.0968 0.0435 60.16 1313D-2H-5, 122-123 17.90 2.0894 2.1826 0.0932 2.1284 0.0390 58.15 1313D-2H-5, 126-127 17.94 2.0518 2.1325 0.0807 2.1091 0.0573 29.00 1313D-2H-5, 130-131 17.98 2.0787 2.2015 0.1228 2.1211 0.0424 65.47 1313D-2H-5, 134-135 18.02 2.1019 2.1736 0.0717 2.1470 0.0451 37.10 1313D-2H-5, 138-139 18.06 2.0436 2.1344 0.0908 2.0728 0.0292 67.84 1313D-2H-5, 142-143 18.10 2.0594 2.1446 0.0852 2.0958 0.0364 57.28 1313D-2H-5, 146-147 18.14 2.0605 2.1894 0.1289 2.0953 0.0348 73.00 1313D-2H-6, 0-1 18.18 2.0207 2.1064 0.0857 2.0752 0.0545 36.41 1313D-2H-6, 4-5 18.22 2.0389 2.1898 0.1509 2.0766 0.0377 75.02 1313D-2H-6, 8-9 18.26 2.0537 2.1104 0.0567 2.0873 0.0336 40.74 1313D-2H-6, 12-13 18.30 2.0735 2.1535 0.0800 2.1047 0.0312 61.00 1313D-2H-6, 16-17 18.34 2.0021 2.0738 0.0717 2.0349 0.0328 54.25 1313D-2H-6, 20-21 18.38 2.0716 2.1431 0.0715 2.1057 0.0341 52.31 1313D-2H-6, 24-25 18.42 2.0281 2.1322 0.1041 2.0566 0.0285 72.62 1313D-2H-6, 28-29 18.46 2.0447 2.1300 0.0853 2.0728 0.0281 67.06 1313D-2H-6, 32-33 18.50 2.0667 2.2200 0.1533 2.1078 0.0411 73.19 1313D-2H-6, 36-37 18.54 2.0616 2.1273 0.0657 2.0899 0.0283 56.93 1313D-2H-6, 40-41 18.58 2.0506 2.1697 0.1191 2.1050 0.0544 54.32 1313D-2H-6, 44-45 18.62 2.0839 2.2485 0.1646 2.1246 0.0407 75.27 1313D-2H-6, 48-49 18.66 2.1002 2.1675 0.0673 2.1306 0.0304 54.83 1313D-2H-6, 52-53 18.70 2.0295 2.1050 0.0755 2.0471 0.0176 76.69 1313D-2H-6, 56-57 18.74 1.9811 2.0906 0.1095 2.0070 0.0259 76.35 1313D-2H-6, 60-61 18.78 2.0386 2.1839 0.1453 2.0650 0.0264 81.83 1313D-2H-6, 64-65 18.82 2.0246 2.1712 0.1466 2.0521 0.0275 81.24 1313D-2H-6, 68-69 18.86 1.9619 2.0933 0.1314 1.9871 0.0252 80.82 1313D-2H-6, 72-73 18.90 1.9943 2.1775 0.1832 2.0235 0.0292 84.06 1313D-2H-6, 74-75 18.92 2.0861 2.1819 0.0958 2.1066 0.0205 78.60 1313D-2H-6, 76-77 18.94 2.0821 2.2327 0.1506 2.1092 0.0271 82.01

104 Weigh Weigh Pan + Pan + Dried Dried Coarse Coarse Hole-Core-Section, Depth Weigh Sample Sample Fraction Fractio % Fine Interval (cm) (cmcd) Pan (g) (g) (g) (g) n (g) Fraction 1313A-3H-2, 102-103 18.96 2.0513 2.4141 0.3628 2.1303 0.0790 78.22 1313D-2H-6, 80-81 18.98 2.0440 2.1292 0.0852 2.0690 0.0250 70.66 1313A-3H-2, 106-107 19.00 2.0663 2.1894 0.1231 2.0885 0.0222 81.97 1313D-2H-6, 84-85 19.02 1.9096 2.0094 0.0998 1.9298 0.0202 79.76 1313A-3H-2, 110-111 19.04 2.0066 2.2201 0.2135 2.0403 0.0337 84.22 1313A-3H-2, 114-115 19.08 2.0326 2.3326 0.3000 2.1040 0.0714 76.20 1313A-3H-2, 118-119 19.12 2.1025 2.5006 0.3981 2.1658 0.0633 84.10 1313A-3H-2, 122-123 19.16 2.0623 2.4135 0.3512 2.1080 0.0457 86.99 1313A-3H-2, 126-127 19.20 2.0582 2.4125 0.3543 2.1274 0.0692 80.47 1313A-3H-2, 130-131 19.24 2.0518 2.4027 0.3509 2.1167 0.0649 81.50 1313A-3H-2, 134-135 19.28 2.0496 2.4639 0.4143 2.1162 0.0666 83.92 1313A-3H-2, 138-139 19.32 2.0143 2.3149 0.3006 2.0857 0.0714 76.25 1313A-3H-2, 142-143 19.36 2.0785 2.3024 0.2239 2.1276 0.0491 78.07 1313A-3H-2, 146-147 19.40 2.0768 2.2669 0.1901 2.1398 0.0630 66.86 1313A-3H-3, 0-1 19.44 2.0596 2.2401 0.1805 2.1183 0.0587 67.48 1313A-3H-3, 4-5 19.48 2.0286 2.2311 0.2025 2.1298 0.1012 50.02 1313A-3H-3, 8-9 19.52 2.0806 2.2629 0.1823 2.1481 0.0675 62.97 1313A-3H-3, 12-13 19.56 2.0453 2.2958 0.2505 2.0791 0.0338 86.51 1313A-3H-3, 16-17 19.60 2.0699 2.2218 0.1519 2.1309 0.0610 59.84 1313A-3H-3, 20-21 19.64 2.0558 2.2556 0.1998 2.0987 0.0429 78.53 1313A-3H-3, 24-25 19.68 2.0876 2.2714 0.1838 2.1429 0.0553 69.91 1313A-3H-3, 28-29 19.72 2.0773 2.1814 0.1041 2.1054 0.0281 73.01 1313A-3H-3, 32-33 19.76 2.0659 2.1312 0.0653 2.0926 0.0267 59.11 1313A-3H-3, 36-37 19.80 2.0452 2.1498 0.1046 2.0724 0.0272 74.00 1313A-3H-3, 40-41 19.84 2.0456 2.1441 0.0985 2.0740 0.0284 71.17 1313A-3H-3, 44-45 19.88 2.0529 2.1568 0.1039 2.1012 0.0483 53.51 1313A-3H-3, 48-49 19.92 2.0623 2.1626 0.1003 2.1031 0.0408 59.32 1313A-3H-3, 52-53 19.96 2.0443 2.1466 0.1023 2.0899 0.0456 55.43 1313A-3H-3, 56-57 20.00 2.0555 2.1451 0.0896 2.1052 0.0497 44.53 1313A-3H-3, 60-61 20.04 2.0346 2.1364 0.1018 2.0632 0.0286 71.91 1313A-3H-3, 64-65 20.08 2.0416 2.1009 0.0593 2.0832 0.0416 29.85 1313A-3H-3, 68-69 20.12 2.1289 2.2592 0.1303 2.1723 0.0434 66.69 1313A-3H-3, 72-73 20.16 2.0692 2.1735 0.1043 2.1236 0.0544 47.84 1313A-3H-3, 76-77 20.20 2.0606 2.1877 0.1271 2.0937 0.0331 73.96 1313A-3H-3, 78-79 20.22 2.1116 2.2079 0.0963 2.1481 0.0365 62.10 1313A-3H-3, 82-83 20.26 2.0433 2.1741 0.1308 2.0797 0.0364 72.17 1313A-3H-3, 84-85 20.28 2.0582 2.2088 0.1506 2.1078 0.0496 67.07 1313A-3H-3, 86-87 20.30 2.0708 2.2163 0.1455 2.1314 0.0606 58.35 1313A-3H-3, 90-91 20.34 2.0674 2.1890 0.1216 2.1020 0.0346 71.55 1313A-3H-3, 94-95 20.38 2.0864 2.2185 0.1321 2.1158 0.0294 77.74 1313A-3H-3, 98-99 20.42 2.0981 2.1947 0.0966 2.1350 0.0369 61.80 1313A-3H-3, 102-103 20.46 2.0122 2.1143 0.1021 2.0332 0.0210 79.43 1313A-3H-3, 106-107 20.50 2.0678 2.1960 0.1282 2.1294 0.0616 51.95 1313A-3H-3, 110-111 20.54 2.0775 2.1827 0.1052 2.1128 0.0353 66.44

105 Weigh Weigh Pan + Pan + Dried Dried Coarse Coarse Hole-Core-Section, Depth Weigh Sample Sample Fraction Fractio % Fine Interval (cm) (cmcd) Pan (g) (g) (g) (g) n (g) Fraction 1313A-3H-3, 114-115 20.58 2.0356 2.1351 0.0995 2.0691 0.0335 66.33 1313A-3H-3, 118-119 20.62 2.0420 2.0730 0.0310 2.0914 0.0494 -59.35 1313A-3H-3, 122-123 20.66 2.0360 2.1987 0.1627 2.0847 0.0487 70.07 1313A-3H-3, 124-125 20.68 2.0590 2.1190 0.0600 2.0920 0.0330 45.00 1313A-3H-3, 128-129 20.72 2.0058 2.0683 0.0625 2.0409 0.0351 43.84 1313A-3H-3, 130-131 20.74 2.0843 2.1851 0.1008 2.1126 0.0283 71.92 1313A-3H-3, 132-133 20.76 2.0753 2.1555 0.0802 2.1037 0.0284 64.59 1313A-3H-3, 134-135 20.78 2.0430 2.1025 0.0595 2.0670 0.0240 59.66 1313A-3H-3, 136-137 20.80 2.0560 2.2365 0.1805 2.0892 0.0332 81.61 1313A-3H-3, 138-139 20.82 2.0558 2.1437 0.0879 2.0931 0.0373 57.57 1313A-3H-3, 140-141 20.84 2.0544 2.1607 0.1063 2.0746 0.0202 81.00 1313A-3H-3, 142-143 20.86 2.0913 2.2266 0.1353 2.1202 0.0289 78.64 1313A-3H-3, 144-145 20.88 2.0711 2.1803 0.1092 2.1026 0.0315 71.15 1313A-3H-3, 146-147 20.90 2.0476 2.1584 0.1108 2.0848 0.0372 66.43 1313A-3H-3, 148-149 20.92 2.0546 2.1603 0.1057 2.0896 0.0350 66.89 1313A-3H-4, 0-1 20.94 2.0164 2.2070 0.1906 2.0667 0.0503 73.61 1313A-3H-4, 2-3 20.96 2.0018 2.1683 0.1665 2.0378 0.0360 78.38 1313A-3H-4, 4-5 20.98 2.0480 2.1504 0.1024 2.0619 0.0139 86.43 1313A-3H-4, 6-7 21.00 2.0479 2.1804 0.1325 2.0713 0.0234 82.34 1313A-3H-4, 10-11 21.04 2.0344 2.2411 0.2067 2.0782 0.0438 78.81 1313A-3H-4, 14-15 21.08 2.0811 2.2815 0.2004 2.1371 0.0560 72.06 1313A-3H-4, 18-19 21.12 1.9696 2.2069 0.2373 2.0061 0.0365 84.62 1313A-3H-4, 22-23 21.16 2.0230 2.2250 0.2020 2.0447 0.0217 89.26 1313A-3H-4, 26-27 21.20 2.0874 2.2829 0.1955 2.1211 0.0337 82.76 1313A-3H-4, 30-31 21.24 2.1062 2.2393 0.1331 2.1282 0.0220 83.47 1313A-3H-4, 34-35 21.28 2.0513 2.2401 0.1888 2.0989 0.0476 74.79 1313A-3H-4, 38-39 21.32 2.0508 2.2259 0.1751 2.1452 0.0944 46.09 1313A-3H-4, 42-43 21.36 2.1126 2.2657 0.1531 2.1365 0.0239 84.39 1313A-3H-4, 46-47 21.40 2.0749 2.3336 0.2587 2.1318 0.0569 78.01 1313A-3H-4, 50-51 21.44 2.0202 2.3090 0.2888 2.0803 0.0601 79.19 1313A-3H-4, 54-55 21.48 2.0442 2.1596 0.1154 2.0747 0.0305 73.57 1313A-3H-4, 58-59 21.52 2.0202 2.2983 0.2781 2.0606 0.0404 85.47 1313A-3H-4, 62-63 21.56 2.0392 2.2756 0.2364 2.0838 0.0446 81.13 1313A-3H-4, 66-67 21.60 2.0157 2.1890 0.1733 2.0469 0.0312 82.00 1313A-3H-4, 70-71 21.64 1.9905 2.2259 0.2354 2.0678 0.0773 67.16 1313A-3H-4, 74-75 21.68 2.0835 2.1774 0.0939 2.1062 0.0227 75.83 1313A-3H-4, 78-79 21.72 2.0376 2.2013 0.1637 2.0752 0.0376 77.03 1313A-3H-4, 82-83 21.76 2.0594 2.2926 0.2332 2.1007 0.0413 82.29 1313A-3H-4, 86-87 21.80 2.0429 2.2520 0.2091 2.0842 0.0413 80.25 1313A-3H-4, 90-91 21.84 2.1073 2.3970 0.2897 2.1545 0.0472 83.71 1313A-3H-4, 94-95 21.88 2.0609 2.2205 0.1596 2.0877 0.0268 83.21 1313A-3H-4, 98-99 21.92 2.1580 2.4099 0.2519 2.2076 0.0496 80.31 1313A-3H-4, 102-103 21.96 2.0424 2.2766 0.2342 2.0764 0.0340 85.48 1313A-3H-4, 106-107 22.00 2.0374 2.2826 0.2452 2.0814 0.0440 82.06

106 Weigh Weigh Pan + Pan + Dried Dried Coarse Coarse Hole-Core-Section, Depth Weigh Sample Sample Fraction Fractio % Fine Interval (cm) (cmcd) Pan (g) (g) (g) (g) n (g) Fraction 1313A-3H-4, 110-111 22.04 2.1006 2.3345 0.2339 2.1413 0.0407 82.60 1313A-3H-4, 114-115 22.08 2.1094 2.3391 0.2297 2.1490 0.0396 82.76 1313A-3H-4, 118-119 22.12 2.1305 2.3186 0.1881 2.1634 0.0329 82.51 1313A-3H-4, 122-123 22.16 2.1033 2.2886 0.1853 2.1416 0.0383 79.33 1313A-3H-4, 126-127 22.20 2.1198 2.3084 0.1886 2.1634 0.0436 76.88 1313A-3H-4, 130-131 22.24 2.0915 2.2585 0.1670 2.1373 0.0458 72.57 1313A-3H-4, 134-135 22.28 2.0292 2.1681 0.1389 2.0617 0.0325 76.60 1313A-3H-4, 138-139 22.32 2.0010 2.1131 0.1121 2.0422 0.0412 63.25 1313A-3H-4, 142-143 22.36 2.0819 2.1897 0.1078 2.1138 0.0319 70.41 1313A-3H-5, 0-1 22.44 2.0881 2.2055 0.1174 2.1182 0.0301 74.36

107 APPENDIX C

SAMPLE AND MICROBEAD MASSES FOR CALCULATION OF WTOT, WMICRO, AND MADDED

Micro- Micro- Hole-Core-Section, Depth Age Sample Sample = beads beads = Interval (cm) (cmcd) (ka) (mg) WTOT (g) (mg) Wmicro (g) Madded 1313D-2H-4, 70-71 15.88 355.91 1.184 1.18E-03 5.097 5.10E-03 2.22E+07 1313D-2H-4, 74-75 15.92 356.51 1.307 1.31E-03 5.177 5.18E-03 2.25E+07 1313D-2H-4, 78-79 15.96 357.11 1.223 1.22E-03 5.134 5.13E-03 2.23E+07 1313D-2H-4, 82-83 16.00 357.70 1.171 1.17E-03 4.870 4.87E-03 2.12E+07 1313D-2H-4, 86-87 16.04 358.30 1.142 1.14E-03 4.908 4.91E-03 2.13E+07 1313D-2H-4, 90-91 16.08 358.89 1.135 1.14E-03 5.047 5.05E-03 2.20E+07 1313D-2H-4, 94-95 16.12 359.49 1.295 1.30E-03 6.437 6.44E-03 2.80E+07 1313D-2H-4, 96-97 16.14 359.79 1.145 1.15E-03 4.955 4.96E-03 2.16E+07 1313D-2H-4, 100-101 16.18 360.38 1.145 1.15E-03 5.246 5.25E-03 2.28E+07 1313D-2H-4, 104-105 16.22 360.98 1.131 1.13E-03 5.805 5.81E-03 2.53E+07 1313D-2H-4, 108-109 16.26 361.57 1.255 1.26E-03 4.884 4.88E-03 2.12E+07 1313D-2H-4, 112-113 16.30 362.17 1.122 1.12E-03 4.638 4.64E-03 2.02E+07 1313D-2H-4, 116-117 16.34 362.77 1.242 1.24E-03 5.070 5.07E-03 2.21E+07 1313D-2H-4, 120-121 16.38 363.36 1.176 1.18E-03 5.401 5.40E-03 2.35E+07 1313D-2H-4, 124-125 16.42 363.96 1.164 1.16E-03 5.624 5.62E-03 2.45E+07 1313D-2H-4, 128-129 16.46 364.55 1.191 1.19E-03 5.223 5.22E-03 2.27E+07 1313D-2H-4, 132-133 16.50 365.15 1.308 1.31E-03 5.287 5.29E-03 2.30E+07 1313D-2H-4, 136-137 16.54 365.74 1.241 1.24E-03 5.086 5.09E-03 2.21E+07 1313D-2H-4, 140-141 16.58 366.34 1.390 1.39E-03 5.699 5.70E-03 2.48E+07 1313D-2H-4, 144-145 16.62 366.94 1.221 1.22E-03 4.978 4.98E-03 2.17E+07 1313D-2H-4, 148-149 16.66 367.53 1.342 1.34E-03 6.081 6.08E-03 2.65E+07 1313D-2H-5, 2-3 16.70 368.13 1.632 1.63E-03 5.684 5.68E-03 2.47E+07 1313D-2H-5, 6-7 16.74 368.72 1.420 1.42E-03 5.472 5.47E-03 2.38E+07 1313D-2H-5, 10-11 16.78 369.32 1.251 1.25E-03 4.990 4.99E-03 2.17E+07 1313D-2H-5, 14-15 16.82 369.91 1.247 1.25E-03 5.570 5.57E-03 2.42E+07 1313D-2H-5, 18-19 16.86 370.51 1.259 1.26E-03 5.246 5.25E-03 2.28E+07 1313D-2H-5, 22-23 16.90 371.11 1.396 1.40E-03 6.639 6.64E-03 2.89E+07 1313D-2H-5, 26-27 16.94 371.70 1.241 1.24E-03 5.336 5.34E-03 2.32E+07 1313D-2H-5, 30-31 16.98 372.48 1.383 1.38E-03 5.530 5.53E-03 2.41E+07 1313D-2H-5, 34-35 17.02 373.43 1.335 1.34E-03 5.761 5.76E-03 2.51E+07 1313D-2H-5, 38-39 17.06 374.38 1.352 1.35E-03 7.247 7.25E-03 3.15E+07 1313D-2H-5, 42-43 17.10 375.33 1.210 1.21E-03 5.179 5.18E-03 2.25E+07 1313D-2H-5, 46-47 17.14 376.28 1.206 1.21E-03 5.285 5.29E-03 2.30E+07 1313D-2H-5, 50-51 17.18 377.23 1.170 1.17E-03 5.553 5.55E-03 2.42E+07 1313D-2H-5, 54-55 17.22 378.18 1.276 1.28E-03 5.917 5.92E-03 2.57E+07 1313D-2H-5, 58-59 17.26 379.13 1.565 1.57E-03 7.013 7.01E-03 3.05E+07 1313D-2H-5, 62-63 17.30 380.08 1.222 1.22E-03 8.239 8.24E-03 3.58E+07

108 Micro- Micro- Hole-Core-Section, Depth Age Sample Sample = beads beads = Interval (cm) (cmcd) (ka) (mg) WTOT (g) (mg) Wmicro (g) Madded 1313D-2H-5, 66-67 17.34 381.03 1.302 1.30E-03 7.645 7.65E-03 3.33E+07 1313D-2H-5, 70-71 17.38 381.98 1.222 1.22E-03 7.752 7.75E-03 3.37E+07 1313D-2H-5, 74-75 17.42 382.93 1.201 1.20E-03 6.925 6.93E-03 3.01E+07 1313D-2H-5, 78-79 17.46 383.88 1.223 1.22E-03 6.213 6.21E-03 2.70E+07 1313D-2H-5, 82-83 17.50 384.83 1.279 1.28E-03 7.447 7.45E-03 3.24E+07 1313D-2H-5, 86-87 17.54 385.78 1.235 1.24E-03 7.098 7.10E-03 3.09E+07 1313D-2H-5, 90-91 17.58 386.73 1.244 1.24E-03 6.666 6.67E-03 2.90E+07 1313D-2H-5, 94-95 17.62 387.68 1.198 1.20E-03 6.980 6.98E-03 3.04E+07 1313D-2H-5, 98-99 17.66 388.63 1.268 1.27E-03 6.427 6.43E-03 2.80E+07 1313D-2H-5, 102-103 17.70 389.58 1.262 1.26E-03 6.563 6.56E-03 2.85E+07 1313D-2H-5, 106-107 17.74 390.53 1.222 1.22E-03 7.047 7.05E-03 3.07E+07 1313D-2H-5, 110-111 17.78 391.43 1.396 1.40E-03 7.532 7.53E-03 3.28E+07 1313D-2H-5, 114-115 17.82 392.29 1.412 1.41E-03 7.073 7.07E-03 3.08E+07 1313D-2H-5, 118-119 17.86 393.14 1.305 1.31E-03 6.717 6.72E-03 2.92E+07 1313D-2H-5, 122-123 17.90 394.00 1.193 1.19E-03 6.366 6.37E-03 2.77E+07 1313D-2H-5, 126-127 17.94 394.86 1.403 1.40E-03 7.326 7.33E-03 3.19E+07 1313D-2H-5, 130-131 17.98 395.71 1.242 1.24E-03 7.028 7.03E-03 3.06E+07 1313D-2H-5, 134-135 18.02 396.57 1.318 1.32E-03 6.258 6.26E-03 2.72E+07 1313D-2H-5, 138-139 18.06 397.43 1.262 1.26E-03 6.854 6.85E-03 2.98E+07 1313D-2H-5, 142-143 18.10 398.29 1.201 1.20E-03 6.098 6.10E-03 2.65E+07 1313D-2H-5, 146-147 18.14 399.14 1.345 1.35E-03 6.265 6.27E-03 2.73E+07 1313D-2H-6, 0-1 18.18 400.00 1.320 1.32E-03 7.335 7.34E-03 3.19E+07 1313D-2H-6, 4-5 18.22 400.86 1.557 1.56E-03 6.588 6.59E-03 2.87E+07 1313D-2H-6, 8-9 18.26 401.71 1.208 1.21E-03 6.045 6.05E-03 2.63E+07 1313D-2H-6, 12-13 18.30 402.57 1.325 1.33E-03 6.460 6.46E-03 2.81E+07 1313D-2H-6, 16-17 18.34 403.43 1.231 1.23E-03 6.223 6.22E-03 2.71E+07 1313D-2H-6, 20-21 18.38 404.29 1.210 1.21E-03 6.134 6.13E-03 2.67E+07 1313D-2H-6, 24-25 18.42 405.14 1.387 1.39E-03 6.513 6.51E-03 2.83E+07 1313D-2H-6, 28-29 18.46 406.00 1.502 1.50E-03 6.646 6.65E-03 2.89E+07 1313D-2H-6, 32-33 18.50 406.86 1.344 1.34E-03 6.686 6.69E-03 2.91E+07 1313D-2H-6, 36-37 18.54 407.71 1.304 1.30E-03 8.493 8.49E-03 3.69E+07 1313D-2H-6, 40-41 18.58 408.57 1.257 1.26E-03 6.107 6.11E-03 2.66E+07 1313D-2H-6, 44-45 18.62 409.43 1.263 1.26E-03 6.314 6.31E-03 2.75E+07 1313D-2H-6, 48-49 18.66 410.29 1.456 1.46E-03 8.977 8.98E-03 3.90E+07 1313D-2H-6, 52-53 18.70 411.14 1.190 1.19E-03 5.896 5.90E-03 2.56E+07 1313D-2H-6, 56-57 18.74 412.00 1.325 1.33E-03 8.139 8.14E-03 3.54E+07 1313D-2H-6, 60-61 18.78 412.86 1.212 1.21E-03 6.131 6.13E-03 2.67E+07 1313D-2H-6, 64-65 18.82 413.71 1.323 1.32E-03 6.682 6.68E-03 2.91E+07 1313D-2H-6, 68-69 18.86 414.57 1.481 1.48E-03 7.282 7.28E-03 3.17E+07 1313D-2H-6, 72-73 18.90 415.43 1.239 1.24E-03 5.905 5.91E-03 2.57E+07 1313D-2H-6, 74-75 18.92 415.86 1.268 1.27E-03 6.165 6.17E-03 2.68E+07 1313D-2H-6, 76-77 18.94 416.29 1.409 1.41E-03 6.291 6.29E-03 2.74E+07 1313A-3H-2, 102-103 18.96 416.71 1.480 1.48E-03 6.006 6.01E-03 2.61E+07 1313D-2H-6, 80-81 18.98 417.14 1.226 1.23E-03 6.188 6.19E-03 2.69E+07 1313A-3H-2, 106-107 19.00 417.57 1.500 1.50E-03 5.868 5.87E-03 2.55E+07 1313D-2H-6, 84-85 19.02 418.00 1.274 1.27E-03 6.225 6.23E-03 2.71E+07

109 Micro- Micro- Hole-Core-Section, Depth Age Sample Sample = beads beads = Interval (cm) (cmcd) (ka) (mg) WTOT (g) (mg) Wmicro (g) Madded 1313A-3H-2, 110-111 19.04 418.43 1.460 1.46E-03 6.402 6.40E-03 2.78E+07 1313A-3H-2, 114-115 19.08 419.29 1.537 1.54E-03 6.041 6.04E-03 2.63E+07 1313A-3H-2, 118-119 19.12 420.14 1.561 1.56E-03 5.860 5.86E-03 2.55E+07 1313A-3H-2, 122-123 19.16 421.00 1.553 1.55E-03 6.245 6.25E-03 2.72E+07 1313A-3H-2, 126-127 19.20 421.86 1.462 1.46E-03 6.944 6.94E-03 3.02E+07 1313A-3H-2, 130-131 19.24 422.71 1.613 1.61E-03 7.336 7.34E-03 3.19E+07 1313A-3H-2, 134-135 19.28 423.57 1.650 1.65E-03 5.975 5.98E-03 2.60E+07 1313A-3H-2, 138-139 19.32 424.43 1.537 1.54E-03 5.978 5.98E-03 2.60E+07 1313A-3H-2, 142-143 19.36 425.29 1.503 1.50E-03 6.188 6.19E-03 2.69E+07 1313A-3H-2, 146-147 19.40 426.14 1.529 1.53E-03 5.880 5.88E-03 2.56E+07 1313A-3H-3, 0-1 19.44 427.00 1.589 1.59E-03 6.455 6.46E-03 2.81E+07 1313A-3H-3, 4-5 19.48 428.20 1.475 1.48E-03 6.169 6.17E-03 2.68E+07 1313A-3H-3, 8-9 19.52 429.40 1.530 1.53E-03 6.111 6.11E-03 2.66E+07 1313A-3H-3, 12-13 19.56 430.60 1.459 1.46E-03 2.886 2.89E-03 1.26E+07 1313A-3H-3, 16-17 19.60 431.80 1.665 1.67E-03 3.727 3.73E-03 1.62E+07 1313A-3H-3, 20-21 19.64 433.00 1.737 1.74E-03 3.498 3.50E-03 1.52E+07 1313A-3H-3, 24-25 19.68 433.68 1.507 1.51E-03 2.936 2.94E-03 1.28E+07 1313A-3H-3, 28-29 19.72 434.35 1.849 1.85E-03 4.380 4.38E-03 1.91E+07 1313A-3H-3, 32-33 19.76 435.03 1.613 1.61E-03 3.002 3.00E-03 1.31E+07 1313A-3H-3, 36-37 19.80 435.70 1.618 1.62E-03 3.007 3.01E-03 1.31E+07 1313A-3H-3, 40-41 19.84 436.38 1.546 1.55E-03 3.356 3.36E-03 1.46E+07 1313A-3H-3, 44-45 19.88 437.06 2.087 2.09E-03 4.531 4.53E-03 1.97E+07 1313A-3H-3, 48-49 19.92 437.73 2.020 2.02E-03 4.240 4.24E-03 1.84E+07 1313A-3H-3, 52-53 19.96 438.41 2.241 2.24E-03 4.346 4.35E-03 1.89E+07 1313A-3H-3, 56-57 20.00 439.08 2.076 2.08E-03 4.057 4.06E-03 1.76E+07 1313A-3H-3, 60-61 20.04 439.76 2.135 2.14E-03 4.296 4.30E-03 1.87E+07 1313A-3H-3, 64-65 20.08 440.44 2.498 2.50E-03 4.774 4.77E-03 2.08E+07 1313A-3H-3, 68-69 20.12 441.11 2.063 2.06E-03 4.647 4.65E-03 2.02E+07 1313A-3H-3, 72-73 20.16 441.79 2.013 2.01E-03 4.572 4.57E-03 1.99E+07 1313A-3H-3, 76-77 20.20 442.46 2.057 2.06E-03 4.397 4.40E-03 1.91E+07 1313A-3H-3, 78-79 20.22 442.80 1.987 1.99E-03 3.920 3.92E-03 1.71E+07 1313A-3H-3, 82-83 20.26 443.48 2.316 2.32E-03 4.668 4.67E-03 2.03E+07 1313A-3H-3, 84-85 20.28 443.82 2.145 2.15E-03 4.175 4.18E-03 1.82E+07 1313A-3H-3, 86-87 20.30 444.15 2.060 2.06E-03 6.006 6.01E-03 2.61E+07 1313A-3H-3, 90-91 20.34 444.83 2.034 2.03E-03 4.479 4.48E-03 1.95E+07 1313A-3H-3, 94-95 20.38 445.51 2.253 2.25E-03 4.770 4.77E-03 2.07E+07 1313A-3H-3, 98-99 20.42 446.18 2.194 2.19E-03 4.190 4.19E-03 1.82E+07 1313A-3H-3, 102-103 20.46 446.86 2.251 2.25E-03 4.206 4.21E-03 1.83E+07 1313A-3H-3, 106-107 20.50 447.54 2.007 2.01E-03 4.143 4.14E-03 1.80E+07 1313A-3H-3, 110-111 20.54 448.21 2.225 2.23E-03 4.662 4.66E-03 2.03E+07 1313A-3H-3, 114-115 20.58 448.89 2.361 2.36E-03 4.776 4.78E-03 2.08E+07 1313A-3H-3, 118-119 20.62 449.56 2.090 2.09E-03 4.468 4.47E-03 1.94E+07 1313A-3H-3, 122-123 20.66 450.24 1.614 1.61E-03 3.179 3.18E-03 1.38E+07 1313A-3H-3, 124-125 20.68 450.58 1.888 1.89E-03 4.031 4.03E-03 1.75E+07 1313A-3H-3, 128-129 20.72 451.25 1.903 1.90E-03 5.082 5.08E-03 2.21E+07 1313A-3H-3, 130-131 20.74 451.59 1.973 1.97E-03 4.488 4.49E-03 1.95E+07

110 Micro- Micro- Hole-Core-Section, Depth Age Sample Sample = beads beads = Interval (cm) (cmcd) (ka) (mg) WTOT (g) (mg) Wmicro (g) Madded 1313A-3H-3, 132-133 20.76 451.93 1.951 1.95E-03 3.984 3.98E-03 1.73E+07 1313A-3H-3, 134-135 20.78 452.27 2.272 2.27E-03 4.779 4.78E-03 2.08E+07 1313A-3H-3, 136-137 20.80 452.61 1.988 1.99E-03 3.895 3.90E-03 1.69E+07 1313A-3H-3, 138-139 20.82 452.94 2.186 2.19E-03 4.424 4.42E-03 1.92E+07 1313A-3H-3, 140-141 20.84 453.28 2.457 2.46E-03 5.634 5.63E-03 2.45E+07 1313A-3H-3, 142-143 20.86 453.62 1.954 1.95E-03 4.148 4.15E-03 1.80E+07 1313A-3H-3, 144-145 20.88 453.96 1.935 1.94E-03 4.575 4.58E-03 1.99E+07 1313A-3H-3, 146-147 20.90 454.30 2.259 2.26E-03 4.358 4.36E-03 1.90E+07 1313A-3H-3, 148-149 20.92 454.63 2.096 2.10E-03 4.364 4.36E-03 1.90E+07 1313A-3H-4, 0-1 20.94 454.97 1.224 1.22E-03 2.456 2.46E-03 1.07E+07 1313A-3H-4, 2-3 20.96 455.31 1.310 1.31E-03 2.742 2.74E-03 1.19E+07 1313A-3H-4, 4-5 20.98 455.65 1.066 1.07E-03 2.562 2.56E-03 1.11E+07 1313A-3H-4, 6-7 21.00 455.99 1.384 1.38E-03 2.562 2.56E-03 1.11E+07 1313A-3H-4, 10-11 21.04 456.66 1.416 1.42E-03 3.254 3.25E-03 1.42E+07 1313A-3H-4, 14-15 21.08 457.34 1.132 1.13E-03 2.807 2.81E-03 1.22E+07 1313A-3H-4, 18-19 21.12 458.01 1.328 1.33E-03 2.880 2.88E-03 1.25E+07 1313A-3H-4, 22-23 21.16 458.69 1.088 1.09E-03 2.302 2.30E-03 1.00E+07 1313A-3H-4, 26-27 21.20 459.37 1.341 1.34E-03 6.232 6.23E-03 2.71E+07 1313A-3H-4, 30-31 21.24 460.04 1.134 1.13E-03 2.258 2.26E-03 9.82E+06 1313A-3H-4, 34-35 21.28 460.72 1.913 1.91E-03 2.660 2.66E-03 1.16E+07 1313A-3H-4, 38-39 21.32 461.39 1.340 1.34E-03 3.100 3.10E-03 1.35E+07 1313A-3H-4, 42-43 21.36 462.07 1.352 1.35E-03 3.176 3.18E-03 1.38E+07 1313A-3H-4, 46-47 21.40 462.75 1.035 1.04E-03 2.178 2.18E-03 9.47E+06 1313A-3H-4, 50-51 21.44 463.42 1.753 1.75E-03 3.565 3.57E-03 1.55E+07 1313A-3H-4, 54-55 21.48 464.10 1.483 1.48E-03 3.042 3.04E-03 1.32E+07 1313A-3H-4, 58-59 21.52 464.77 1.598 1.60E-03 3.318 3.32E-03 1.44E+07 1313A-3H-4, 62-63 21.56 465.45 1.638 1.64E-03 3.208 3.21E-03 1.40E+07 1313A-3H-4, 66-67 21.60 466.13 1.527 1.53E-03 3.142 3.14E-03 1.37E+07 1313A-3H-4, 70-71 21.64 466.80 1.499 1.50E-03 3.051 3.05E-03 1.33E+07 1313A-3H-4, 74-75 21.68 467.48 1.498 1.50E-03 2.988 2.99E-03 1.30E+07 1313A-3H-4, 78-79 21.72 468.15 1.696 1.70E-03 3.272 3.27E-03 1.42E+07 1313A-3H-4, 82-83 21.76 468.83 1.687 1.69E-03 3.420 3.42E-03 1.49E+07 1313A-3H-4, 86-87 21.80 469.51 1.481 1.48E-03 3.299 3.30E-03 1.44E+07 1313A-3H-4, 90-91 21.84 470.18 1.953 1.95E-03 3.827 3.83E-03 1.66E+07 1313A-3H-4, 94-95 21.88 470.86 1.522 1.52E-03 3.084 3.08E-03 1.34E+07 1313A-3H-4, 98-99 21.92 471.54 1.540 1.54E-03 4.768 4.77E-03 2.07E+07 1313A-3H-4, 102-103 21.96 472.21 1.687 1.69E-03 4.291 4.29E-03 1.87E+07 1313A-3H-4, 106-107 22.00 472.89 1.971 1.97E-03 5.057 5.06E-03 2.20E+07 1313A-3H-4, 110-111 22.04 473.56 1.660 1.66E-03 4.052 4.05E-03 1.76E+07 1313A-3H-4, 114-115 22.08 474.24 1.627 1.63E-03 5.450 5.45E-03 2.37E+07 1313A-3H-4, 118-119 22.12 474.92 1.638 1.64E-03 4.798 4.80E-03 2.09E+07 1313A-3H-4, 122-123 22.16 475.59 1.515 1.52E-03 4.087 4.09E-03 1.78E+07 1313A-3H-4, 126-127 22.20 476.27 2.074 2.07E-03 5.095 5.10E-03 2.22E+07 1313A-3H-4, 130-131 22.24 476.94 1.222 1.22E-03 5.557 5.56E-03 2.42E+07 1313A-3H-4, 134-135 22.28 477.62 1.228 1.23E-03 5.116 5.12E-03 2.23E+07 1313A-3H-4, 138-139 22.32 478.30 1.216 1.22E-03 5.058 5.06E-03 2.20E+07

111 Micro- Micro- Hole-Core-Section, Depth Age Sample Sample = beads beads = Interval (cm) (cmcd) (ka) (mg) WTOT (g) (mg) Wmicro (g) Madded 1313A-3H-4, 142-143 22.36 478.97 1.312 1.31E-03 5.228 5.23E-03 2.27E+07 1313A-3H-5, 0-1 22.44 480.32 1.299 1.30E-03 5.428 5.43E-03 2.36E+07

112 APPENDIX D

CALCULATION OF TOTAL ABUNDANCE OF COCCOLITHS IN SEDIMENT FROM NUMBER OF COCCOLITHS AND MICROBEADS COUNTED

Coccolith/gram calculations highlighted in yellow represent averages of several counts; details are given below.

Nanno- Micro- Coccoliths/ Hole-Core-Section, Depth Age fossil bead Coccoliths/ gram Interval (cm) (cmcd) (ka) count count gram (x109 / g) 1313D-2H-4, 70-71 15.88 355.91 639 294 4.07E+10 40.70 1313D-2H-4, 74-75 15.92 356.51 633 279 3.91E+10 39.09 1313D-2H-4, 78-79 15.96 357.11 628 220 5.21E+10 52.13 1313D-2H-4, 82-83 16.00 357.70 579 257 4.08E+10 40.76 1313D-2H-4, 86-87 16.04 358.30 601 212 5.30E+10 53.00 1313D-2H-4, 90-91 16.08 358.89 589 212 5.37E+10 53.74 1313D-2H-4, 94-95 16.12 359.49 587 246 5.16E+10 51.59 1313D-2H-4, 96-97 16.14 359.79 588 167 6.63E+10 66.28 1313D-2H-4, 100-101 16.18 360.38 589 177 6.63E+10 66.32 1313D-2H-4, 104-105 16.22 360.98 579 166 7.79E+10 77.88 1313D-2H-4, 108-109 16.26 361.57 580 103 9.53E+10 95.33 1313D-2H-4, 112-113 16.30 362.17 589 126 8.41E+10 84.06 1313D-2H-4, 116-117 16.34 362.77 570 125 8.10E+10 80.97 1313D-2H-4, 120-121 16.38 363.36 575 134 8.57E+10 85.73 1313D-2H-4, 124-125 16.42 363.96 600 188 6.71E+10 67.08 1313D-2H-4, 128-129 16.46 364.55 595 175 6.49E+10 64.86 1313D-2H-4, 132-133 16.50 365.15 592 171 6.09E+10 60.87 1313D-2H-4, 136-137 16.54 365.74 590 124 8.48E+10 84.83 1313D-2H-4, 140-141 16.58 366.34 619 150 7.36E+10 73.60 1313D-2H-4, 144-145 16.62 366.94 606 129 8.33E+10 83.31 1313D-2H-4, 148-149 16.66 367.53 583 123 9.34E+10 93.43 1313D-2H-5, 2-3 16.70 368.13 648 104 9.44E+10 94.40 1313D-2H-5, 6-7 16.74 368.72 653 132 8.29E+10 82.93 1313D-2H-5, 10-11 16.78 369.32 578 109 9.20E+10 92.01 1313D-2H-5, 14-15 16.82 369.91 576 142 7.88E+10 78.82 1313D-2H-5, 18-19 16.86 370.51 598 109 9.94E+10 99.44 1313D-2H-5, 22-23 16.90 371.11 591 194 6.30E+10 63.02 1313D-2H-5, 26-27 16.94 371.70 595 194 5.74E+10 57.37 1313D-2H-5, 30-31 16.98 372.48 668 100 1.16E+11 116.19 1313D-2H-5, 34-35 17.02 373.43 603 130 8.71E+10 87.07 1313D-2H-5, 38-39 17.06 374.38 603 191 7.36E+10 73.61

113 Nanno- Micro- Coccoliths/ Hole-Core-Section, Depth Age fossil bead Coccoliths/ gram Interval (cm) (cmcd) (ka) count count gram (x109 / g) 1313D-2H-5, 42-43 17.10 375.33 568 116 9.12E+10 91.17 1313D-2H-5, 46-47 17.14 376.28 605 180 6.41E+10 64.07 1313D-2H-5, 50-51 17.18 377.23 590 154 7.91E+10 79.10 1313D-2H-5, 54-55 17.22 378.18 562 140 8.10E+10 80.97 1313D-2H-5, 58-59 17.26 379.13 595 141 8.23E+10 82.26 1313D-2H-5, 62-63 17.30 380.08 603 176 1.00E+11 100.48 1313D-2H-5, 66-67 17.34 381.03 598 160 9.55E+10 95.46 1313D-2H-5, 70-71 17.38 381.98 576 176 9.03E+10 90.31 1313D-2H-5, 74-75 17.42 382.93 614 178 8.65E+10 86.52 1313D-2H-5, 78-79 17.46 383.88 590 116 1.12E+11 112.40 1313D-2H-5, 82-83 17.50 384.83 598 171 8.86E+10 88.57 1313D-2H-5, 86-87 17.54 385.78 595 142 1.05E+11 104.76 1313D-2H-5, 90-91 17.58 386.73 569 145 9.15E+10 91.47 1313D-2H-5, 94-95 17.62 387.68 592 107 1.40E+11 140.23 1313D-2H-5, 98-99 17.66 388.63 596 202 6.51E+10 65.05 1313D-2H-5, 102-103 17.70 389.58 603 227 6.01E+10 60.09 1313D-2H-5, 106-107 17.74 390.53 584 108 1.36E+11 135.65 1313D-2H-5, 110-111 17.78 391.43 588 128 1.08E+11 107.82 1313D-2H-5, 114-115 17.82 392.29 602 114 1.15E+11 115.07 1313D-2H-5, 118-119 17.86 393.14 632 110 1.29E+11 128.64 1313D-2H-5, 122-123 17.90 394.00 621 109 1.32E+11 132.25 1313D-2H-5, 126-127 17.94 394.86 600 114 1.20E+11 119.55 1313D-2H-5, 130-131 17.98 395.71 576 118 1.20E+11 120.15 1313D-2H-5, 134-135 18.02 396.57 598 108 1.14E+11 114.36 1313D-2H-5, 138-139 18.06 397.43 561 100 1.33E+11 132.54 1313D-2H-5, 142-143 18.10 398.29 674 146 1.02E+11 101.96 1313D-2H-5, 146-147 18.14 399.14 747 104 1.46E+11 145.54 1313D-2H-6, 0-1 18.18 400.00 577 105 1.33E+11 132.83 1313D-2H-6, 4-5 18.22 400.86 697 105 1.22E+11 122.18 1313D-2H-6, 8-9 18.26 401.71 630 113 1.21E+11 121.36 1313D-2H-6, 12-13 18.30 402.57 648 103 1.33E+11 133.43 1313D-2H-6, 16-17 18.34 403.43 613 110 1.23E+11 122.55 1313D-2H-6, 20-21 18.38 404.29 657 102 1.42E+11 142.04 1313D-2H-6, 24-25 18.42 405.14 745 101 1.51E+11 150.67 1313D-2H-6, 28-29 18.46 406.00 643 104 1.19E+11 119.00 1313D-2H-6, 32-33 18.50 406.86 832 102 1.77E+11 176.51 1313D-2H-6, 36-37 18.54 407.71 608 141 1.22E+11 122.17 1313D-2H-6, 40-41 18.58 408.57 617 108 1.21E+11 120.74 1313D-2H-6, 44-45 18.62 409.43 617 103 1.30E+11 130.27 1313D-2H-6, 48-49 18.66 410.29 596 124 1.29E+11 128.91 1313D-2H-6, 52-53 18.70 411.14 589 100 1.27E+11 126.94 1313D-2H-6, 56-57 18.74 412.00 573 112 1.37E+11 136.70 1313D-2H-6, 60-61 18.78 412.86 617 119 1.14E+11 114.09 1313D-2H-6, 64-65 18.82 413.71 601 100 1.32E+11 132.04 1313D-2H-6, 68-69 18.86 414.57 567 122 9.94E+10 99.40 1313D-2H-6, 72-73 18.90 415.43 821 103 1.65E+11 165.25

114 Nanno- Micro- Coccoliths/ Hole-Core-Section, Depth Age fossil bead Coccoliths/ gram Interval (cm) (cmcd) (ka) count count gram (x109 / g) 1313D-2H-6, 74-75 18.92 415.86 836 100 1.77E+11 176.81 1313D-2H-6, 76-77 18.94 416.29 866 100 1.68E+11 168.20 1313A-3H-2, 102-103 18.96 416.71 602 101 1.05E+11 105.22 1313D-2H-6, 80-81 18.98 417.14 688 100 1.51E+11 151.06 1313A-3H-2, 106-107 19.00 417.57 686 107 1.09E+11 109.10 1313D-2H-6, 84-85 19.02 418.00 586 113 1.10E+11 110.22 1313A-3H-2, 110-111 19.04 418.43 648 107 1.16E+11 115.52 1313A-3H-2, 114-115 19.08 419.29 655 109 1.03E+11 102.74 1313A-3H-2, 118-119 19.12 420.14 801 101 1.30E+11 129.51 1313A-3H-2, 122-123 19.16 421.00 828 110 1.32E+11 131.67 1313A-3H-2, 126-127 19.20 421.86 601 111 1.12E+11 111.87 1313A-3H-2, 130-131 19.24 422.71 590 120 9.73E+10 97.27 1313A-3H-2, 134-135 19.28 423.57 536 105 8.04E+10 80.41 1313A-3H-2, 138-139 19.32 424.43 571 100 9.66E+10 96.61 1313A-3H-2, 142-143 19.36 425.29 573 135 7.60E+10 76.02 1313A-3H-2, 146-147 19.40 426.14 594 178 5.58E+10 55.82 1313A-3H-3, 0-1 19.44 427.00 567 270 3.71E+10 37.11 1313A-3H-3, 4-5 19.48 428.20 557 257 3.94E+10 39.43 1313A-3H-3, 8-9 19.52 429.40 548 202 4.71E+10 47.13 1313A-3H-3, 12-13 19.56 430.60 776 102 6.55E+10 65.46 1313A-3H-3, 16-17 19.60 431.80 590 162 3.55E+10 35.46 1313A-3H-3, 20-21 19.64 433.00 614 178 3.02E+10 30.22 1313A-3H-3, 24-25 19.68 433.68 589 106 4.71E+10 47.09 1313A-3H-3, 28-29 19.72 434.35 587 199 3.04E+10 30.40 1313A-3H-3, 32-33 19.76 435.03 580 121 3.88E+10 38.81 1313A-3H-3, 36-37 19.80 435.70 600 107 4.53E+10 45.33 1313A-3H-3, 40-41 19.84 436.38 600 145 3.91E+10 39.07 1313A-3H-3, 44-45 19.88 437.06 584 184 3.00E+10 29.97 1313A-3H-3, 48-49 19.92 437.73 564 164 3.14E+10 31.40 1313A-3H-3, 52-53 19.96 438.41 561 170 2.78E+10 27.84 1313A-3H-3, 56-57 20.00 439.08 591 175 2.87E+10 28.71 1313A-3H-3, 60-61 20.04 439.76 565 170 2.91E+10 29.09 1313A-3H-3, 64-65 20.08 440.44 561 141 3.31E+10 33.08 1313A-3H-3, 68-69 20.12 441.11 565 140 3.95E+10 39.54 1313A-3H-3, 72-73 20.16 441.79 558 210 2.63E+10 26.25 1313A-3H-3, 76-77 20.20 442.46 560 143 3.64E+10 36.41 1313A-3H-3, 78-79 20.22 442.80 587 109 4.62E+10 46.22 1313A-3H-3, 82-83 20.26 443.48 616 170 3.18E+10 31.77 1313A-3H-3, 84-85 20.28 443.82 570 113 4.27E+10 42.71 1313A-3H-3, 86-87 20.30 444.15 615 160 4.87E+10 48.75 1313A-3H-3, 90-91 20.34 444.83 554 159 3.34E+10 33.38 1313A-3H-3, 94-95 20.38 445.51 581 151 3.54E+10 35.44 1313A-3H-3, 98-99 20.42 446.18 589 136 3.60E+10 35.98 1313A-3H-3, 102-103 20.46 446.86 590 105 4.57E+10 45.67 1313A-3H-3, 106-107 20.50 447.54 644 103 5.61E+10 56.14 1313A-3H-3, 110-111 20.54 448.21 605 120 4.60E+10 45.95

115 Nanno- Micro- Coccoliths/ Hole-Core-Section, Depth Age fossil bead Coccoliths/ gram Interval (cm) (cmcd) (ka) count count gram (x109 / g) 1313A-3H-3, 114-115 20.58 448.89 597 112 4.69E+10 46.90 1313A-3H-3, 118-119 20.62 449.56 569 148 3.58E+10 35.75 1313A-3H-3, 122-123 20.66 450.24 844 104 6.95E+10 69.53 1313A-3H-3, 124-125 20.68 450.58 607 117 4.82E+10 48.18 1313A-3H-3, 128-129 20.72 451.25 569 171 3.87E+10 38.65 1313A-3H-3, 130-131 20.74 451.59 586 132 4.39E+10 43.93 1313A-3H-3, 132-133 20.76 451.93 669 101 5.88E+10 58.84 1313A-3H-3, 134-135 20.78 452.27 782 102 7.01E+10 70.15 1313A-3H-3, 136-137 20.80 452.61 727 100 6.20E+10 61.96 1313A-3H-3, 138-139 20.82 452.94 707 103 6.04E+10 60.43 1313A-3H-3, 140-141 20.84 453.28 681 102 6.66E+10 66.60 1313A-3H-3, 142-143 20.86 453.62 660 100 6.09E+10 60.95 1313A-3H-3, 144-145 20.88 453.96 746 120 6.39E+10 63.94 1313A-3H-3, 146-147 20.90 454.30 804 103 6.55E+10 65.51 1313A-3H-3, 148-149 20.92 454.63 638 104 5.56E+10 55.56 1313A-3H-4, 0-1 20.94 454.97 644 100 5.62E+10 56.21 1313A-3H-4, 2-3 20.96 455.31 743 103 6.57E+10 65.68 1313A-3H-4, 4-5 20.98 455.65 734 101 7.60E+10 75.98 1313A-3H-4, 6-7 21.00 455.99 606 103 4.74E+10 47.38 1313A-3H-4, 10-11 21.04 456.66 566 101 5.60E+10 52.16 1313A-3H-4, 14-15 21.08 457.34 703 103 7.36E+10 62.71 1313A-3H-4, 18-19 21.12 458.01 759 106 6.75E+10 59.63 1313A-3H-4, 22-23 21.16 458.69 694 101 6.32E+10 63.30 1313A-3H-4, 26-27 21.20 459.37 564 210 5.43E+10 54.29 1313A-3H-4, 30-31 21.24 460.04 562 114 4.27E+10 44.29 1313A-3H-4, 34-35 21.28 460.72 889 101 5.32E+10 49.45 1313A-3H-4, 38-39 21.32 461.39 756 102 7.46E+10 63.38 1313A-3H-4, 42-43 21.36 462.07 559 129 4.43E+10 42.18 1313A-3H-4, 46-47 21.40 462.75 678 101 6.14E+10 67.63 1313A-3H-4, 50-51 21.44 463.42 501 130 3.41E+10 34.09 1313A-3H-4, 54-55 21.48 464.10 784 101 6.93E+10 69.26 1313A-3H-4, 58-59 21.52 464.77 923 100 8.34E+10 83.37 1313A-3H-4, 62-63 21.56 465.45 569 103 4.71E+10 47.06 1313A-3H-4, 66-67 21.60 466.13 738 103 6.41E+10 64.13 1313A-3H-4, 70-71 21.64 466.80 664 100 5.88E+10 58.79 1313A-3H-4, 74-75 21.68 467.48 674 101 5.79E+10 57.90 1313A-3H-4, 78-79 21.72 468.15 872 103 7.10E+10 71.05 1313A-3H-4, 82-83 21.76 468.83 892 101 7.79E+10 77.88 1313A-3H-4, 86-87 21.80 469.51 814 104 7.58E+10 75.84 1313A-3H-4, 90-91 21.84 470.18 733 112 5.58E+10 55.79 1313A-3H-4, 94-95 21.88 470.86 661 104 5.60E+10 56.02 1313A-3H-4, 98-99 21.92 471.54 625 102 8.25E+10 82.52 1313A-3H-4, 102-103 21.96 472.21 749 104 7.97E+10 79.69 1313A-3H-4, 106-107 22.00 472.89 594 108 6.14E+10 61.38 1313A-3H-4, 110-111 22.04 473.56 586 109 5.71E+10 57.08 1313A-3H-4, 114-115 22.08 474.24 731 102 1.04E+11 104.43

116 Nanno- Micro- Coccoliths/ Hole-Core-Section, Depth Age fossil bead Coccoliths/ gram Interval (cm) (cmcd) (ka) count count gram (x109 / g) 1313A-3H-4, 118-119 22.12 474.92 638 101 8.05E+10 80.49 1313A-3H-4, 122-123 22.16 475.59 890 105 9.95E+10 99.47 1313A-3H-4, 126-127 22.20 476.27 862 103 8.94E+10 89.43 1313A-3H-4, 130-131 22.24 476.94 574 148 7.67E+10 76.72 1313A-3H-4, 134-135 22.28 477.62 582 112 9.42E+10 94.17 1313A-3H-4, 138-139 22.32 478.30 773 102 1.37E+11 137.12 1313A-3H-4, 142-143 22.36 478.97 718 102 1.22E+11 122.02 1313A-3H-5, 0-1 22.44 480.32 615 106 1.05E+11 105.46

Details for average coccoliths/gram calculations:

Coccoliths/gram (x109 / g) Average Coccoliths/ Hole-Core-Section, Depth gram Interval (cm) (cmcd) Age (ka) Count 1 Count 2 Count 3 (x109 / g) 1313A-3H-4, 10-11 21.04 456.66 53.48 46.97 56.02 52.16 1313A-3H-4, 14-15 21.08 457.34 56.61 57.92 73.62 62.71 1313A-3H-4, 18-19 21.12 458.01 51.75 59.59 67.55 59.63 1313A-3H-4, 22-23 21.16 458.69 58.23 68.44 63.24 63.30 1313A-3H-4, 30-31 21.24 460.04 45.88 42.70 44.29 1313A-3H-4, 34-35 21.28 460.72 45.67 53.24 49.45 1313A-3H-4, 38-39 21.32 461.39 52.17 74.59 63.38 1313A-3H-4, 42-43 21.36 462.07 40.08 44.28 42.18 1313A-3H-4, 46-47 21.40 462.75 61.45 70.03 71.40 67.63 1313A-3H-4, 50-51 21.44 463.42 34.09 43.02 25.17 34.09

117 APPENDIX E

NANNOFOSSIL ACCUMULATION RATE (NAR) CALCULATIONS

Nannofossil Accumulation Dry Sample Dry Linear Sed. Coccoliths Rate Depth Age Weight Size Bulk Sed. Accum. /gram (nannofossils/ (cmcd) (ka) (g) (cc) Density Rate Rate (x109 / g) cm2/ky) 15.88 355.91 7.3512 10.0 0.7351 40.70 15.92 356.51 7.9439 10.0 0.7944 39.09 15.96 357.11 8.0251 10.0 0.8025 52.13 16.00 357.70 9.1288 10.0 0.9129 40.76 16.04 358.30 9.6331 10.0 0.9633 6.714 6.4679 53.00 342.793 16.08 358.89 8.8815 10.0 0.8882 6.714 5.9633 53.74 320.474 16.12 359.49 10.5735 10.0 1.0574 6.714 7.0994 51.59 366.290 16.14 359.79 9.8983 10.0 0.9898 6.714 6.6460 66.28 440.503 16.18 360.38 10.3706 10.0 1.0371 6.714 6.9631 66.32 461.804 16.22 360.98 8.2405 10.0 0.8241 6.714 5.5329 77.88 430.876 16.26 361.57 7.8279 10.0 0.7828 6.714 5.2559 95.33 501.022 16.30 362.17 11.3058 10.0 1.1306 6.714 7.5910 84.06 638.077 16.34 362.77 9.8881 10.0 0.9888 6.714 6.6392 80.97 537.592 16.38 363.36 9.585 10.0 0.9585 6.714 6.4356 85.73 551.710 16.42 363.96 11.1423 10.0 1.1142 6.714 7.4813 67.08 501.822 16.46 364.55 11.4038 10.0 1.1404 6.714 7.6568 64.86 496.622 16.50 365.15 11.1556 10.0 1.1156 6.714 7.4902 60.87 455.942 16.54 365.74 9.7554 10.0 0.9755 6.714 6.5501 84.83 555.609 16.58 366.34 12.2992 10.0 1.2299 6.714 8.2580 73.60 607.784 16.62 366.94 10.9721 10.0 1.0972 6.714 7.3670 83.31 613.763 16.66 367.53 8.0341 10.0 0.8034 6.714 5.3943 93.43 503.979 16.70 368.13 9.8222 10.0 0.9822 6.714 6.5949 94.40 622.549 16.74 368.72 10.1448 10.0 1.0145 6.714 6.8115 82.93 564.845 16.78 369.32 9.2367 10.0 0.9237 6.714 6.2018 92.01 570.625 16.82 369.91 7.3209 10.0 0.7321 6.714 4.9155 78.82 387.415 16.86 370.51 8.5367 10.0 0.8537 6.714 5.7318 99.44 569.976 16.90 371.11 9.6279 10.0 0.9628 6.714 6.4644 63.02 407.402 16.94 371.70 8.6478 10.0 0.8648 6.714 5.8064 57.37 333.084 16.98 372.48 8.0146 10.0 0.8015 4.211 3.3746 116.19 392.091 17.02 373.43 7.644 10.0 0.7644 4.211 3.2185 87.07 280.244 17.06 374.38 7.5413 10.0 0.7541 4.211 3.1753 73.61 233.742 17.10 375.33 6.2679 10.0 0.6268 4.211 2.6391 91.17 240.602 17.14 376.28 9.8927 10.0 0.9893 4.211 4.1653 64.07 266.883 17.18 377.23 9.965 10.0 0.9965 4.211 4.1958 79.10 331.876 17.22 378.18 7.473 10.0 0.7473 4.211 3.1465 80.97 254.788

118 Nannofossil Accumulation Dry Sample Dry Linear Sed. Coccoliths Rate Depth Age Weight Size Bulk Sed. Accum. /gram (nannofossils/ (cmcd) (ka) (g) (cc) Density Rate Rate (x109 / g) cm2/ky) 17.26 379.13 8.0801 10.0 0.8080 4.211 3.4021 82.26 279.853 17.30 380.08 8.003 10.0 0.8003 4.211 3.3697 100.48 338.600 17.34 381.03 6.2876 10.0 0.6288 4.211 2.6474 95.46 252.731 17.38 381.98 8.3078 10.0 0.8308 4.211 3.4980 90.31 315.910 17.42 382.93 8.5166 10.0 0.8517 4.211 3.5859 86.52 310.254 17.46 383.88 12.3966 10.0 1.2397 4.211 5.2196 112.40 586.674 17.50 384.83 12.1854 10.0 1.2185 4.211 5.1307 88.57 454.445 17.54 385.78 9.2921 10.0 0.9292 4.211 3.9125 104.76 409.862 17.58 386.73 11.2996 10.0 1.1300 4.211 4.7577 91.47 435.189 17.62 387.68 9.9197 10.0 0.9920 4.211 4.1767 140.23 585.680 17.66 388.63 7.3278 10.0 0.7328 4.211 3.0854 65.05 200.717 17.70 389.58 8.5052 10.0 0.8505 4.211 3.5811 60.09 215.201 17.74 390.53 7.731 10.0 0.7731 4.211 3.2552 135.65 441.554 17.78 391.43 4.7097 10.0 0.4710 4.667 2.1979 107.82 236.964 17.82 392.29 5.3839 10.0 0.5384 4.667 2.5125 115.07 289.104 17.86 393.14 9.1789 10.0 0.9179 4.667 4.2835 128.64 551.031 17.90 394.00 10.5869 10.0 1.0587 4.667 4.9406 132.25 653.365 17.94 394.86 11.4909 10.0 1.1491 4.667 5.3624 119.55 641.070 17.98 395.71 9.1273 10.0 0.9127 4.667 4.2594 120.15 511.787 18.02 396.57 9.4823 10.0 0.9482 4.667 4.4251 114.36 506.066 18.06 397.43 9.8124 10.0 0.9812 4.667 4.5791 132.54 606.902 18.10 398.29 9.1107 10.0 0.9111 4.667 4.2517 101.96 433.510 18.14 399.14 11.4434 10.0 1.1443 4.667 5.3403 145.54 777.208 18.18 400.00 9.7723 10.0 0.9772 4.667 4.5604 132.83 605.767 18.22 400.86 7.2122 10.0 0.7212 4.667 3.3657 122.18 411.218 18.26 401.71 10.0113 10.0 1.0011 4.667 4.6719 121.36 566.993 18.30 402.57 8.7654 10.0 0.8765 4.667 4.0905 133.43 545.786 18.34 403.43 6.224 10.0 0.6224 4.667 2.9045 122.55 355.939 18.38 404.29 7.5795 10.0 0.7580 4.667 3.5371 142.04 502.412 18.42 405.14 7.847 10.0 0.7847 4.667 3.6619 150.67 551.746 18.46 406.00 11.1409 10.0 1.1141 4.667 5.1991 119.00 618.706 18.50 406.86 10.2 10.0 1.0200 4.667 4.7600 176.51 840.207 18.54 407.71 11.5753 10.0 1.1575 4.667 5.4018 122.17 659.928 18.58 408.57 8.5419 10.0 0.8542 4.667 3.9862 120.74 481.287 18.62 409.43 9.9216 10.0 0.9922 4.667 4.6301 130.27 603.152 18.66 410.29 10.2862 10.0 1.0286 4.667 4.8002 128.91 618.793 18.70 411.14 10.6243 10.0 1.0624 4.667 4.9580 126.94 629.393 18.74 412.00 11.963 10.0 1.1963 4.667 5.5827 136.70 763.182 18.78 412.86 12.1501 10.0 1.2150 4.667 5.6700 114.09 646.908 18.82 413.71 8.8636 10.0 0.8864 4.667 4.1363 132.04 546.169 18.86 414.57 11.125 10.0 1.1125 4.667 5.1917 99.40 516.077 18.90 415.43 6.9378 10.0 0.6938 4.667 3.2376 165.25 535.023 18.92 415.86 10.3903 10.0 1.0390 4.667 4.8488 176.81 857.323

119 Nannofossil Accumulation Dry Sample Dry Linear Sed. Coccoliths Rate Depth Age Weight Size Bulk Sed. Accum. /gram (nannofossils/ (cmcd) (ka) (g) (cc) Density Rate Rate (x109 / g) cm2/ky) 18.94 416.29 9.3233 10.0 0.9323 4.667 4.3509 168.20 731.800 18.96 416.71 12.924 10.0 1.2924 4.667 6.0312 105.22 634.588 18.98 417.14 14.5488 10.0 1.4549 4.667 6.7894 151.06 1025.585 19.00 417.57 10.0546 10.0 1.0055 4.667 4.6921 109.10 511.918 19.02 418.00 14.5029 10.0 1.4503 4.667 6.7680 110.22 746.002 19.04 418.43 13.0964 10.0 1.3096 4.667 6.1117 115.52 705.996 19.08 419.29 12.5598 10.0 1.2560 4.667 5.8612 102.74 602.183 19.12 420.14 13.5309 10.0 1.3531 4.667 6.3144 129.51 817.765 19.16 421.00 13.4139 10.0 1.3414 4.667 6.2598 131.67 824.233 19.20 421.86 13.3625 10.0 1.3363 4.667 6.2358 111.87 697.586 19.24 422.71 12.5358 10.0 1.2536 4.667 5.8500 97.27 569.041 19.28 423.57 12.7877 10.0 1.2788 4.667 5.9676 80.41 479.864 19.32 424.43 12.4822 10.0 1.2482 4.667 5.8250 96.61 562.737 19.36 425.29 10.9058 10.0 1.0906 4.667 5.0894 76.02 386.871 19.40 426.14 10.2394 10.0 1.0239 4.667 4.7784 55.82 266.751 19.44 427.00 11.7975 10.0 1.1798 3.333 3.9325 37.11 145.932 19.48 428.20 14.6885 10.0 1.4689 3.333 4.8962 39.43 193.059 19.52 429.40 13.08 10.0 1.3080 3.333 4.3600 47.13 205.507 19.56 430.60 14.0884 10.0 1.4088 3.333 4.6961 65.46 307.420 19.60 431.80 12.5805 10.0 1.2581 3.333 4.1935 35.46 148.713 19.64 433.00 8.7164 10.0 0.8716 5.917 5.1572 30.22 155.837 19.68 433.68 11.8822 10.0 1.1882 5.917 7.0303 47.09 331.067 19.72 434.35 7.819 10.0 0.7819 5.917 4.6262 30.40 140.618 19.76 435.03 11.9709 10.0 1.1971 5.917 7.0828 38.81 274.860 19.80 435.70 8.5039 10.0 0.8504 5.917 5.0315 45.33 228.090 19.84 436.38 8.5334 10.0 0.8533 5.917 5.0489 39.07 197.281 19.88 437.06 8.8348 10.0 0.8835 5.917 5.2273 29.97 156.686 19.92 437.73 7.7343 10.0 0.7734 5.917 4.5761 31.40 143.693 19.96 438.41 9.4008 10.0 0.9401 5.917 5.5621 27.84 154.843 20.00 439.08 10.1838 10.0 1.0184 5.917 6.0254 28.71 172.983 20.04 439.76 9.9878 10.0 0.9988 5.917 5.9094 29.09 171.910 20.08 440.44 11.7104 10.0 1.1710 5.917 6.9287 33.08 229.177 20.12 441.11 7.8479 10.0 0.7848 5.917 4.6433 39.54 183.617 20.16 441.79 9.1111 10.0 0.9111 5.917 5.3907 26.25 141.519 20.20 442.46 10.6732 10.0 1.0673 5.917 6.3150 36.41 229.951 20.22 442.80 9.8027 10.0 0.9803 5.917 5.7999 46.22 268.048 20.26 443.48 9.503 10.0 0.9503 5.917 5.6226 31.77 178.629 20.28 443.82 10.0639 10.0 1.0064 5.917 5.9545 42.71 254.307 20.30 444.15 9.4563 10.0 0.9456 5.917 5.5950 48.75 272.748 20.34 444.83 9.2636 10.0 0.9264 5.917 5.4810 33.38 182.932 20.38 445.51 9.8493 10.0 0.9849 5.917 5.8275 35.44 206.504 20.42 446.18 10.0946 10.0 1.0095 5.917 5.9726 35.98 214.887 20.46 446.86 8.8272 10.0 0.8827 5.917 5.2228 45.67 238.532

120 Nannofossil Accumulation Dry Sample Dry Linear Sed. Coccoliths Rate Depth Age Weight Size Bulk Sed. Accum. /gram (nannofossils/ (cmcd) (ka) (g) (cc) Density Rate Rate (x109 / g) cm2/ky) 20.50 447.54 3.2795 10.0 0.3280 5.917 1.9404 56.14 108.941 20.54 448.21 9.9733 10.0 0.9973 5.917 5.9009 45.95 271.158 20.58 448.89 9.9616 10.0 0.9962 5.917 5.8939 46.90 276.452 20.62 449.56 7.7402 10.0 0.7740 5.917 4.5796 35.75 163.733 20.66 450.24 9.1918 10.0 0.9192 5.917 5.4385 69.53 378.149 20.68 450.58 10.7302 10.0 1.0730 5.917 6.3487 48.18 305.906 20.72 451.25 11.6482 10.0 1.1648 5.917 6.8919 38.65 266.402 20.74 451.59 10.7989 10.0 1.0799 5.917 6.3893 43.93 280.670 20.76 451.93 11.4338 10.0 1.1434 5.917 6.7650 58.84 398.037 20.78 452.27 10.1354 10.0 1.0135 5.917 5.9968 70.15 420.671 20.80 452.61 11.5545 10.0 1.1555 5.917 6.8364 61.96 423.587 20.82 452.94 12.8582 10.0 1.2858 5.917 7.6078 60.43 459.720 20.84 453.28 10.0848 10.0 1.0085 5.917 5.9668 66.60 397.367 20.86 453.62 10.6409 10.0 1.0641 5.917 6.2959 60.95 383.710 20.88 453.96 11.5271 10.0 1.1527 5.917 6.8202 63.94 436.068 20.90 454.30 12.2323 10.0 1.2232 5.917 7.2374 65.51 474.094 20.92 454.63 8.9911 10.0 0.8991 5.917 5.3197 55.56 295.570 20.94 454.97 7.8761 10.0 0.7876 5.917 4.6600 56.21 261.945 20.96 455.31 11.3532 10.0 1.1353 5.917 6.7173 65.68 441.197 20.98 455.65 10.554 10.0 1.0554 5.917 6.2445 75.98 474.439 21.00 455.99 10.1908 10.0 1.0191 5.917 6.0296 47.38 285.662 21.04 456.66 9.9136 10.0 0.9914 5.917 5.8655 52.16 305.928 21.08 457.34 10.0166 10.0 1.0017 5.917 5.9265 62.71 371.679 21.12 458.01 7.7461 10.0 0.7746 5.917 4.5831 59.63 273.284 21.16 458.69 8.0631 10.0 0.8063 5.917 4.7707 63.30 301.998 21.20 459.37 16.8954 10.0 1.6895 5.917 9.9964 54.29 542.742 21.24 460.04 9.8062 10.0 0.9806 5.917 5.8020 44.29 256.975 21.28 460.72 8.4531 10.0 0.8453 5.917 5.0014 49.45 247.337 21.32 461.39 9.9848 10.0 0.9985 5.917 5.9077 63.38 374.432 21.36 462.07 9.4823 10.0 0.9482 5.917 5.6104 42.18 236.654 21.40 462.75 9.1615 10.0 0.9162 5.917 5.4206 67.63 366.569 21.44 463.42 10.6383 10.0 1.0638 5.917 6.2943 34.09 214.601 21.48 464.10 11.7485 10.0 1.1749 5.917 6.9512 69.26 481.461 21.52 464.77 10.6052 10.0 1.0605 5.917 6.2747 83.37 523.102 21.56 465.45 9.6561 10.0 0.9656 5.917 5.7132 47.06 268.883 21.60 466.13 9.7819 10.0 0.9782 5.917 5.7876 64.13 371.173 21.64 466.80 9.6217 10.0 0.9622 5.917 5.6928 58.79 334.678 21.68 467.48 10.2318 10.0 1.0232 5.917 6.0538 57.90 350.530 21.72 468.15 8.3475 10.0 0.8348 5.917 4.9389 71.05 350.905 21.76 468.83 10.1938 10.0 1.0194 5.917 6.0313 77.88 469.739 21.80 469.51 8.3901 10.0 0.8390 5.917 4.9641 75.84 376.489 21.84 470.18 9.0478 10.0 0.9048 5.917 5.3533 55.79 298.642 21.88 470.86 9.5238 10.0 0.9524 5.917 5.6349 56.02 315.678

121 Nannofossil Accumulation Dry Sample Dry Linear Sed. Coccoliths Rate Depth Age Weight Size Bulk Sed. Accum. /gram (nannofossils/ (cmcd) (ka) (g) (cc) Density Rate Rate (x109 / g) cm2/ky) 21.92 471.54 9.0379 10.0 0.9038 5.917 5.3474 82.52 441.295 21.96 472.21 8.2328 10.0 0.8233 5.917 4.8711 79.69 388.156 22.00 472.89 8.616 10.0 0.8616 5.917 5.0978 61.38 312.926 22.04 473.56 9.6643 10.0 0.9664 5.917 5.7180 57.08 326.414 22.08 474.24 8.502 10.0 0.8502 5.917 5.0304 104.43 525.308 22.12 474.92 9.8144 10.0 0.9814 5.917 5.8069 80.49 467.386 22.16 475.59 6.537 10.0 0.6537 5.917 3.8677 99.47 384.714 22.20 476.27 10.7029 10.0 1.0703 5.917 6.3325 89.43 566.335 22.24 476.94 10.2426 10.0 1.0243 5.917 6.0602 76.72 464.939 22.28 477.62 9.3918 10.0 0.9392 5.917 5.5568 94.17 523.302 22.32 478.30 12.7144 10.0 1.2714 5.917 7.5227 137.12 1031.542 22.36 478.97 9.112 10.0 0.9112 5.917 5.3913 122.02 657.819 22.44 480.32 9.3194 10.0 0.9319 5.917 5.5140 105.46 581.506

122 APPENDIX F

RAW CALCAREOUS NANNOFOSSIL COUNT DATA

small

spp. small

spp.

spp.

thus pelagicus

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Calcidiscus leptoporus Gephyrocapsa Florisphaera profunda Gephyrocapsa oceanica Coccoli Coccolithus braarudii Ceratolithus Calcidiscus leptoporus Calcidiscus quadriperforatus Calciosolenia 1313D-2H-4, 70-71 15.88 355.91 5 4 5 49 198 1313D-2H-4, 74-75 15.92 356.51 3 1 1 4 3 45 230 1313D-2H-4, 78-79 15.96 357.11 2 3 2 4 60 184 1313D-2H-4, 82-83 16.00 357.70 1 2 1 1 13 49 195 1313D-2H-4, 86-87 16.04 358.30 2 3 1 1 2 2 7 77 176 1313D-2H-4, 90-91 16.08 358.89 2 1 7 62 187 1313D-2H-4, 94-95 16.12 359.49 6 3 10 76 153 1313D-2H-4, 96-97 16.14 359.79 1 7 1 6 60 169 1313D-2H-4, 100-101 16.18 360.38 1 3 2 18 75 163 1313D-2H-4, 104-105 16.22 360.98 1 5 1 5 62 183 1313D-2H-4, 108-109 16.26 361.57 5 9 69 161 1313D-2H-4, 112-113 16.30 362.17 10 1 1 7 71 137 1313D-2H-4, 116-117 16.34 362.77 1 7 8 65 153 1313D-2H-4, 120-121 16.38 363.36 1 4 1 3 7 70 122 1313D-2H-4, 124-125 16.42 363.96 1 5 1 3 9 66 133 1313D-2H-4, 128-129 16.46 364.55 1 4 1 1 3 6 67 137 1313D-2H-4, 132-133 16.50 365.15 5 1 8 60 150 1313D-2H-4, 136-137 16.54 365.74 2 8 1 10 79 149 1313D-2H-4, 140-141 16.58 366.34 1 7 1 1 12 85 120 1313D-2H-4, 144-145 16.62 366.94 8 6 60 134 1313D-2H-4, 148-149 16.66 367.53 5 4 10 80 125 1313D-2H-5, 2-3 16.70 368.13 1 6 1 11 82 119 1313D-2H-5, 6-7 16.74 368.72 5 4 1 1 12 83 110 1313D-2H-5, 10-11 16.78 369.32 4 7 18 53 113 1313D-2H-5, 14-15 16.82 369.91 3 8 12 39 125 1313D-2H-5, 18-19 16.86 370.51 2 7 1 9 63 123 1313D-2H-5, 22-23 16.90 371.11 4 15 51 133 1313D-2H-5, 26-27 16.94 371.70 1 8 1 12 48 135 1313D-2H-5, 30-31 16.98 372.48 1 7 13 59 138

123

small

spp. small

spp.

spp.

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Calcidiscus leptoporus Gephyrocapsa Coccolithus braarudii Coccolithus pelagicus Florisphaera profunda Gephyrocapsa oceanica Ceratolithus Calciosolenia Calcidiscus leptoporus Calcidiscus quadriperforatus 1313D-2H-5, 34-35 17.02 373.43 2 7 1 12 85 137 1313D-2H-5, 38-39 17.06 374.38 2 9 1 6 60 130 1313D-2H-5, 42-44 17.10 375.33 1 7 1 8 79 110 1313D-2H-5, 46-47 17.14 376.28 1 4 12 63 120 1313D-2H-5, 50-51 17.18 377.23 3 11 17 74 109 1313D-2H-5, 54-55 17.22 378.18 1 6 1 9 55 119 1313D-2H-5, 58-59 17.26 379.13 4 2 1 12 43 123 1313D-2H-5, 62-63 17.30 380.08 4 7 2 2 2 10 90 96 1313D-2H-5, 66-67 17.34 381.03 6 9 2 9 64 99 1313D-2H-5, 70-71 17.38 381.98 8 4 1 6 55 87 1313D-2H-5, 74-75 17.42 382.93 9 9 1 12 70 108 1313D-2H-5, 78-79 17.46 383.88 2 7 2 16 80 94 1313D-2H-5, 82-83 17.50 384.83 2 8 1 2 10 68 83 1313D-2H-5, 86-87 17.54 385.78 3 9 11 39 112 1313D-2H-5, 90-91 17.58 386.73 6 6 1 1 11 65 98 1313D-2H-5, 94-95 17.62 387.68 8 8 3 3 11 89 119 1313D-2H-5, 98-99 17.66 388.63 1 7 1 14 84 156 1313D-2H-5, 102-103 17.70 389.58 2 6 1 15 96 158 1313D-2H-5, 106-107 17.74 390.53 1 3 1 1 1 1 13 81 137 1313D-2H-5, 110-111 17.78 391.43 1 2 15 88 141 1313D-2H-5, 114-115 17.82 392.29 4 1 1 18 124 148 1313D-2H-5, 118-119 17.86 393.14 5 1 1 1 13 117 127 1313D-2H-5, 122-123 17.90 394.00 1 6 13 83 123 1313D-2H-5, 126-127 17.94 394.86 6 1 20 88 110 1313D-2H-5, 130-131 17.98 395.71 2 5 16 103 123 1313D-2H-5, 134-135 18.02 396.57 9 23 81 128 1313D-2H-5, 138-139 18.06 397.43 1 3 12 77 109 1313D-2H-5, 142-143 18.10 398.29 1 7 2 1 12 72 123 1313D-2H-5, 146-147 18.14 399.14 1 4 1 26 111 150 1313D-2H-6, 0-1 18.18 400.00 1 1 16 95 109 1313D-2H-6, 4-5 18.22 400.86 1 6 1 22 99 129 1313D-2H-6, 8-9 18.26 401.71 5 22 97 103 1313D-2H-6, 12-13 18.30 402.57 1 7 1 1 20 105 96 1313D-2H-6, 16-17 18.34 403.43 2 1 14 94 108 1313D-2H-6, 20-21 18.38 404.29 5 1 14 85 123 1313D-2H-6, 24-25 18.42 405.14 5 18 121 128 1313D-2H-6, 28-29 18.46 406.00 1 4 1 24 82 97 1313D-2H-6, 32-33 18.50 406.86 4 5 1 30 112 153

124

small

spp. small

spp.

spp.

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Calcidiscus leptoporus Gephyrocapsa Coccolithus braarudii Coccolithus pelagicus Florisphaera profunda Gephyrocapsa oceanica Ceratolithus Calciosolenia Calcidiscus leptoporus Calcidiscus quadriperforatus 1313D-2H-6, 36-37 18.54 407.71 3 2 1 9 76 110 1313D-2H-6, 40-41 18.58 408.57 1 1 2 1 17 77 101 1313D-2H-6, 44-45 18.62 409.43 6 8 84 91 1313D-2H-6, 48-49 18.66 410.29 9 57 108 1313D-2H-6, 52-53 18.70 411.14 1 1 1 12 78 101 1313D-2H-6, 56-57 18.74 412.00 3 1 9 91 91 1313D-2H-6, 60-61 18.78 412.86 2 7 13 91 92 1313D-2H-6, 64-65 18.82 413.71 5 3 10 96 85 1313D-2H-6, 68-69 18.86 414.57 4 8 8 79 76 1313D-2H-6, 72-73 18.90 415.43 12 10 2 13 191 125 1313D-2H-6, 74-75 18.92 415.86 6 13 1 12 153 127 1313D-2H-6, 76-77 18.94 416.29 8 13 7 142 142 1313A-3H-2, 102-103 18.96 416.71 1 8 1 1 5 103 75 1313D-2H-6, 80-81 18.98 417.14 7 10 2 6 118 113 1313A-3H-2, 106-107 19.00 417.57 7 6 2 4 112 104 1313D-2H-6, 84-85 19.02 418.00 7 6 4 98 81 1313A-3H-2, 110-111 19.04 418.43 8 3 1 9 149 87 1313A-3H-2, 114-115 19.08 419.29 8 8 1 1 3 124 84 1313A-3H-2, 118-119 19.12 420.14 5 7 1 6 186 124 1313A-3H-2, 122-123 19.16 421.00 4 5 1 1 5 173 123 1313A-3H-2, 126-127 19.20 421.86 4 3 6 148 88 1313A-3H-2, 130-131 19.24 422.71 4 8 1 1 2 142 81 1313A-3H-2, 134-135 19.28 423.57 7 6 2 4 150 77 1313A-3H-2, 138-139 19.32 424.43 7 4 2 1 5 169 92 1313A-3H-2, 142-143 19.36 425.29 9 2 3 143 104 1313A-3H-2, 146-147 19.40 426.14 2 1 1 1 5 102 148 1313A-3H-3, 0-1 19.44 427.00 2 8 5 89 128 1313A-3H-3, 4-5 19.48 428.20 3 5 1 1 2 75 139 1313A-3H-3, 8-9 19.52 429.40 4 8 1 6 71 156 1313A-3H-3, 12-13 19.56 430.60 1 5 2 9 124 181 1313A-3H-3, 16-17 19.60 431.80 1 8 3 1 21 34 155 1313A-3H-3, 20-21 19.64 433.00 16 1 18 48 140 1313A-3H-3, 24-25 19.68 433.68 1 10 2 6 38 141 1313A-3H-3, 28-29 19.72 434.35 2 2 21 34 151 1313A-3H-3, 32-33 19.76 435.03 6 2 10 36 152 1313A-3H-3, 36-37 19.80 435.70 1 5 2 11 43 138 1313A-3H-3, 40-41 19.84 436.38 1 6 3 10 40 130 1313A-3H-3, 44-45 19.88 437.06 10 2 1 15 41 110

125

small

spp. small

spp. ptoporus

spp.

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Coccolithus braarudii Coccolithus pelagicus Florisphaera profunda Gephyrocapsa Gephyrocapsa oceanica Ceratolithus Calcidiscus leptoporus Calcidiscus quadriperforatus Calciosolenia Calcidiscus le Calcidiscus 1313A-3H-3, 48-49 19.92 437.73 2 8 2 1 9 54 139 1313A-3H-3, 52-53 19.96 438.41 2 3 3 9 56 122 1313A-3H-3, 56-57 20.00 439.08 1 6 3 9 55 128 1313A-3H-3, 60-61 20.04 439.76 1 9 1 1 14 43 130 1313A-3H-3, 64-65 20.08 440.44 2 6 1 9 38 115 1313A-3H-3, 68-69 20.12 441.11 9 1 2 15 61 120 1313A-3H-3, 72-73 20.16 441.79 1 6 1 3 60 116 1313A-3H-3, 76-77 20.20 442.46 1 4 2 1 1 6 46 114 1313A-3H-3, 78-79 20.22 442.80 1 6 1 1 13 28 144 1313A-3H-3, 82-83 20.26 443.48 2 6 2 2 13 51 137 1313A-3H-3, 84-85 20.28 443.82 11 1 1 1 9 26 127 1313A-3H-3, 86-87 20.30 444.15 1 9 1 12 27 154 1313A-3H-3, 90-91 20.34 444.83 1 5 4 1 12 41 101 1313A-3H-3, 94-95 20.38 445.51 1 12 1 1 11 30 127 1313A-3H-3, 98-99 20.42 446.18 4 1 5 36 118 1313A-3H-3, 102-103 20.46 446.86 11 2 1 10 49 148 1313A-3H-3, 106-107 20.50 447.54 1 12 2 2 1 12 44 94 1313A-3H-3, 110-111 20.54 448.21 16 1 1 2 2 14 51 105 1313A-3H-3, 114-115 20.58 448.89 1 7 2 1 16 34 137 1313A-3H-3, 118-119 20.62 449.56 1 8 2 1 1 15 48 137 1313A-3H-3, 122-123 20.66 450.24 1 13 1 13 17 215 1313A-3H-3, 124-125 20.68 450.58 1 12 1 1 9 39 114 1313A-3H-3, 128-129 20.72 451.25 2 12 2 3 46 103 1313A-3H-3, 130-131 20.74 451.59 2 5 2 16 61 114 1313A-3H-3, 132-133 20.76 451.93 1 4 1 4 66 137 1313A-3H-3, 134-135 20.78 452.27 3 5 3 2 2 6 48 182 1313A-3H-3, 136-137 20.80 452.61 4 2 6 60 166 1313A-3H-3, 138-139 20.82 452.94 1 4 1 1 6 50 147 1313A-3H-3, 140-141 20.84 453.28 8 1 1 6 63 139 1313A-3H-3, 142-143 20.86 453.62 3 11 1 1 1 6 63 113 1313A-3H-3, 144-145 20.88 453.96 4 2 7 94 149 1313A-3H-3, 146-147 20.90 454.30 1 7 1 1 11 75 142 1313A-3H-3, 148-149 20.92 454.63 1 5 1 1 8 63 124 1313A-3H-4, 0-1 20.94 454.97 2 2 1 9 74 114 1313A-3H-4, 2-3 20.96 455.31 1 6 1 2 10 68 134 1313A-3H-4, 4-5 20.98 455.65 1 5 1 11 41 152 1313A-3H-4, 6-7 21.00 455.99 1 3 2 10 36 100 1313A-3H-4, 10-11 21.04 456.66 2 3 1 9 34 126

126

small

spp. small

spp.

spp.

lithus Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Calcidiscus leptoporus Coccolithus braarudii Coccolithus pelagicus Florisphaera profunda Gephyrocapsa Gephyrocapsa oceanica Cerato Calciosolenia Calcidiscus leptoporus Calcidiscus quadriperforatus 1313A-3H-4, 14-15 21.08 457.34 3 1 2 14 35 178 1313A-3H-4, 18-19 21.12 458.01 2 3 2 1 20 43 198 1313A-3H-4, 22-23 21.16 458.69 1 5 1 19 34 190 1313A-3H-4, 26-27 21.20 459.37 10 1 9 18 151 1313A-3H-4, 30-31 21.24 460.04 1 5 1 1 2 11 31 143 1313A-3H-4, 34-35 21.28 460.72 2 8 2 1 2 25 43 210 1313A-3H-4, 38-39 21.32 461.39 1 7 3 1 1 1 27 42 196 1313A-3H-4, 42-43 21.36 462.07 6 1 1 4 28 123 1313A-3H-4, 46-47 21.40 462.75 1 8 1 27 46 177 1313A-3H-4, 50-51 21.44 463.42 3 2 1 1 2 7 50 140 1313A-3H-4, 54-55 21.48 464.10 3 6 1 12 60 222 1313A-3H-4, 58-59 21.52 464.77 3 3 2 19 64 298 1313A-3H-4, 62-63 21.56 465.45 2 5 2 7 35 149 1313A-3H-4, 66-67 21.60 466.13 1 12 2 2 10 43 211 1313A-3H-4, 70-71 21.64 466.80 1 8 7 1 11 41 163 1313A-3H-4, 74-75 21.68 467.48 2 6 2 3 13 50 147 1313A-3H-4, 78-79 21.72 468.15 1 3 4 12 71 169 1313A-3H-4, 82-83 21.76 468.83 1 9 2 1 15 78 184 1313A-3H-4, 86-87 21.8 469.51 3 5 1 1 2 6 61 159 1313A-3H-4, 90-91 21.84 470.18 1 2 1 1 2 7 77 138 1313A-3H-4, 94-95 21.88 470.86 4 4 1 1 11 55 105 1313A-3H-4, 98-99 21.92 471.54 3 1 8 51 116 1313A-3H-4, 102-103 21.96 472.21 4 4 3 1 13 57 134 1313A-3H-4, 106-107 22.00 472.89 7 1 1 10 53 125 1313A-3H-4, 110-111 22.04 473.56 3 6 1 1 12 56 112 1313A-3H-4, 114-115 22.08 474.24 2 10 2 24 90 133 1313A-3H-4, 118-119 22.12 474.92 1 3 14 77 121 1313A-3H-4, 122-123 22.16 475.59 4 3 1 19 133 169 1313A-3H-4, 126-127 22.20 476.27 9 5 2 2 1 20 152 138 1313A-3H-4, 130-131 22.24 476.94 5 2 1 15 44 170 1313A-3H-4, 134-135 22.28 477.62 3 7 13 49 123 1313A-3H-4, 138-139 22.32 478.30 1 4 1 15 66 174 1313A-3H-4, 142-143 22.36 478.97 8 1 9 75 148 1313A-3H-5, 0-1 22.44 480.32 1 5 1 10 95 123

127

>4 μm

>4 μm

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Gephyrocapsa oceanica Gephyrocapsa caribbeanica Gephyrocapsa caribbeanica Helicosphaera carteri Helicosphaera inversa Helicosphaera pavimentum Pseudoemiliania lacunosa Pseudoemiliania ovata Reticulofenestra minuta Reticulofenestra minutula 1313D-2H-4, 70-71 15.88 355.91 84 49 14 4 9 64 1313D-2H-4, 74-75 15.92 356.51 73 43 12 1 8 43 1313D-2H-4, 78-79 15.96 357.11 89 53 16 5 11 59 1313D-2H-4, 82-83 16.00 357.70 80 67 26 1 16 44 1313D-2H-4, 86-87 16.04 358.30 63 63 13 3 9 42 1313D-2H-4, 90-91 16.08 358.89 57 73 21 6 10 53 1313D-2H-4, 94-95 16.12 359.49 79 66 27 6 7 44 1313D-2H-4, 96-97 16.14 359.79 68 57 27 2 11 53 1313D-2H-4, 100-101 16.18 360.38 51 75 27 2 16 49 1313D-2H-4, 104-105 16.22 360.98 48 86 16 2 14 38 1313D-2H-4, 108-109 16.26 361.57 66 70 27 2 6 49 1313D-2H-4, 112-113 16.30 362.17 52 97 28 4 10 32 1313D-2H-4, 116-117 16.34 362.77 57 92 24 6 9 29 1313D-2H-4, 120-121 16.38 363.36 69 87 44 4 13 29 1313D-2H-4, 124-125 16.42 363.96 54 87 41 2 19 29 1313D-2H-4, 128-129 16.46 364.55 50 101 43 4 7 16 1313D-2H-4, 132-133 16.50 365.15 51 91 45 4 11 26 1313D-2H-4, 136-137 16.54 365.74 41 102 36 3 1 10 26 1313D-2H-4, 140-141 16.58 366.34 28 93 31 2 21 19 1313D-2H-4, 144-145 16.62 366.94 23 105 32 1 1 21 16 1313D-2H-4, 148-149 16.66 367.53 19 85 26 2 40 15 1313D-2H-5, 2-3 16.70 368.13 18 113 36 3 1 37 15 1313D-2H-5, 6-7 16.74 368.72 9 122 23 2 1 35 19 1313D-2H-5, 10-11 16.78 369.32 14 115 25 2 37 17 1313D-2H-5, 14-15 16.82 369.91 13 121 31 3 34 23 1313D-2H-5, 18-19 16.86 370.51 19 135 25 1 1 28 23 1313D-2H-5, 22-23 16.90 371.11 27 130 39 1 28 12 1313D-2H-5, 26-27 16.94 371.70 19 119 37 2 25 30 1313D-2H-5, 30-31 16.98 372.48 31 161 36 2 43 14 1313D-2H-5, 34-35 17.02 373.43 16 96 40 29 17 1313D-2H-5, 38-39 17.06 374.38 15 138 42 1 22 14 1313D-2H-5, 42-44 17.10 375.33 16 127 31 3 38 15 1313D-2H-5, 46-47 17.14 376.28 10 134 33 2 33 17 1313D-2H-5, 50-51 17.18 377.23 11 129 19 1 32 10 1313D-2H-5, 54-55 17.22 378.18 9 117 33 1 39 24

128

>4 μm

>4 μm

la

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Gephyrocapsa oceanica Gephyrocapsa caribbeanica Gephyrocapsa caribbeanica Reticulofenestra minutu Helicosphaera carteri Helicosphaera inversa Helicosphaera pavimentum Pseudoemiliania lacunosa Pseudoemiliania ovata Reticulofenestra minuta 1313D-2H-5, 58-59 17.26 379.13 7 146 31 1 2 28 21 1313D-2H-5, 62-63 17.30 380.08 5 109 18 1 49 8 1313D-2H-5, 66-67 17.34 381.03 4 118 15 1 1 46 16 1313D-2H-5, 70-71 17.38 381.98 4 128 8 1 59 9 1313D-2H-5, 74-75 17.42 382.93 6 106 17 1 48 15 1313D-2H-5, 78-79 17.46 383.88 6 104 20 1 69 13 1313D-2H-5, 82-83 17.50 384.83 10 117 25 1 46 8 1313D-2H-5, 86-87 17.54 385.78 11 114 22 1 26 15 1313D-2H-5, 90-91 17.58 386.73 18 123 32 30 13 1313D-2H-5, 94-95 17.62 387.68 10 136 24 41 13 1313D-2H-5, 98-99 17.66 388.63 8 126 21 1 1 46 11 1313D-2H-5, 102-103 17.70 389.58 15 99 22 2 1 40 16 1313D-2H-5, 106-107 17.74 390.53 12 134 30 4 1 36 9 1313D-2H-5, 110-111 17.78 391.43 18 118 31 2 24 16 1313D-2H-5, 114-115 17.82 392.29 21 124 34 1 30 14 1313D-2H-5, 118-119 17.86 393.14 23 137 34 1 30 7 1313D-2H-5, 122-123 17.90 394.00 20 141 50 4 19 8 1313D-2H-5, 126-127 17.94 394.86 29 138 54 20 13 1313D-2H-5, 130-131 17.98 395.71 12 132 40 1 12 6 1313D-2H-5, 134-135 18.02 396.57 29 131 35 11 5 1313D-2H-5, 138-139 18.06 397.43 27 141 40 1 17 8 1313D-2H-5, 142-143 18.10 398.29 16 161 35 2 11 4 1313D-2H-5, 146-147 18.14 399.14 13 193 33 31 14 1313D-2H-6, 0-1 18.18 400.00 4 169 13 1 18 5 1313D-2H-6, 4-5 18.22 400.86 4 186 7 21 9 1313D-2H-6, 8-9 18.26 401.71 8 169 16 1 23 9 1313D-2H-6, 12-13 18.30 402.57 3 177 18 1 19 4 1313D-2H-6, 16-17 18.34 403.43 3 141 12 1 24 1 1313D-2H-6, 20-21 18.38 404.29 4 194 12 2 19 3 1313D-2H-6, 24-25 18.42 405.14 3 180 4 1 18 4 1313D-2H-6, 28-29 18.46 406.00 4 197 12 1 13 6 1313D-2H-6, 32-33 18.50 406.86 4 214 18 1 1 29 10 1313D-2H-6, 36-37 18.54 407.71 4 145 8 1 1 22 14 1313D-2H-6, 40-41 18.58 408.57 3 170 22 1 14 8 1313D-2H-6, 44-45 18.62 409.43 4 138 13 2 1 24 8 1313D-2H-6, 48-49 18.66 410.29 2 159 16 1 23 6

129

>4 μm

>4 μm

oemiliania ovata Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Gephyrocapsa oceanica Gephyrocapsa caribbeanica Gephyrocapsa caribbeanica Helicosphaera carteri Helicosphaera inversa Helicosphaera pavimentum Pseudoemiliania lacunosa Pseud Reticulofenestra minutula Reticulofenestra minuta 1313D-2H-6, 52-53 18.70 411.14 4 182 14 1 18 3 1313D-2H-6, 56-57 18.74 412.00 3 165 7 1 14 9 1313D-2H-6, 60-61 18.78 412.86 1 182 13 1 16 8 1313D-2H-6, 64-65 18.82 413.71 3 149 6 25 5 1313D-2H-6, 68-69 18.86 414.57 2 170 11 12 7 1313D-2H-6, 72-73 18.90 415.43 0 212 6 23 5 1313D-2H-6, 74-75 18.92 415.86 5 204 16 19 6 1313D-2H-6, 76-77 18.94 416.29 5 225 22 19 8 1313A-3H-2, 102-103 18.96 416.71 2 156 18 1 1 12 5 1313D-2H-6, 80-81 18.98 417.14 6 181 18 33 7 1313A-3H-2, 106-107 19.00 417.57 2 190 14 1 16 2 1313D-2H-6, 84-85 19.02 418.00 7 180 20 21 4 1313A-3H-2, 110-111 19.04 418.43 1 173 7 30 6 1313A-3H-2, 114-115 19.08 419.29 6 184 15 1 14 2 1313A-3H-2, 118-119 19.12 420.14 4 157 28 1 37 10 1313A-3H-2, 122-123 19.16 421.00 8 201 22 1 1 31 9 1313A-3H-2, 126-127 19.20 421.86 6 139 9 3 17 6 1313A-3H-2, 130-131 19.24 422.71 2 154 13 18 6 1313A-3H-2, 134-135 19.28 423.57 2 110 14 1 36 5 1313A-3H-2, 138-139 19.32 424.43 3 100 9 23 9 1313A-3H-2, 142-143 19.36 425.29 3 118 4 32 5 1313A-3H-2, 146-147 19.40 426.14 5 129 8 1 1 22 9 1313A-3H-3, 0-1 19.44 427.00 6 126 4 2 1 27 12 1313A-3H-3, 4-5 19.48 428.20 12 124 19 2 26 22 1313A-3H-3, 8-9 19.52 429.40 19 114 16 5 24 15 1313A-3H-3, 12-13 19.56 430.60 31 158 27 1 28 25 1313A-3H-3, 16-17 19.60 431.80 23 127 24 5 43 39 1313A-3H-3, 20-21 19.64 433.00 29 119 35 6 34 42 1313A-3H-3, 24-25 19.68 433.68 33 119 30 4 1 36 52 1313A-3H-3, 28-29 19.72 434.35 49 123 47 6 18 35 1313A-3H-3, 32-33 19.76 435.03 32 116 55 4 29 14 1313A-3H-3, 36-37 19.80 435.70 35 126 33 3 28 35 1313A-3H-3, 40-41 19.84 436.38 26 127 41 9 41 18 1313A-3H-3, 44-45 19.88 437.06 26 119 42 8 1 39 21 1313A-3H-3, 48-49 19.92 437.73 13 121 27 4 1 38 25 1313A-3H-3, 52-53 19.96 438.41 11 121 24 3 54 40

130

>4 μm

>4 μm

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Gephyrocapsa oceanica Gephyrocapsa caribbeanica Gephyrocapsa caribbeanica Reticulofenestra minutula Helicosphaera carteri Helicosphaera inversa Helicosphaera pavimentum Pseudoemiliania lacunosa Pseudoemiliania ovata Reticulofenestra minuta 1313A-3H-3, 56-57 20.00 439.08 17 124 37 35 35 1313A-3H-3, 60-61 20.04 439.76 29 95 42 4 53 46 1313A-3H-3, 64-65 20.08 440.44 38 95 47 7 2 39 56 1313A-3H-3, 68-69 20.12 441.11 27 105 53 2 43 38 1313A-3H-3, 72-73 20.16 441.79 18 118 19 5 50 65 1313A-3H-3, 76-77 20.20 442.46 24 104 35 4 45 70 1313A-3H-3, 78-79 20.22 442.80 34 146 45 5 2 9 41 1313A-3H-3, 82-83 20.26 443.48 17 123 18 5 39 56 1313A-3H-3, 84-85 20.28 443.82 18 151 26 2 37 64 1313A-3H-3, 86-87 20.30 444.15 39 142 46 2 1 5 27 1313A-3H-3, 90-91 20.34 444.83 36 136 52 4 15 48 1313A-3H-3, 94-95 20.38 445.51 33 141 53 8 18 33 1313A-3H-3, 98-99 20.42 446.18 52 142 56 8 18 24 1313A-3H-3, 102-103 20.46 446.86 22 122 30 4 20 48 1313A-3H-3, 106-107 20.50 447.54 47 97 91 5 1 21 40 1313A-3H-3, 110-111 20.54 448.21 47 104 59 6 13 31 1313A-3H-3, 114-115 20.58 448.89 38 124 51 7 15 25 1313A-3H-3, 118-119 20.62 449.56 23 114 47 4 17 25 1313A-3H-3, 122-123 20.66 450.24 35 194 41 8 10 47 1313A-3H-3, 124-125 20.68 450.58 36 104 65 3 12 30 1313A-3H-3, 128-129 20.72 451.25 29 104 52 4 1 17 24 1313A-3H-3, 130-131 20.74 451.59 23 98 54 4 21 33 1313A-3H-3, 132-133 20.76 451.93 46 112 67 5 2 11 41 1313A-3H-3, 134-135 20.78 452.27 28 147 48 5 3 13 35 1313A-3H-3, 136-137 20.80 452.61 33 139 62 4 1 30 28 1313A-3H-3, 138-139 20.82 452.94 36 127 66 6 1 17 38 1313A-3H-3, 140-141 20.84 453.28 33 113 75 2 20 26 1313A-3H-3, 142-143 20.86 453.62 33 129 43 1 1 1 29 24 1313A-3H-3, 144-145 20.88 453.96 37 141 46 1 1 3 26 25 1313A-3H-3, 146-147 20.90 454.30 29 122 72 3 2 27 30 1313A-3H-3, 148-149 20.92 454.63 32 88 51 3 1 17 40 1313A-3H-4, 0-1 20.94 454.97 34 106 47 4 2 27 17 1313A-3H-4, 2-3 20.96 455.31 47 160 61 1 29 32 1313A-3H-4, 4-5 20.98 455.65 63 129 87 1 1 3 19 49 1313A-3H-4, 6-7 21.00 455.99 69 83 72 3 1 1 24 37 1313A-3H-4, 10-11 21.04 456.66 56 123 40 5 6 41

131

>4 μm

>4 μm

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Gephyrocapsa oceanica Gephyrocapsa caribbeanica Gephyrocapsa caribbeanica Reticulofenestra minutula Helicosphaera carteri Helicosphaera inversa Helicosphaera pavimentum Pseudoemiliania lacunosa Pseudoemiliania ovata Reticulofenestra minuta 1313A-3H-4, 14-15 21.08 457.34 67 131 63 1 9 59 1313A-3H-4, 18-19 21.12 458.01 55 142 64 2 1 6 57 1313A-3H-4, 22-23 21.16 458.69 45 157 34 3 18 65 1313A-3H-4, 26-27 21.20 459.37 56 97 39 5 9 67 1313A-3H-4, 30-31 21.24 460.04 35 115 33 1 1 16 73 1313A-3H-4, 34-35 21.28 460.72 59 162 62 1 18 141 1313A-3H-4, 38-39 21.32 461.39 45 157 27 5 2 1 16 92 1313A-3H-4, 42-43 21.36 462.07 35 138 36 10 73 1313A-3H-4, 46-47 21.40 462.75 45 166 61 2 3 15 52 1313A-3H-4, 50-51 21.44 463.42 25 123 30 2 4 9 48 1313A-3H-4, 54-55 21.48 464.10 25 187 40 2 1 3 3 16 58 1313A-3H-4, 58-59 21.52 464.77 32 194 31 5 1 1 32 80 1313A-3H-4, 62-63 21.56 465.45 34 133 25 4 1 2 1 20 56 1313A-3H-4, 66-67 21.60 466.13 23 154 43 5 3 1 42 77 1313A-3H-4, 70-71 21.64 466.80 21 166 36 5 1 1 37 51 1313A-3H-4, 74-75 21.68 467.48 38 171 48 5 2 47 63 1313A-3H-4, 78-79 21.72 468.15 18 252 60 5 1 6 2 39 58 1313A-3H-4, 82-83 21.76 468.83 15 244 65 4 1 9 2 49 53 1313A-3H-4, 86-87 21.8 469.51 19 202 75 1 5 2 26 48 1313A-3H-4, 90-91 21.84 470.18 19 184 51 3 1 2 36 39 1313A-3H-4, 94-95 21.88 470.86 22 180 71 2 5 2 30 19 1313A-3H-4, 98-99 21.92 471.54 7 164 41 1 5 4 24 20 1313A-3H-4, 102-103 21.96 472.21 22 181 58 3 34 52 1313A-3H-4, 106-107 22.00 472.89 10 127 20 5 4 1 35 72 1313A-3H-4, 110-111 22.04 473.56 17 147 23 3 1 3 38 62 1313A-3H-4, 114-115 22.08 474.24 10 183 16 1 2 2 43 59 1313A-3H-4, 118-119 22.12 474.92 18 149 27 1 3 40 41 1313A-3H-4, 122-123 22.16 475.59 16 242 23 2 4 4 55 56 1313A-3H-4, 126-127 22.20 476.27 13 238 28 1 8 52 18 1313A-3H-4, 130-131 22.24 476.94 10 146 16 1 3 4 11 13 1313A-3H-4, 134-135 22.28 477.62 6 160 17 3 7 11 9 1313A-3H-4, 138-139 22.32 478.30 11 195 33 3 5 10 18 1313A-3H-4, 142-143 22.36 478.97 4 193 22 2 4 13 18 1313A-3H-5, 0-1 22.44 480.32 2 150 11 1 6 15 10

132

small

large

spp. spp.

spp.

spp.

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Thoracosphaera Syracosphaera Umbilicosphaera foliosa Reticulofenestra pseudoumbilicus Reticulofenestra producta Reticulofenestra producta Rhabdosphaera Oolithotus antillarum Oolithotus fragilis Pontosphaera 1313D-2H-4, 70-71 15.88 355.91 23 3 1 1 1313D-2H-4, 74-75 15.92 356.51 4 24 7 1 2 2 1313D-2H-4, 78-79 15.96 357.11 18 4 1 6 1 1313D-2H-4, 82-83 16.00 357.70 18 2 1 2 1 1 1313D-2H-4, 86-87 16.04 358.30 1 30 15 3 1 1313D-2H-4, 90-91 16.08 358.89 29 8 1 1 1313D-2H-4, 94-95 16.12 359.49 22 8 1 2 1 2 1 1313D-2H-4, 96-97 16.14 359.79 27 20 1 1313D-2H-4, 100-101 16.18 360.38 39 10 2 2 1313D-2H-4, 104-105 16.22 360.98 39 11 1 2 1313D-2H-4, 108-109 16.26 361.57 36 14 1 2 1313D-2H-4, 112-113 16.30 362.17 1 48 16 2 1 2 1 1313D-2H-4, 116-117 16.34 362.77 43 15 1 1 2 1 1313D-2H-4, 120-121 16.38 363.36 1 32 18 3 1 5 1 1313D-2H-4, 124-125 16.42 363.96 50 14 1 2 1313D-2H-4, 128-129 16.46 364.55 52 21 1 1 1 3 1313D-2H-4, 132-133 16.50 365.15 39 24 1 3 1313D-2H-4, 136-137 16.54 365.74 42 12 1 3 1 1313D-2H-4, 140-141 16.58 366.34 64 31 1 3 1 1313D-2H-4, 144-145 16.62 366.94 81 24 1 1 1313D-2H-4, 148-149 16.66 367.53 69 33 2 1 1 1 1 1 1313D-2H-5, 2-3 16.70 368.13 86 26 3 4 1313D-2H-5, 6-7 16.74 368.72 102 20 1 3 1 1313D-2H-5, 10-11 16.78 369.32 96 17 1 1 3 1 1313D-2H-5, 14-15 16.82 369.91 85 22 1 1 1 1 1313D-2H-5, 18-19 16.86 370.51 64 23 2 1313D-2H-5, 22-23 16.90 371.11 55 23 1 1 4 1313D-2H-5, 26-27 16.94 371.70 57 19 1 1 1 1 1313D-2H-5, 30-31 16.98 372.48 72 22 1 1313D-2H-5, 34-35 17.02 373.43 57 22 1 1 1313D-2H-5, 38-39 17.06 374.38 1 46 23 1 2 1 1 1313D-2H-5, 42-44 17.10 375.33 1 67 23 3 1 1313D-2H-5, 46-47 17.14 376.28 76 17 3 3 1 3 2 1313D-2H-5, 50-51 17.18 377.23 72 22 2 2 2 3

133

small

large

.

spp. spp.

spp.

spp

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Thoracosphaera Umbilicosphaera foliosa Syracosphaera Reticulofenestra pseudoumbilicus Reticulofenestra producta Reticulofenestra producta Rhabdosphaera Oolithotus antillarum Oolithotus fragilis Pontosphaera 1313D-2H-5, 54-55 17.22 378.18 65 21 2 2 1 2 1 1313D-2H-5, 58-59 17.26 379.13 71 16 4 4 1 1 1 1313D-2H-5, 62-63 17.30 380.08 83 24 1 3 2 1 1 1313D-2H-5, 66-67 17.34 381.03 95 20 4 1 2 1313D-2H-5, 70-71 17.38 381.98 112 24 2 1 2 2 1313D-2H-5, 74-75 17.42 382.93 99 20 1 3 1 1 1313D-2H-5, 78-79 17.46 383.88 92 30 3 1 4 1 1313D-2H-5, 82-83 17.50 384.83 107 31 2 1 1313D-2H-5, 86-87 17.54 385.78 96 49 4 4 1313D-2H-5, 90-91 17.58 386.73 80 35 1 1 1 1 1 1313D-2H-5, 94-95 17.62 387.68 50 10 5 1 1 1313D-2H-5, 98-99 17.66 388.63 32 4 1 4 1 1313D-2H-5, 102-103 17.70 389.58 34 8 1 1 1 1 1313D-2H-5, 106-107 17.74 390.53 47 4 1 3 1 1313D-2H-5, 110-111 17.78 391.43 48 10 1 2 1 2 1313D-2H-5, 114-115 17.82 392.29 32 11 2 1313D-2H-5, 118-119 17.86 393.14 48 25 2 1 1 1 1313D-2H-5, 122-123 17.90 394.00 37 20 1 1 1 1 1313D-2H-5, 126-127 17.94 394.86 40 23 1 2 1313D-2H-5, 130-131 17.98 395.71 50 17 1 3 1 1 1313D-2H-5, 134-135 18.02 396.57 51 16 1 1 1313D-2H-5, 138-139 18.06 397.43 62 20 1 1 3 1313D-2H-5, 142-143 18.10 398.29 47 17 1 1 1 2 1 1313D-2H-5, 146-147 18.14 399.14 77 31 1 1 1 3 2 1313D-2H-6, 0-1 18.18 400.00 73 21 2 1 2 1 3 1313D-2H-6, 4-5 18.22 400.86 82 11 1 2 1 5 2 2 1313D-2H-6, 8-9 18.26 401.71 69 12 1 2 1 1 1313D-2H-6, 12-13 18.30 402.57 90 11 1 1 1 1313D-2H-6, 16-17 18.34 403.43 114 15 1 1 1 1 1313D-2H-6, 20-21 18.38 404.29 110 13 3 1 4 1 1313D-2H-6, 24-25 18.42 405.14 144 10 1 2 1 1 1313D-2H-6, 28-29 18.46 406.00 106 15 1 1 1313D-2H-6, 32-33 18.50 406.86 109 28 2 3 1 1 3 3 1313D-2H-6, 36-37 18.54 407.71 96 23 1 4 1 4 1

134

small

large

spp. spp.

spp.

spp.

estra producta

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Thoracosphaera Syracosphaera Umbilicosphaera foliosa Reticulofenestra pseudoumbilicus Reticulofenestra producta Reticulofen Rhabdosphaera Oolithotus antillarum Oolithotus fragilis Pontosphaera 1313D-2H-6, 40-41 18.58 408.57 87 24 1 2 4 1 1 1313D-2H-6, 44-45 18.62 409.43 110 23 3 3 2 1 1313D-2H-6, 48-49 18.66 410.29 115 20 1 1 2 2 1 1313D-2H-6, 52-53 18.70 411.14 79 16 1 2 1 1313D-2H-6, 56-57 18.74 412.00 97 13 5 1 2 1313D-2H-6, 60-61 18.78 412.86 86 11 2 1 2 1313D-2H-6, 64-65 18.82 413.71 140 7 3 2 1 1313D-2H-6, 68-69 18.86 414.57 113 13 3 1 1 1 1313D-2H-6, 72-73 18.90 415.43 154 8 1 4 4 3 1313D-2H-6, 74-75 18.92 415.86 166 30 6 1 3 1 1313D-2H-6, 76-77 18.94 416.29 165 28 2 2 1 2 1313A-3H-2, 102-103 18.96 416.71 110 15 5 4 1 2 2 1313D-2H-6, 80-81 18.98 417.14 121 17 3 2 1 1 1313A-3H-2, 106-107 19.00 417.57 142 15 1 2 4 1313D-2H-6, 84-85 19.02 418.00 73 17 2 1 3 1313A-3H-2, 110-111 19.04 418.43 120 13 2 1 1 1313A-3H-2, 114-115 19.08 419.29 110 12 3 1 2 1313A-3H-2, 118-119 19.12 420.14 118 21 5 3 3 1313A-3H-2, 122-123 19.16 421.00 128 20 8 3 1 1 1313A-3H-2, 126-127 19.20 421.86 86 4 2 2 1313A-3H-2, 130-131 19.24 422.71 1 80 9 2 1 1 1 2 1313A-3H-2, 134-135 19.28 423.57 78 8 1 2 1 1 1 1313A-3H-2, 138-139 19.32 424.43 83 5 1 1 2 1313A-3H-2, 142-143 19.36 425.29 82 1 1 3 2 4 1313A-3H-2, 146-147 19.40 426.14 71 2 1 1313A-3H-3, 0-1 19.44 427.00 92 5 3 1 1313A-3H-3, 4-5 19.48 428.20 1 66 5 1 3 1313A-3H-3, 8-9 19.52 429.40 64 8 1 2 1 1313A-3H-3, 12-13 19.56 430.60 101 16 1 3 1313A-3H-3, 16-17 19.60 431.80 1 34 3 1 1 1 3 1313A-3H-3, 20-21 19.64 433.00 34 3 2 2 1313A-3H-3, 24-25 19.68 433.68 35 5 2 1 1313A-3H-3, 28-29 19.72 434.35 29 10 2 1313A-3H-3, 32-33 19.76 435.03 38 9 2 2 1

135

small

large

spp. spp.

spp.

spp.

sphaera Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Thoracosphaera Syraco Umbilicosphaera foliosa Reticulofenestra pseudoumbilicus Reticulofenestra producta Reticulofenestra producta Rhabdosphaera Oolithotus antillarum Oolithotus fragilis Pontosphaera 1313A-3H-3, 36-37 19.80 435.70 43 7 2 1 1 1313A-3H-3, 40-41 19.84 436.38 1 48 17 3 5 1 1313A-3H-3, 44-45 19.88 437.06 62 19 4 1 1313A-3H-3, 48-49 19.92 437.73 60 9 2 1 1 1 1313A-3H-3, 52-53 19.96 438.41 52 8 1 1 1 1313A-3H-3, 56-57 20.00 439.08 60 6 1313A-3H-3, 60-61 20.04 439.76 38 3 1 3 2 1313A-3H-3, 64-65 20.08 440.44 42 13 1 1 3 1313A-3H-3, 68-69 20.12 441.11 1 43 6 1 1313A-3H-3, 72-73 20.16 441.79 1 41 2 1 2 1313A-3H-3, 76-77 20.20 442.46 45 1 1 2 1313A-3H-3, 78-79 20.22 442.80 31 7 1 1313A-3H-3, 82-83 20.26 443.48 45 1 2 1313A-3H-3, 84-85 20.28 443.82 1 40 3 1 1313A-3H-3, 86-87 20.30 444.15 38 4 1 1 2 1 1313A-3H-3, 90-91 20.34 444.83 55 4 1 1 1313A-3H-3, 94-95 20.38 445.51 42 6 1 2 1313A-3H-3, 98-99 20.42 446.18 50 7 1 1313A-3H-3, 102-103 20.46 446.86 42 4 1313A-3H-3, 106-107 20.50 447.54 1 64 33 2 2 1 1313A-3H-3, 110-111 20.54 448.21 47 20 1 2 1 1313A-3H-3, 114-115 20.58 448.89 48 15 1 2 1313A-3H-3, 118-119 20.62 449.56 56 16 2 2 1313A-3H-3, 122-123 20.66 450.24 1 80 19 1 1 1313A-3H-3, 124-125 20.68 450.58 58 34 1 1 1 1313A-3H-3, 128-129 20.72 451.25 73 29 3 1313A-3H-3, 130-131 20.74 451.59 72 24 1 2 3 1313A-3H-3, 132-133 20.76 451.93 61 29 2 1 1313A-3H-3, 134-135 20.78 452.27 3 119 33 1 3 1313A-3H-3, 136-137 20.80 452.61 98 31 1 1 2 1313A-3H-3, 138-139 20.82 452.94 81 43 2 3 1313A-3H-3, 140-141 20.84 453.28 92 39 3 1313A-3H-3, 142-143 20.86 453.62 109 31 1 1313A-3H-3, 144-145 20.88 453.96 110 33 1

136

small

large

spp. spp.

spp.

spp.

ofenestra producta Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Thoracosphaera Syracosphaera Reticulofenestra pseudoumbilicus Umbilicosphaera foliosa Reticul Reticulofenestra producta Rhabdosphaera Oolithotus antillarum Oolithotus fragilis Pontosphaera 1313A-3H-3, 146-147 20.90 454.30 155 37 1 1313A-3H-3, 148-149 20.92 454.63 107 36 2 3 1313A-3H-4, 0-1 20.94 454.97 109 34 1 2 1313A-3H-4, 2-3 20.96 455.31 1 110 26 3 1 1313A-3H-4, 4-5 20.98 455.65 81 46 1 5 1 1313A-3H-4, 6-7 21.00 455.99 69 49 3 1313A-3H-4, 10-11 21.04 456.66 50 14 1 1 3 1313A-3H-4, 14-15 21.08 457.34 58 24 1 2 5 1 1313A-3H-4, 18-19 21.12 458.01 57 21 4 1313A-3H-4, 22-23 21.16 458.69 60 8 1 4 1313A-3H-4, 26-27 21.20 459.37 1 31 16 5 1313A-3H-4, 30-31 21.24 460.04 39 5 1 2 1 1313A-3H-4, 34-35 21.28 460.72 73 16 1 1 2 1313A-3H-4, 38-39 21.32 461.39 60 12 5 1313A-3H-4, 42-43 21.36 462.07 47 7 1313A-3H-4, 46-47 21.40 462.75 84 29 1 4 1313A-3H-4, 50-51 21.44 463.42 52 10 1 3 1313A-3H-4, 54-55 21.48 464.10 55 11 1 3 1313A-3H-4, 58-59 21.52 464.77 74 7 5 1 1313A-3H-4, 62-63 21.56 465.45 30 4 1 2 1 1 1313A-3H-4, 66-67 21.60 466.13 47 7 1 1 3 1313A-3H-4, 70-71 21.64 466.80 39 2 4 1313A-3H-4, 74-75 21.68 467.48 30 8 3 1 1313A-3H-4, 78-79 21.72 468.15 66 10 1 2 1313A-3H-4, 82-83 21.76 468.83 72 13 2 3 4 1313A-3H-4, 86-87 21.8 469.51 73 23 2 1 5 1 1313A-3H-4, 90-91 21.84 470.18 86 24 1 2 2 1 1313A-3H-4, 94-95 21.88 470.86 84 22 3 2 1 1313A-3H-4, 98-99 21.92 471.54 87 13 3 1 1 3 1313A-3H-4, 102-103 21.96 472.21 94 29 2 1 1 1 1313A-3H-4, 106-107 22.00 472.89 48 4 1 1313A-3H-4, 110-111 22.04 473.56 42 1 2 1 1313A-3H-4, 114-115 22.08 474.24 70 5 1 2 1 1313A-3H-4, 118-119 22.12 474.92 51 12 1 2

137

small

large

spp. spp.

spp.

spp.

ra

Hole-Core-Section, Depth Age Interval (cm) (cmcd) (ka) Syracosphae Thoracosphaera Umbilicosphaera foliosa Reticulofenestra pseudoumbilicus Reticulofenestra producta Reticulofenestra producta Rhabdosphaera Oolithotus antillarum Oolithotus fragilis Pontosphaera 1313A-3H-4, 122-123 22.16 475.59 89 9 1 1 1 1313A-3H-4, 126-127 22.20 476.27 1 98 14 1 3 1 1313A-3H-4, 130-131 22.24 476.94 60 13 1 1 2 1313A-3H-4, 134-135 22.28 477.62 101 12 3 1 3 2 1313A-3H-4, 138-139 22.32 478.30 136 28 1 1 2 1 1313A-3H-4, 142-143 22.36 478.97 133 13 1 1 1 1 1 1313A-3H-5, 0-1 22.44 480.32 116 10 1 2 1

Hole-Core-Section, Depth Age bilicosphaera hulburtiana TOTAL Interval (cm) (cmcd) (ka) COUNT Umbilicosphaera sibogae Umbellosphaera tenuis Hayaster perplexus Holodiscolithus macroporus Tetralithoides symeonidesii Placolith side view Um 1313D-2H-4, 70-71 15.88 355.91 1 125 639 1313D-2H-4, 74-75 15.92 356.51 126 633 1313D-2H-4, 78-79 15.96 357.11 110 628 1313D-2H-4, 82-83 16.00 357.70 58 579 1313D-2H-4, 86-87 16.04 358.30 1 86 601 1313D-2H-4, 90-91 16.08 358.89 71 589 1313D-2H-4, 94-95 16.12 359.49 73 587 1313D-2H-4, 96-97 16.14 359.79 78 588 1313D-2H-4, 100-101 16.18 360.38 54 589 1313D-2H-4, 104-105 16.22 360.98 1 64 579 1313D-2H-4, 108-109 16.26 361.57 2 61 580 1313D-2H-4, 112-113 16.30 362.17 68 589

138

Hole-Core-Section, Depth Age TOTAL Interval (cm) (cmcd) (ka) COUNT Umbilicosphaera hulburtiana Umbilicosphaera sibogae Umbellosphaera tenuis Hayaster perplexus Holodiscolithus macroporus Tetralithoides symeonidesii Placolith side view 1313D-2H-4, 116-117 16.34 362.77 1 55 570 1313D-2H-4, 120-121 16.38 363.36 67 582 1313D-2H-4, 124-125 16.42 363.96 1 82 600 1313D-2H-4, 128-129 16.46 364.55 1 1 73 595 1313D-2H-4, 132-133 16.50 365.15 73 592 1313D-2H-4, 136-137 16.54 365.74 2 1 1 59 590 1313D-2H-4, 140-141 16.58 366.34 4 1 93 619 1313D-2H-4, 144-145 16.62 366.94 1 91 606 1313D-2H-4, 148-149 16.66 367.53 1 62 583 1313D-2H-5, 2-3 16.70 368.13 1 1 84 648 1313D-2H-5, 6-7 16.74 368.72 1 98 653 1313D-2H-5, 10-11 16.78 369.32 1 1 52 578 1313D-2H-5, 14-15 16.82 369.91 1 1 51 576 1313D-2H-5, 18-19 16.86 370.51 72 598 1313D-2H-5, 22-23 16.90 371.11 1 66 591 1313D-2H-5, 26-27 16.94 371.70 78 595 1313D-2H-5, 30-31 16.98 372.48 68 668 1313D-2H-5, 34-35 17.02 373.43 1 79 603 1313D-2H-5, 38-39 17.06 374.38 1 87 603 1313D-2H-5, 42-44 17.10 375.33 37 568 1313D-2H-5, 46-47 17.14 376.28 1 70 605 1313D-2H-5, 50-51 17.18 377.23 1 70 590 1313D-2H-5, 54-55 17.22 378.18 2 1 51 562 1313D-2H-5, 58-59 17.26 379.13 1 75 595 1313D-2H-5, 62-63 17.30 380.08 1 84 603 1313D-2H-5, 66-67 17.34 381.03 1 1 84 598 1313D-2H-5, 70-71 17.38 381.98 1 62 576 1313D-2H-5, 74-75 17.42 382.93 1 86 614 1313D-2H-5, 78-79 17.46 383.88 2 43 590 1313D-2H-5, 82-83 17.50 384.83 76 598 1313D-2H-5, 86-87 17.54 385.78 2 77 595 1313D-2H-5, 90-91 17.58 386.73 1 1 43 569 1313D-2H-5, 94-95 17.62 387.68 1 59 592 1313D-2H-5, 98-99 17.66 388.63 2 1 74 596 1313D-2H-5, 102-103 17.70 389.58 84 603 1313D-2H-5, 106-107 17.74 390.53 63 584 1313D-2H-5, 110-111 17.78 391.43 68 588

139

s

Hole-Core-Section, Depth Age TOTAL Interval (cm) (cmcd) (ka) COUNT Umbilicosphaera hulburtiana Umbilicosphaera sibogae Umbellosphaera tenui Hayaster perplexus Holodiscolithus macroporus Tetralithoides symeonidesii Placolith side view 1313D-2H-5, 114-115 17.82 392.29 2 35 602 1313D-2H-5, 118-119 17.86 393.14 1 56 632 1313D-2H-5, 122-123 17.90 394.00 92 621 1313D-2H-5, 126-127 17.94 394.86 1 1 53 600 1313D-2H-5, 130-131 17.98 395.71 1 50 576 1313D-2H-5, 134-135 18.02 396.57 1 1 75 598 1313D-2H-5, 138-139 18.06 397.43 38 561 1313D-2H-5, 142-143 18.10 398.29 1 156 674 1313D-2H-5, 146-147 18.14 399.14 54 747 1313D-2H-6, 0-1 18.18 400.00 42 577 1313D-2H-6, 4-5 18.22 400.86 106 697 1313D-2H-6, 8-9 18.26 401.71 1 1 89 630 1313D-2H-6, 12-13 18.30 402.57 1 90 648 1313D-2H-6, 16-17 18.34 403.43 1 78 613 1313D-2H-6, 20-21 18.38 404.29 63 657 1313D-2H-6, 24-25 18.42 405.14 104 745 1313D-2H-6, 28-29 18.46 406.00 78 643 1313D-2H-6, 32-33 18.50 406.86 100 832 1313D-2H-6, 36-37 18.54 407.71 82 608 1313D-2H-6, 40-41 18.58 408.57 79 617 1313D-2H-6, 44-45 18.62 409.43 1 95 617 1313D-2H-6, 48-49 18.66 410.29 73 596 1313D-2H-6, 52-53 18.70 411.14 1 73 589 1313D-2H-6, 56-57 18.74 412.00 61 573 1313D-2H-6, 60-61 18.78 412.86 1 88 617 1313D-2H-6, 64-65 18.82 413.71 1 60 601 1313D-2H-6, 68-69 18.86 414.57 1 1 56 567 1313D-2H-6, 72-73 18.90 415.43 1 47 821 1313D-2H-6, 74-75 18.92 415.86 1 66 836 1313D-2H-6, 76-77 18.94 416.29 75 866 1313A-3H-2, 102-103 18.96 416.71 1 73 602 1313D-2H-6, 80-81 18.98 417.14 1 41 688 1313A-3H-2, 106-107 19.00 417.57 62 686 1313D-2H-6, 84-85 19.02 418.00 1 61 586 1313A-3H-2, 110-111 19.04 418.43 2 35 648 1313A-3H-2, 114-115 19.08 419.29 76 655 1313A-3H-2, 118-119 19.12 420.14 85 801

140

Hole-Core-Section, Depth Age TOTAL Interval (cm) (cmcd) (ka) COUNT Umbilicosphaera hulburtiana Umbilicosphaera sibogae Umbellosphaera tenuis Hayaster perplexus Holodiscolithus macroporus Tetralithoides symeonidesii Placolith side view 1313A-3H-2, 122-123 19.16 421.00 82 828 1313A-3H-2, 126-127 19.20 421.86 78 601 1313A-3H-2, 130-131 19.24 422.71 61 590 1313A-3H-2, 134-135 19.28 423.57 30 536 1313A-3H-2, 138-139 19.32 424.43 55 571 1313A-3H-2, 142-143 19.36 425.29 57 573 1313A-3H-2, 146-147 19.40 426.14 85 594 1313A-3H-3, 0-1 19.44 427.00 1 55 567 1313A-3H-3, 4-5 19.48 428.20 50 557 1313A-3H-3, 8-9 19.52 429.40 1 32 548 1313A-3H-3, 12-13 19.56 430.60 63 776 1313A-3H-3, 16-17 19.60 431.80 62 590 1313A-3H-3, 20-21 19.64 433.00 85 614 1313A-3H-3, 24-25 19.68 433.68 73 589 1313A-3H-3, 28-29 19.72 434.35 58 587 1313A-3H-3, 32-33 19.76 435.03 1 71 580 1313A-3H-3, 36-37 19.80 435.70 86 600 1313A-3H-3, 40-41 19.84 436.38 73 600 1313A-3H-3, 44-45 19.88 437.06 1 62 584 1313A-3H-3, 48-49 19.92 437.73 46 564 1313A-3H-3, 52-53 19.96 438.41 50 561 1313A-3H-3, 56-57 20.00 439.08 75 591 1313A-3H-3, 60-61 20.04 439.76 50 565 1313A-3H-3, 64-65 20.08 440.44 46 561 1313A-3H-3, 68-69 20.12 441.11 1 37 565 1313A-3H-3, 72-73 20.16 441.79 49 558 1313A-3H-3, 76-77 20.20 442.46 1 53 560 1313A-3H-3, 78-79 20.22 442.80 72 587 1313A-3H-3, 82-83 20.26 443.48 1 96 616 1313A-3H-3, 84-85 20.28 443.82 51 570 1313A-3H-3, 86-87 20.30 444.15 1 101 615 1313A-3H-3, 90-91 20.34 444.83 37 554 1313A-3H-3, 94-95 20.38 445.51 1 60 581 1313A-3H-3, 98-99 20.42 446.18 67 589 1313A-3H-3, 102-103 20.46 446.86 77 590 1313A-3H-3, 106-107 20.50 447.54 1 70 644 1313A-3H-3, 110-111 20.54 448.21 4 78 605

141

Hole-Core-Section, Depth Age TOTAL Interval (cm) (cmcd) (ka) COUNT Umbilicosphaera hulburtiana Umbilicosphaera sibogae Umbellosphaera tenuis Hayaster perplexus Holodiscolithus macroporus Tetralithoides symeonidesii Placolith side view 1313A-3H-3, 114-115 20.58 448.89 1 72 597 1313A-3H-3, 118-119 20.62 449.56 50 569 1313A-3H-3, 122-123 20.66 450.24 1 146 844 1313A-3H-3, 124-125 20.68 450.58 85 607 1313A-3H-3, 128-129 20.72 451.25 65 569 1313A-3H-3, 130-131 20.74 451.59 1 50 586 1313A-3H-3, 132-133 20.76 451.93 79 669 1313A-3H-3, 134-135 20.78 452.27 1 92 782 1313A-3H-3, 136-137 20.80 452.61 1 58 727 1313A-3H-3, 138-139 20.82 452.94 1 76 707 1313A-3H-3, 140-141 20.84 453.28 2 58 681 1313A-3H-3, 142-143 20.86 453.62 1 58 660 1313A-3H-3, 144-145 20.88 453.96 1 65 746 1313A-3H-3, 146-147 20.90 454.30 2 86 804 1313A-3H-3, 148-149 20.92 454.63 1 54 638 1313A-3H-4, 0-1 20.94 454.97 1 58 644 1313A-3H-4, 2-3 20.96 455.31 1 2 47 743 1313A-3H-4, 4-5 20.98 455.65 2 35 734 1313A-3H-4, 6-7 21.00 455.99 1 42 606 1313A-3H-4, 10-11 21.04 456.66 1 50 566 1313A-3H-4, 14-15 21.08 457.34 1 1 47 703 1313A-3H-4, 18-19 21.12 458.01 4 1 76 759 1313A-3H-4, 22-23 21.16 458.69 1 1 47 694 1313A-3H-4, 26-27 21.20 459.37 49 564 1313A-3H-4, 30-31 21.24 460.04 1 44 562 1313A-3H-4, 34-35 21.28 460.72 1 59 889 1313A-3H-4, 38-39 21.32 461.39 2 53 756 1313A-3H-4, 42-43 21.36 462.07 1 49 559 1313A-3H-4, 46-47 21.40 462.75 3 55 780 1313A-3H-4, 50-51 21.44 463.42 56 569 1313A-3H-4, 54-55 21.48 464.10 75 784 1313A-3H-4, 58-59 21.52 464.77 2 1 87 942 1313A-3H-4, 62-63 21.56 465.45 54 569 1313A-3H-4, 66-67 21.60 466.13 50 738 1313A-3H-4, 70-71 21.64 466.80 2 1 66 664 1313A-3H-4, 74-75 21.68 467.48 1 1 33 674 1313A-3H-4, 78-79 21.72 468.15 1 91 872

142

Hole-Core-Section, Depth Age TOTAL Interval (cm) (cmcd) (ka) COUNT Umbilicosphaera hulburtiana Umbilicosphaera sibogae Umbellosphaera tenuis Hayaster perplexus Holodiscolithus macroporus Tetralithoides symeonidesii Placolith side view 1313A-3H-4, 82-83 21.76 468.83 3 63 892 1313A-3H-4, 86-87 21.8 469.51 1 92 814 1313A-3H-4, 90-91 21.84 470.18 3 50 733 1313A-3H-4, 94-95 21.88 470.86 2 35 661 1313A-3H-4, 98-99 21.92 471.54 72 625 1313A-3H-4, 102-103 21.96 472.21 2 53 749 1313A-3H-4, 106-107 22.00 472.89 1 69 594 1313A-3H-4, 110-111 22.04 473.56 1 1 53 586 1313A-3H-4, 114-115 22.08 474.24 2 1 72 731 1313A-3H-4, 118-119 22.12 474.92 77 638 1313A-3H-4, 122-123 22.16 475.59 58 890 1313A-3H-4, 126-127 22.20 476.27 3 54 862 1313A-3H-4, 130-131 22.24 476.94 56 574 1313A-3H-4, 134-135 22.28 477.62 1 51 582 1313A-3H-4, 138-139 22.32 478.30 3 65 773 1313A-3H-4, 142-143 22.36 478.97 1 2 67 718 1313A-3H-5, 0-1 22.44 480.32 1 54 615

143 APPENDIX G

DIVERSITY INDICES: SIMPLE DIVERSITY AND THE SHANNON DIVERSITY INDEX

The Shannon diversity index was calculated using PAST (PAleontological STatistics) ver. 1.90, which uses the following equation to calculate the index:

ni  ni  H = −∑ ln  n  n 

Where:

ni = the number of individuals in species i (abundance of species i) n = total number of all individuals

Shannon Depth Simple Diversity (cmcd) Age (ka) Diversity Index 15.88 355.91 14 1.553 15.92 356.51 17 1.514 15.96 357.11 15 1.610 16.00 357.70 17 1.572 16.04 358.30 19 1.809 16.08 358.89 13 1.652 16.12 359.49 16 1.753 16.14 359.79 13 1.709 16.18 360.38 14 1.826 16.22 360.98 15 1.733 16.26 361.57 13 1.741 16.30 362.17 17 1.889 16.34 362.77 16 1.818 16.38 363.36 18 1.900 16.42 363.96 16 1.885 16.46 364.55 20 1.857 16.50 365.15 13 1.781 16.54 365.74 19 1.905 16.58 366.34 18 2.037 16.62 366.94 14 1.856 16.66 367.53 18 2.069 16.70 368.13 17 2.020 16.74 368.72 18 2.033

144 Shannon Depth Simple Diversity (cmcd) Age (ka) Diversity Index 16.78 369.32 17 2.015 16.82 369.91 17 1.983 16.86 370.51 14 1.914 16.90 371.11 14 1.842 16.94 371.70 16 1.918 16.98 372.48 12 1.810 17.02 373.43 14 1.908 17.06 374.38 18 1.869 17.10 375.33 15 1.963 17.14 376.28 17 1.970 17.18 377.23 16 2.030 17.22 378.18 19 2.033 17.26 379.13 19 1.955 17.30 380.08 20 2.134 17.34 381.03 18 2.115 17.38 381.98 17 2.040 17.42 382.93 17 2.095 17.46 383.88 17 2.145 17.50 384.83 15 2.005 17.54 385.78 14 2.036 17.58 386.73 19 2.013 17.62 387.68 16 1.999 17.66 388.63 18 1.866 17.70 389.58 17 1.886 17.74 390.53 19 1.872 17.78 391.43 15 1.847 17.82 392.29 14 1.807 17.86 393.14 18 1.862 17.90 394.00 15 1.788 17.94 394.86 14 1.813 17.98 395.71 16 1.813 18.02 396.57 13 1.766 18.06 397.43 14 1.792 18.10 398.29 19 1.791 18.14 399.14 16 1.884 18.18 400.00 16 1.850 18.22 400.86 17 1.911 18.26 401.71 16 1.864 18.30 402.57 17 1.831 18.34 403.43 16 1.816 18.38 404.29 15 1.794 18.42 405.14 14 1.778 18.46 406.00 14 1.771 18.50 406.86 19 1.973 18.54 407.71 18 1.979

145 Shannon Depth Simple Diversity (cmcd) Age (ka) Diversity Index 18.58 408.57 18 1.874 18.62 409.43 16 1.942 18.66 410.29 14 1.788 18.70 411.14 16 1.749 18.74 412.00 14 1.830 18.78 412.86 15 1.808 18.82 413.71 14 1.834 18.86 414.57 16 1.824 18.90 415.43 16 1.858 18.92 415.86 16 1.902 18.94 416.29 14 1.823 18.96 416.71 20 1.923 18.98 417.14 16 1.894 19.00 417.57 15 1.791 19.02 418.00 14 1.798 19.04 418.43 15 1.838 19.08 419.29 16 1.773 19.12 420.14 15 1.918 19.16 421.00 18 1.859 19.20 421.86 13 1.753 19.24 422.71 18 1.818 19.28 423.57 17 1.898 19.32 424.43 15 1.829 19.36 425.29 14 1.831 19.40 426.14 15 1.722 19.44 427.00 15 1.879 19.48 428.20 16 1.856 19.52 429.40 16 1.893 19.56 430.60 14 1.826 19.60 431.80 18 1.942 19.64 433.00 13 1.894 19.68 433.68 15 1.874 19.72 434.35 12 1.721 19.76 435.03 15 1.757 19.80 435.70 15 1.838 19.84 436.38 16 1.972 19.88 437.06 16 2.038 19.92 437.73 18 1.984 19.96 438.41 15 1.970 20.00 439.08 11 1.830 20.04 439.76 16 1.976 20.08 440.44 16 2.000 20.12 441.11 15 1.929 20.16 441.79 15 1.934 20.20 442.46 17 1.939

146 Shannon Depth Simple Diversity (cmcd) Age (ka) Diversity Index 20.22 442.80 15 1.693 20.26 443.48 15 1.950 20.28 443.82 15 1.820 20.30 444.15 18 1.650 20.34 444.83 15 1.840 20.38 445.51 16 1.792 20.42 446.18 12 1.672 20.46 446.86 12 1.820 20.50 447.54 20 2.052 20.54 448.21 18 2.036 20.58 448.89 16 1.837 20.62 449.56 16 1.918 20.66 450.24 16 1.717 20.68 450.58 16 1.901 20.72 451.25 14 1.944 20.74 451.59 16 2.041 20.76 451.93 15 1.848 20.78 452.27 19 1.943 20.80 452.61 16 1.869 20.82 452.94 17 1.921 20.84 453.28 14 1.874 20.86 453.62 18 1.970 20.88 453.96 15 1.877 20.90 454.30 16 1.926 20.92 454.63 17 2.009 20.94 454.97 16 1.955 20.96 455.31 18 1.907 20.98 455.65 18 1.907 21.00 455.99 16 1.959 21.04 456.66 16 1.793 21.08 457.34 18 1.787 21.12 458.01 17 1.779 21.16 458.69 16 1.781 21.20 459.37 13 1.753 21.24 460.04 19 1.839 21.28 460.72 18 1.852 21.32 461.39 19 1.934 21.36 462.07 12 1.683 21.40 462.75 16 1.881 21.44 463.42 17 1.879 21.48 464.10 17 1.794 21.52 464.77 18 1.807 21.56 465.45 19 1.851 21.60 466.13 18 1.882 21.64 466.80 18 1.889

147 Shannon Depth Simple Diversity (cmcd) Age (ka) Diversity Index 21.68 467.48 18 1.906 21.72 468.15 18 1.845 21.76 468.83 20 1.948 21.80 469.51 21 1.901 21.84 470.18 21 1.950 21.88 470.86 19 1.917 21.92 471.54 17 1.887 21.96 472.21 18 1.968 22.00 472.89 16 1.987 22.04 473.56 19 1.976 22.08 474.24 19 2.044 22.12 474.92 14 1.908 22.16 475.59 17 1.934 22.20 476.27 20 1.988 22.24 476.94 17 1.825 22.28 477.62 17 1.899 22.32 478.30 18 1.839 22.36 478.97 19 1.840 22.44 480.32 17 1.877

148 APPENDIX H

CABFAC FACTOR ANALYSIS FACTOR SCORES

Species Factor 1 Factor 2 Factor 3 Factor 4 Calcidiscus leptoporus small -0.02834 -0.13917 -0.08632 0.01499 Calcidiscus leptoporus 0.11147 -0.05551 0.08234 -0.16065 Calcidiscus quadriperforatus 0.01301 0.00867 0.07446 0.00508 Calciosolenia spp. -0.00105 -0.01775 -0.01220 0.00859 Ceratolithus spp. 0.00077 0.00008 -0.00142 -0.00079 Coccolithus spp. 0.07134 0.02861 -0.03632 -0.03506 Florisphaera profunda 0.18081 -0.13564 0.31512 0.06210 Gephyrocapsa spp. small 0.93990 -3.54320 -3.04270 1.97640 Gephyrocapsa oceanica 4.87030 -0.35841 0.16345 0.25697 Gephyrocapsa oceanica >4 µm 2.12040 0.96621 -1.00840 -1.30240 Gephyrocapsa caribbeanica 0.21819 -3.13760 4.38130 0.39445 Gephyrocapsa caribbeanica >4 µm 0.86536 0.47929 0.58032 -2.82880 Helicosphaera spp. 0.12524 0.06696 0.07202 -0.06385 Pseudoemiliania lacunosa -0.01036 0.00845 0.08393 0.00809 Pseudoemiliania ovata -0.01229 0.00055 0.05995 -0.03547 Reticulofenestra minuta 0.22361 -0.61474 0.38660 0.06601 Reticulofenestra minutula 1.59390 1.04110 1.30140 -0.13998 Reticulofenestra pseudoumbilicus small 0.01228 0.00443 -0.00576 -0.00027 Reticulofenestra producta -0.65548 -2.77700 -0.88146 -3.78860 Reticulofenestra producta large 0.10976 -0.28469 -0.63770 -2.17980 Oolithotus antillarum -0.03244 -0.06032 -0.01583 0.00127 Oolithotus fragilis -0.00970 -0.06366 -0.04578 0.02988 Pontosphaera spp. 0.00158 0.00205 0.01809 -0.01455 Rhabdosphaera spp. 0.02608 -0.00554 -0.00281 -0.00219 Syracosphaera spp. 0.05382 -0.01137 -0.00043 -0.05697 Thoracosphaera spp. 0.01203 -0.00067 -0.00621 -0.00217 Umbilicosphaera foliosa -0.01142 -0.02921 -0.00351 0.00238 Umbilicosphaera hulburtiana 0.01240 0.00153 0.00322 -0.05857 Umbilicosphaera sibogae -0.00259 -0.00804 0.00313 -0.00033 Umbellosphaera tenuis 0.00156 -0.00146 -0.00196 0.00209 Hayaster perplexus 0.00049 -0.00087 -0.00206 -0.00202 Holodiscolithus macroporus 0.00008 -0.00043 -0.00129 -0.00121 Tetralithoides symeonidesii -0.00083 -0.00056 0.00007 -0.00189

149 APPENDIX I

CABFAC FACTOR ANALYSIS VARIMAX FACTOR SCORES

Depth (cmcd) Age ( k a) Factor 1 Factor 2 Factor 3 Factor 4 15.88 355.91 0.95793 -0.23135 0.06477 -0.06249 15.92 356.51 0.95284 -0.22534 0.03895 -0.05219 15.96 357.11 0.95281 -0.26436 0.04820 -0.04538 16.00 357.70 0.94345 -0.28320 0.12010 -0.06080 16.04 358.30 0.90618 -0.41041 0.03100 -0.03872 16.08 358.89 0.91449 -0.37119 0.12354 -0.05258 16.12 359.49 0.90714 -0.38938 0.04882 -0.05949 16.14 359.79 0.93067 -0.33419 0.06655 -0.10998 16.18 360.38 0.87345 -0.46361 0.10283 -0.07983 16.22 360.98 0.87040 -0.45064 0.15050 -0.06281 16.26 361.57 0.89522 -0.41423 0.08314 -0.10780 16.30 362.17 0.79191 -0.56466 0.16533 -0.13417 16.34 362.77 0.83262 -0.50954 0.15430 -0.11595 16.38 363.36 0.81612 -0.50078 0.13623 -0.15916 16.42 363.96 0.80188 -0.54158 0.14838 -0.18765 16.46 364.55 0.76459 -0.57641 0.17302 -0.19236 16.50 365.15 0.83022 -0.48998 0.17574 -0.17363 16.54 365.74 0.79124 -0.57422 0.17066 -0.09049 16.58 366.34 0.68729 -0.69175 0.10633 -0.17910 16.62 366.94 0.67081 -0.66336 0.20341 -0.24377 16.66 367.53 0.67674 -0.69228 0.09058 -0.18500 16.70 368.13 0.60038 -0.74408 0.17479 -0.22209 16.74 368.72 0.52622 -0.79395 0.19556 -0.21421 16.78 369.32 0.56201 -0.72334 0.26457 -0.26659 16.82 369.91 0.60816 -0.65569 0.33358 -0.26959 16.86 370.51 0.62455 -0.69389 0.32080 -0.14945 16.90 371.11 0.67118 -0.62751 0.33125 -0.18025 16.94 371.70 0.70043 -0.60107 0.33266 -0.18185 16.98 372.48 0.61110 -0.67334 0.35953 -0.17750 17.02 373.43 0.71091 -0.66477 0.13975 -0.13380 17.06 374.38 0.64813 -0.65032 0.35003 -0.12973 17.10 375.33 0.58443 -0.75087 0.25294 -0.15076 17.14 376.28 0.58333 -0.72247 0.31550 -0.18311 17.18 377.23 0.55495 -0.77161 0.26560 -0.13960 17.22 378.18 0.62943 -0.67700 0.31190 -0.18795 17.26 379.13 0.57672 -0.67515 0.41335 -0.18471 17.30 380.08 0.50416 -0.82456 0.14775 -0.15480 17.34 381.03 0.49368 -0.78720 0.25059 -0.21976 17.38 381.98 0.39643 -0.80363 0.27455 -0.26648 17.42 382.93 0.52962 -0.77503 0.18409 -0.22839

150 Depth (cmcd) Age ( k a) Factor 1 Factor 2 Factor 3 Factor 4 17.46 383.88 0.48817 -0.79320 0.15632 -0.21688 17.50 384.83 0.42768 -0.81478 0.20838 -0.30511 17.54 385.78 0.54080 -0.69117 0.27570 -0.34435 17.58 386.73 0.53853 -0.75475 0.26075 -0.25614 17.62 387.68 0.59735 -0.74693 0.27088 -0.02565 17.66 388.63 0.70106 -0.64572 0.25542 0.04369 17.70 389.58 0.75367 -0.62703 0.13630 0.03300 17.74 390.53 0.65004 -0.69565 0.28118 -0.03011 17.78 391.43 0.69880 -0.67697 0.20900 -0.04716 17.82 392.29 0.69470 -0.68881 0.13830 0.04641 17.86 393.14 0.61889 -0.75043 0.17063 -0.03260 17.90 394.00 0.63443 -0.68187 0.29744 -0.08034 17.94 394.86 0.62033 -0.69138 0.27540 -0.11052 17.98 395.71 0.61036 -0.74566 0.20535 -0.05390 18.02 396.57 0.65398 -0.69187 0.24656 -0.09789 18.06 397.43 0.58137 -0.73292 0.28859 -0.15705 18.10 398.29 0.58005 -0.70620 0.36564 -0.07584 18.14 399.14 0.55934 -0.76279 0.29730 -0.08180 18.18 400.00 0.47526 -0.81831 0.30404 -0.05936 18.22 400.86 0.49550 -0.80268 0.31970 -0.03789 18.26 401.71 0.47595 -0.81593 0.31409 -0.04295 18.30 402.57 0.41192 -0.85601 0.29062 -0.08254 18.34 403.43 0.44623 -0.85136 0.19271 -0.17248 18.38 404.29 0.43930 -0.81438 0.33834 -0.13364 18.42 405.14 0.42235 -0.86408 0.19443 -0.14251 18.46 406.00 0.37623 -0.83014 0.36901 -0.13949 18.50 406.86 0.49348 -0.80280 0.30687 -0.10280 18.54 407.71 0.48743 -0.80560 0.27595 -0.16148 18.58 408.57 0.44230 -0.80743 0.34832 -0.15128 18.62 409.43 0.41563 -0.85300 0.22138 -0.21073 18.66 410.29 0.42837 -0.79183 0.33745 -0.24028 18.70 411.14 0.42925 -0.80979 0.37718 -0.09202 18.74 412.00 0.40117 -0.85574 0.29134 -0.11368 18.78 412.86 0.39791 -0.84148 0.34692 -0.08168 18.82 413.71 0.33839 -0.88466 0.19056 -0.21119 18.86 414.57 0.32761 -0.86125 0.32105 -0.18557 18.90 415.43 0.37700 -0.91105 0.12465 -0.06211 18.92 415.86 0.38876 -0.88627 0.16071 -0.17351 18.94 416.29 0.41085 -0.86223 0.22173 -0.17597 18.96 416.71 0.34463 -0.89107 0.22381 -0.16522 18.98 417.14 0.42415 -0.86372 0.22919 -0.13917 19.00 417.57 0.35994 -0.87769 0.23944 -0.17795 19.02 418.00 0.38852 -0.84688 0.33152 -0.06945 19.04 418.43 0.34891 -0.91874 0.14555 -0.07463 19.08 419.29 0.34970 -0.89462 0.23144 -0.10212 19.12 420.14 0.45871 -0.87929 0.03812 -0.06656 19.16 421.00 0.42239 -0.88662 0.15049 -0.07995

151 Depth (cmcd) Age ( k a) Factor 1 Factor 2 Factor 3 Factor 4 19.20 421.86 0.42160 -0.89580 0.08047 0.00151 19.24 422.71 0.39207 -0.89850 0.14574 -0.00046 19.28 423.57 0.41457 -0.89765 -0.00642 0.00436 19.32 424.43 0.45372 -0.87570 -0.08422 0.03150 19.36 425.29 0.48243 -0.87160 0.03348 0.02198 19.40 426.14 0.62274 -0.75432 0.17613 -0.00874 19.44 427.00 0.56081 -0.78951 0.18932 -0.09460 19.48 428.20 0.65919 -0.69691 0.25447 -0.08060 19.52 429.40 0.71149 -0.65068 0.21341 -0.08448 19.56 430.60 0.65344 -0.72972 0.16337 -0.10783 19.60 431.80 0.75035 -0.49918 0.40915 -0.06325 19.64 433.00 0.75971 -0.52498 0.36381 -0.08408 19.68 433.68 0.76967 -0.48764 0.38971 -0.10044 19.72 434.35 0.79409 -0.44413 0.37542 -0.14264 19.76 435.03 0.76048 -0.49561 0.34398 -0.16949 19.80 435.70 0.73775 -0.54588 0.37355 -0.12599 19.84 436.38 0.68181 -0.58535 0.37795 -0.17634 19.88 437.06 0.63425 -0.62869 0.35731 -0.24865 19.92 437.73 0.68125 -0.63573 0.31935 -0.12666 19.96 438.41 0.65730 -0.63757 0.35168 -0.09405 20.00 439.08 0.67214 -0.63275 0.34306 -0.15143 20.04 439.76 0.77486 -0.49025 0.31837 -0.14028 20.08 440.44 0.76609 -0.47314 0.33442 -0.22062 20.12 441.11 0.72560 -0.57686 0.29184 -0.15272 20.16 441.79 0.68786 -0.58722 0.36014 -0.04251 20.20 442.46 0.72344 -0.51854 0.36422 -0.13549 20.22 442.80 0.72489 -0.47743 0.47164 -0.12584 20.26 443.48 0.71841 -0.56702 0.37487 -0.05570 20.28 443.82 0.65567 -0.51803 0.52855 -0.09503 20.30 444.15 0.73614 -0.47965 0.43153 -0.14626 20.34 444.83 0.63335 -0.57627 0.43730 -0.22287 20.38 445.51 0.68403 -0.52378 0.46183 -0.18426 20.42 446.18 0.66713 -0.54751 0.41465 -0.22741 20.46 446.86 0.75541 -0.53618 0.35982 -0.08603 20.50 447.54 0.65287 -0.50329 0.26684 -0.43592 20.54 448.21 0.71516 -0.54923 0.28324 -0.26940 20.58 448.89 0.72881 -0.52029 0.37410 -0.21826 20.62 449.56 0.71815 -0.58059 0.31223 -0.20358 20.66 450.24 0.69857 -0.49268 0.45377 -0.19528 20.68 450.58 0.69721 -0.53470 0.30177 -0.34755 20.72 451.25 0.63355 -0.63026 0.27296 -0.34840 20.74 451.59 0.67199 -0.63406 0.22382 -0.29066 20.76 451.93 0.74310 -0.55219 0.23045 -0.26799 20.78 452.27 0.65999 -0.60189 0.28537 -0.31422 20.80 452.61 0.67656 -0.61376 0.26797 -0.29686 20.82 452.94 0.69255 -0.56626 0.28669 -0.33253 20.84 453.28 0.66557 -0.60905 0.20588 -0.36541

152 Depth (cmcd) Age ( k a) Factor 1 Factor 2 Factor 3 Factor 4 20.86 453.62 0.55944 -0.71253 0.24188 -0.34284 20.88 453.96 0.62445 -0.71384 0.18102 -0.25821 20.90 454.30 0.55837 -0.68194 0.15084 -0.43528 20.92 454.63 0.65164 -0.62535 0.12734 -0.39502 20.94 454.97 0.58354 -0.71484 0.13553 -0.35867 20.96 455.31 0.59343 -0.67344 0.29639 -0.31729 20.98 455.65 0.72129 -0.48117 0.29235 -0.39083 21.00 455.99 0.69774 -0.45551 0.19056 -0.48278 21.04 456.66 0.73881 -0.49898 0.36664 -0.22549 21.08 457.34 0.80397 -0.41793 0.32732 -0.25603 21.12 458.01 0.80274 -0.44058 0.33197 -0.20867 21.16 458.69 0.76314 -0.47221 0.40385 -0.14723 21.20 459.37 0.85408 -0.31600 0.35029 -0.19543 21.24 460.04 0.78731 -0.42841 0.40073 -0.13558 21.28 460.72 0.78364 -0.38743 0.38178 -0.20281 21.32 461.39 0.77482 -0.45483 0.39017 -0.12559 21.36 462.07 0.69657 -0.48189 0.47461 -0.17171 21.40 462.75 0.70252 -0.54423 0.37098 -0.25931 21.44 463.42 0.73164 -0.56290 0.34709 -0.13227 21.48 464.10 0.74335 -0.52690 0.39221 -0.07619 21.52 464.77 0.79304 -0.47521 0.33877 -0.07044 21.56 465.45 0.76571 -0.47102 0.42793 -0.06772 21.60 466.13 0.78308 -0.45291 0.39676 -0.09372 21.64 466.80 0.70033 -0.53073 0.46969 -0.06840 21.68 467.48 0.69806 -0.51922 0.46899 -0.08142 21.72 468.15 0.57425 -0.63216 0.50437 -0.09824 21.76 468.83 0.59817 -0.63825 0.46585 -0.10901 21.80 469.51 0.60990 -0.61538 0.44598 -0.19639 21.84 470.18 0.57320 -0.70060 0.37522 -0.18760 21.88 470.86 0.49168 -0.69241 0.42997 -0.27492 21.92 471.54 0.51344 -0.71554 0.41597 -0.21751 21.96 472.21 0.57088 -0.65546 0.41440 -0.25943 22.00 472.89 0.68035 -0.57615 0.40174 -0.06802 22.04 473.56 0.62867 -0.61308 0.44981 -0.04727 22.08 474.24 0.57085 -0.71301 0.38402 -0.03669 22.12 474.92 0.62300 -0.68656 0.35542 -0.06228 22.16 475.59 0.55370 -0.74972 0.34997 -0.02241 22.20 476.27 0.46600 -0.82909 0.29015 -0.03489 22.24 476.94 0.67531 -0.60112 0.36389 -0.09272 22.28 477.62 0.49484 -0.73925 0.37367 -0.20500 22.32 478.30 0.54090 -0.71426 0.33243 -0.24654 22.36 478.97 0.48661 -0.76610 0.33505 -0.20438 22.44 480.32 0.48100 -0.82563 0.21653 -0.15341

153 APPENDIX J

N RATIO CALCULATIONS

The following equation was used to calculate the N Ratio (Flores et al., 2000):

R N = R + F

Where: N = N Ratio R = small Noelaerhabdaceae F = Florisphaera profunda

Percent

>4 μm

spp. small

Hole-Core-Section, Depth Interval (cm) (cmcd) Age (ka) N Ratio Florisphaera profunda Gephyrocapsa Gephyrocapsa oceanica Gephyrocapsa oceanica Reticulofenestra minuta 1313D-2H-4, 70-71 15.88 355.91 0.97 9.53 38.52 16.34 1.75 0.9206 1313D-2H-4, 74-75 15.92 356.51 0.59 8.88 45.36 14.40 1.58 0.9464 1313D-2H-4, 78-79 15.96 357.11 0.77 11.58 35.52 17.18 2.12 0.9467 1313D-2H-4, 82-83 16.00 357.70 2.50 9.40 37.43 15.36 3.07 0.8333 1313D-2H-4, 86-87 16.04 358.30 1.36 14.95 34.17 12.23 1.75 0.9247 1313D-2H-4, 90-91 16.08 358.89 1.35 11.97 36.10 11.00 1.93 0.9114 1313D-2H-4, 94-95 16.12 359.49 1.95 14.79 29.77 15.37 1.36 0.8925 1313D-2H-4, 96-97 16.14 359.79 1.18 11.76 33.14 13.33 2.16 0.9221 1313D-2H-4, 100-101 16.18 360.38 3.36 14.02 30.47 9.53 2.99 0.8349 1313D-2H-4, 104-105 16.22 360.98 0.97 12.04 35.53 9.32 2.72 0.9383 1313D-2H-4, 108-109 16.26 361.57 1.73 13.29 31.02 12.72 1.16 0.8929 1313D-2H-4, 112-113 16.30 362.17 1.34 13.63 26.30 9.98 1.92 0.9205 1313D-2H-4, 116-117 16.34 362.77 1.55 12.62 29.71 11.07 1.75 0.9024 1313D-2H-4, 120-121 16.38 363.36 1.36 13.59 23.69 13.40 2.52 0.9222 1313D-2H-4, 124-125 16.42 363.96 1.74 12.74 25.68 10.42 3.67 0.9043

154 Percent

>4 μm

spp. small

Hole-Core-Section, Depth Interval (cm) (cmcd) Age (ka) N Ratio Gephyrocapsa oceanica Gephyrocapsa oceanica Florisphaera profunda Gephyrocapsa Reticulofenestra minuta 1313D-2H-4, 128-129 16.46 364.55 1.15 12.84 26.25 9.58 1.34 0.9250 1313D-2H-4, 132-133 16.50 365.15 1.54 11.56 28.90 9.83 2.12 0.8987 1313D-2H-4, 136-137 16.54 365.74 1.88 14.88 28.06 7.72 1.88 0.8990 1313D-2H-4, 140-141 16.58 366.34 2.28 16.16 22.81 5.32 3.99 0.8983 1313D-2H-4, 144-145 16.62 366.94 1.17 11.65 26.02 4.47 4.08 0.9310 1313D-2H-4, 148-149 16.66 367.53 1.92 15.36 23.99 3.65 7.68 0.9231 1313D-2H-5, 2-3 16.70 368.13 1.95 14.54 21.10 3.19 6.56 0.9154 1313D-2H-5, 6-7 16.74 368.72 2.16 14.95 19.82 1.62 6.31 0.9077 1313D-2H-5, 10-11 16.78 369.32 3.42 10.08 21.48 2.66 7.03 0.8333 1313D-2H-5, 14-15 16.82 369.91 2.29 7.43 23.81 2.48 6.48 0.8588 1313D-2H-5, 18-19 16.86 370.51 1.71 11.98 23.38 3.61 5.32 0.9100 1313D-2H-5, 22-23 16.90 371.11 2.86 9.71 25.33 5.14 5.33 0.8404 1313D-2H-5, 26-27 16.94 371.70 2.32 9.28 26.11 3.68 4.84 0.8588 1313D-2H-5, 30-31 16.98 372.48 2.17 9.83 23.00 5.17 7.17 0.8870 1313D-2H-5, 34-35 17.02 373.43 2.29 16.22 26.15 3.05 5.53 0.9048 1313D-2H-5, 38-39 17.06 374.38 1.16 11.63 25.19 2.91 4.26 0.9318 1313D-2H-5, 42-44 17.10 375.33 1.51 14.88 20.72 3.01 7.16 0.9360 1313D-2H-5, 46-47 17.14 376.28 2.24 11.78 22.43 1.87 6.17 0.8889 1313D-2H-5, 50-51 17.18 377.23 3.27 14.23 20.96 2.12 6.15 0.8618 1313D-2H-5, 54-55 17.22 378.18 1.76 10.76 23.29 1.76 7.63 0.9126 1313D-2H-5, 58-59 17.26 379.13 2.31 8.27 23.65 1.35 5.38 0.8554 1313D-2H-5, 62-63 17.30 380.08 1.93 17.34 18.50 0.96 9.44 0.9329 1313D-2H-5, 66-67 17.34 381.03 1.75 12.45 19.26 0.78 8.95 0.9244 1313D-2H-5, 70-71 17.38 381.98 1.17 10.70 16.93 0.78 11.48 0.9500 1313D-2H-5, 74-75 17.42 382.93 2.27 13.26 20.45 1.14 9.09 0.9077 1313D-2H-5, 78-79 17.46 383.88 2.93 14.63 17.18 1.10 12.61 0.9030 1313D-2H-5, 82-83 17.50 384.83 1.92 13.03 15.90 1.92 8.81 0.9194 1313D-2H-5, 86-87 17.54 385.78 2.12 7.53 21.62 2.12 5.02 0.8553 1313D-2H-5, 90-91 17.58 386.73 2.09 12.36 18.63 3.42 5.70 0.8962 1313D-2H-5, 94-95 17.62 387.68 2.06 16.70 22.33 1.88 7.69 0.9220 1313D-2H-5, 98-99 17.66 388.63 2.68 16.09 29.89 1.53 8.81 0.9028 1313D-2H-5, 102-103 17.70 389.58 2.89 18.50 30.44 2.89 7.71 0.9007 1313D-2H-5, 106-107 17.74 390.53 2.50 15.55 26.30 2.30 6.91 0.9000 1313D-2H-5, 110-111 17.78 391.43 2.88 16.92 27.12 3.46 4.62 0.8819 1313D-2H-5, 114-115 17.82 392.29 3.17 21.87 26.10 3.70 5.29 0.8953 1313D-2H-5, 118-119 17.86 393.14 2.26 20.31 22.05 3.99 5.21 0.9188

155 Percent

>4 μm

anica spp. small

Hole-Core-Section, Depth Interval (cm) (cmcd) Age (ka) N Ratio Gephyrocapsa oce Gephyrocapsa oceanica Florisphaera profunda Gephyrocapsa Reticulofenestra minuta 1313D-2H-5, 122-123 17.90 394.00 2.46 15.69 23.25 3.78 3.59 0.8870 1313D-2H-5, 126-127 17.94 394.86 3.66 16.09 20.11 5.30 3.66 0.8438 1313D-2H-5, 130-131 17.98 395.71 3.04 19.58 23.38 2.28 2.28 0.8779 1313D-2H-5, 134-135 18.02 396.57 4.40 15.49 24.47 5.54 2.10 0.8000 1313D-2H-5, 138-139 18.06 397.43 2.29 14.72 20.84 5.16 3.25 0.8868 1313D-2H-5, 142-143 18.10 398.29 2.32 13.90 23.75 3.09 2.12 0.8737 1313D-2H-5, 146-147 18.14 399.14 3.75 16.02 21.65 1.88 4.47 0.8452 1313D-2H-6, 0-1 18.18 400.00 2.99 17.76 20.37 0.75 3.36 0.8760 1313D-2H-6, 4-5 18.22 400.86 3.72 16.75 21.83 0.68 3.55 0.8451 1313D-2H-6, 8-9 18.26 401.71 4.07 17.93 19.04 1.48 4.25 0.8451 1313D-2H-6, 12-13 18.30 402.57 3.58 18.82 17.20 0.54 3.41 0.8611 1313D-2H-6, 16-17 18.34 403.43 2.62 17.57 20.19 0.56 4.49 0.8939 1313D-2H-6, 20-21 18.38 404.29 2.36 14.31 20.71 0.67 3.20 0.8814 1313D-2H-6, 24-25 18.42 405.14 2.81 18.88 19.97 0.47 2.81 0.8854 1313D-2H-6, 28-29 18.46 406.00 4.25 14.51 17.17 0.71 2.30 0.7983 1313D-2H-6, 32-33 18.50 406.86 4.10 15.30 20.90 0.55 3.96 0.8246 1313D-2H-6, 36-37 18.54 407.71 1.71 14.45 20.91 0.76 4.18 0.9159 1313D-2H-6, 40-41 18.58 408.57 3.16 14.31 18.77 0.56 2.60 0.8426 1313D-2H-6, 44-45 18.62 409.43 1.53 16.09 17.43 0.77 4.60 0.9310 1313D-2H-6, 48-49 18.66 410.29 1.72 10.90 20.65 0.38 4.40 0.8989 1313D-2H-6, 52-53 18.70 411.14 2.33 15.12 19.57 0.78 3.49 0.8889 1313D-2H-6, 56-57 18.74 412.00 1.76 17.77 17.77 0.59 2.73 0.9211 1313D-2H-6, 60-61 18.78 412.86 2.46 17.20 17.39 0.19 3.02 0.8917 1313D-2H-6, 64-65 18.82 413.71 1.85 17.74 15.71 0.55 4.62 0.9237 1313D-2H-6, 68-69 18.86 414.57 1.57 15.46 14.87 0.39 2.35 0.9192 1313D-2H-6, 72-73 18.90 415.43 1.68 24.68 16.15 0.00 2.97 0.9427 1313D-2H-6, 74-75 18.92 415.86 1.56 19.87 16.49 0.65 2.47 0.9348 1313D-2H-6, 76-77 18.94 416.29 0.88 17.95 17.95 0.63 2.40 0.9583 1313A-3H-2, 102-103 18.96 416.71 0.95 19.47 14.18 0.38 2.27 0.9583 1313D-2H-6, 80-81 18.98 417.14 0.93 18.24 17.47 0.93 5.10 0.9618 1313A-3H-2, 106-107 19.00 417.57 0.64 17.95 16.67 0.32 2.56 0.9697 1313D-2H-6, 84-85 19.02 418.00 0.76 18.67 15.43 1.33 4.00 0.9675 1313A-3H-2, 110-111 19.04 418.43 1.47 24.31 14.19 0.16 4.89 0.9521 1313A-3H-2, 114-115 19.08 419.29 0.52 21.42 14.51 1.04 2.42 0.9787 1313A-3H-2, 118-119 19.12 420.14 0.84 25.98 17.32 0.56 5.17 0.9738 1313A-3H-2, 122-123 19.16 421.00 0.67 23.19 16.49 1.07 4.16 0.9761

156 Percent

>4 μm

spp. small

sa oceanica

Hole-Core-Section, Depth Interval (cm) (cmcd) Age (ka) N Ratio Gephyrocapsa oceanica Gephyrocap Florisphaera profunda Gephyrocapsa Reticulofenestra minuta 1313A-3H-2, 126-127 19.20 421.86 1.15 28.30 16.83 1.15 3.25 0.9649 1313A-3H-2, 130-131 19.24 422.71 0.38 26.84 15.31 0.38 3.40 0.9877 1313A-3H-2, 134-135 19.28 423.57 0.79 29.64 15.22 0.40 7.11 0.9789 1313A-3H-2, 138-139 19.32 424.43 0.97 32.75 17.83 0.58 4.46 0.9746 1313A-3H-2, 142-143 19.36 425.29 0.58 27.71 20.16 0.58 6.20 0.9831 1313A-3H-2, 146-147 19.40 426.14 0.98 20.04 29.08 0.98 4.32 0.9612 1313A-3H-3, 0-1 19.44 427.00 0.98 17.38 25.00 1.17 5.27 0.9587 1313A-3H-3, 4-5 19.48 428.20 0.39 14.79 27.42 2.37 5.13 0.9806 1313A-3H-3, 8-9 19.52 429.40 1.16 13.76 30.23 3.68 4.65 0.9406 1313A-3H-3, 12-13 19.56 430.60 1.26 17.39 25.39 4.35 3.93 0.9441 1313A-3H-3, 16-17 19.60 431.80 3.98 6.44 29.36 4.36 8.14 0.7857 1313A-3H-3, 20-21 19.64 433.00 3.40 9.07 26.47 5.48 6.43 0.8200 1313A-3H-3, 24-25 19.68 433.68 1.16 7.36 27.33 6.40 6.98 0.9250 1313A-3H-3, 28-29 19.72 434.35 3.97 6.43 28.54 9.26 3.40 0.7123 1313A-3H-3, 32-33 19.76 435.03 1.96 7.07 29.86 6.29 5.70 0.8667 1313A-3H-3, 36-37 19.80 435.70 2.14 8.37 26.85 6.81 5.45 0.8659 1313A-3H-3, 40-41 19.84 436.38 1.90 7.59 24.67 4.93 7.78 0.8901 1313A-3H-3, 44-45 19.88 437.06 2.87 7.85 21.07 4.98 7.47 0.8421 1313A-3H-3, 48-49 19.92 437.73 1.74 10.42 26.83 2.51 7.34 0.9109 1313A-3H-3, 52-53 19.96 438.41 1.76 10.96 23.87 2.15 10.57 0.9244 1313A-3H-3, 56-57 20.00 439.08 1.74 10.66 24.81 3.29 6.78 0.9091 1313A-3H-3, 60-61 20.04 439.76 2.72 8.35 25.24 5.63 10.29 0.8727 1313A-3H-3, 64-65 20.08 440.44 1.75 7.38 22.33 7.38 7.57 0.8953 1313A-3H-3, 68-69 20.12 441.11 2.84 11.55 22.73 5.11 8.14 0.8739 1313A-3H-3, 72-73 20.16 441.79 0.59 11.79 22.79 3.54 9.82 0.9735 1313A-3H-3, 76-77 20.20 442.46 1.18 9.07 22.49 4.73 8.88 0.9381 1313A-3H-3, 78-79 20.22 442.80 2.52 5.44 27.96 6.60 1.75 0.7400 1313A-3H-3, 82-83 20.26 443.48 2.50 9.81 26.35 3.27 7.50 0.8738 1313A-3H-3, 84-85 20.28 443.82 1.73 5.01 24.47 3.47 7.13 0.8750 1313A-3H-3, 86-87 20.30 444.15 2.33 5.25 29.96 7.59 0.97 0.7273 1313A-3H-3, 90-91 20.34 444.83 2.32 7.93 19.54 6.96 2.90 0.8235 1313A-3H-3, 94-95 20.38 445.51 2.11 5.76 24.38 6.33 3.45 0.8136 1313A-3H-3, 98-99 20.42 446.18 0.96 6.90 22.61 9.96 3.45 0.9153 1313A-3H-3, 102-103 20.46 446.86 1.95 9.55 28.85 4.29 3.90 0.8734 1313A-3H-3, 106-107 20.50 447.54 2.09 7.67 16.38 8.19 3.66 0.8442 1313A-3H-3, 110-111 20.54 448.21 2.66 9.68 19.92 8.92 2.47 0.8205

157 Percent

>4 μm

spp. small

Hole-Core-Section, Depth Interval (cm) (cmcd) Age (ka) N Ratio Gephyrocapsa oceanica Gephyrocapsa oceanica Florisphaera profunda Gephyrocapsa Reticulofenestra minuta 1313A-3H-3, 114-115 20.58 448.89 3.05 6.48 26.10 7.24 2.86 0.7538 1313A-3H-3, 118-119 20.62 449.56 2.89 9.25 26.40 4.43 3.28 0.8125 1313A-3H-3, 122-123 20.66 450.24 1.86 2.44 30.80 5.01 1.43 0.6750 1313A-3H-3, 124-125 20.68 450.58 1.72 7.47 21.84 6.90 2.30 0.8500 1313A-3H-3, 128-129 20.72 451.25 0.60 9.13 20.44 5.75 3.37 0.9545 1313A-3H-3, 130-131 20.74 451.59 2.99 11.38 21.27 4.29 3.92 0.8367 1313A-3H-3, 132-133 20.76 451.93 0.68 11.19 23.22 7.80 1.86 0.9506 1313A-3H-3, 134-135 20.78 452.27 0.87 6.96 26.38 4.06 1.88 0.9104 1313A-3H-3, 136-137 20.80 452.61 0.90 8.97 24.81 4.93 4.48 0.9375 1313A-3H-3, 138-139 20.82 452.94 0.95 7.92 23.30 5.71 2.69 0.9178 1313A-3H-3, 140-141 20.84 453.28 0.96 10.11 22.31 5.30 3.21 0.9326 1313A-3H-3, 142-143 20.86 453.62 1.00 10.47 18.77 5.48 4.82 0.9388 1313A-3H-3, 144-145 20.88 453.96 1.03 13.80 21.88 5.43 3.82 0.9449 1313A-3H-3, 146-147 20.90 454.30 1.53 10.45 19.78 4.04 3.76 0.9027 1313A-3H-3, 148-149 20.92 454.63 1.37 10.79 21.23 5.48 2.91 0.9091 1313A-3H-4, 0-1 20.94 454.97 1.54 12.63 19.45 5.80 4.61 0.9182 1313A-3H-4, 2-3 20.96 455.31 1.44 9.77 19.25 6.75 4.17 0.9065 1313A-3H-4, 4-5 20.98 455.65 1.57 5.87 21.75 9.01 2.72 0.8451 1313A-3H-4, 6-7 21.00 455.99 1.77 6.38 17.73 12.23 4.26 0.8571 1313A-3H-4, 10-11 21.04 456.66 1.74 6.59 24.42 10.85 1.16 0.8163 1313A-3H-4, 14-15 21.08 457.34 2.13 5.34 27.13 10.21 1.37 0.7586 1313A-3H-4, 18-19 21.12 458.01 2.93 6.30 28.99 8.05 0.88 0.7101 1313A-3H-4, 22-23 21.16 458.69 2.94 5.26 29.37 6.96 2.78 0.7324 1313A-3H-4, 26-27 21.20 459.37 1.75 3.50 29.32 10.87 1.75 0.7500 1313A-3H-4, 30-31 21.24 460.04 2.12 5.98 27.61 6.76 3.09 0.8103 1313A-3H-4, 34-35 21.28 460.72 3.01 5.18 25.30 7.11 2.17 0.7093 1313A-3H-4, 38-39 21.32 461.39 3.84 5.97 27.88 6.40 2.28 0.6824 1313A-3H-4, 42-43 21.36 462.07 0.78 5.49 24.12 6.86 1.96 0.9048 1313A-3H-4, 46-47 21.40 462.75 3.72 6.34 24.41 6.21 2.07 0.6932 1313A-3H-4, 50-51 21.44 463.42 1.36 9.75 27.29 4.87 1.75 0.8939 1313A-3H-4, 54-55 21.48 464.10 1.69 8.46 31.31 3.53 2.26 0.8636 1313A-3H-4, 58-59 21.52 464.77 2.22 7.49 34.85 3.74 3.74 0.8348 1313A-3H-4, 62-63 21.56 465.45 1.36 6.80 28.93 6.60 3.88 0.8871 1313A-3H-4, 66-67 21.60 466.13 1.45 6.25 30.67 3.34 6.10 0.8947 1313A-3H-4, 70-71 21.64 466.80 1.84 6.86 27.26 3.51 6.19 0.8764 1313A-3H-4, 74-75 21.68 467.48 2.03 7.80 22.93 5.93 7.33 0.8818

158 Percent

>4 μm

small spp.

Hole-Core-Section, Depth Interval (cm) (cmcd) Age (ka) N Ratio Gephyrocapsa oceanica Gephyrocapsa oceanica Florisphaera profunda Gephyrocapsa Reticulofenestra minuta 1313A-3H-4, 78-79 21.72 468.15 1.54 9.09 21.64 2.30 4.99 0.9016 1313A-3H-4, 82-83 21.76 468.83 1.81 9.41 22.20 1.81 5.91 0.8944 1313A-3H-4, 86-87 21.8 469.51 0.83 8.45 22.02 2.63 3.60 0.9355 1313A-3H-4, 90-91 21.84 470.18 1.02 11.27 20.20 2.78 5.27 0.9417 1313A-3H-4, 94-95 21.88 470.86 1.76 8.79 16.77 3.51 4.79 0.8854 1313A-3H-4, 98-99 21.92 471.54 1.45 9.22 20.98 1.27 4.34 0.9036 1313A-3H-4, 102-103 21.96 472.21 1.87 8.19 19.25 3.16 4.89 0.8750 1313A-3H-4, 106-107 22.00 472.89 1.90 10.10 23.81 1.90 6.67 0.8980 1313A-3H-4, 110-111 22.04 473.56 2.25 10.51 21.01 3.19 7.13 0.8868 1313A-3H-4, 114-115 22.08 474.24 3.64 13.66 20.18 1.52 6.53 0.8471 1313A-3H-4, 118-119 22.12 474.92 2.50 13.73 21.57 3.21 7.13 0.8931 1313A-3H-4, 122-123 22.16 475.59 2.28 15.99 20.31 1.92 6.61 0.9082 1313A-3H-4, 126-127 22.20 476.27 2.48 18.81 17.08 1.61 6.44 0.9107 1313A-3H-4, 130-131 22.24 476.94 2.90 8.49 32.82 1.93 2.12 0.7857 1313A-3H-4, 134-135 22.28 477.62 2.45 9.23 23.16 1.13 2.07 0.8219 1313A-3H-4, 138-139 22.32 478.30 2.12 9.32 24.58 1.55 1.41 0.8352 1313A-3H-4, 142-143 22.36 478.97 1.38 11.52 22.73 0.61 2.00 0.9072 1313A-3H-5, 0-1 22.44 480.32 1.78 16.93 21.93 0.36 2.67 0.9167

159 REFERENCES

Alcober, J. and Jordan, R.W., 1997. An interesting association between Neosphaera coccolithomorpha and Ceratolithus cristatus (Haptophyta). European Journal of Phycology, 32: 91-93.

Amedro, F., Damotte, R., Manivit, H., Robaszynski, F., and Somay, J., 1978. Echelles biostratigraphiques dans le Cènomanien du Boulonnais (Macro-micro-nanno fossils). Géologie Méditerranéenne, 5 : 5-18.

Anderson, J. B., Manley, P. L., Wise, S. W., Smith Wellner, J., Kulhanek, D. K., and the SHALDRIL II Scientific Party (2006), SHALDRIL II 2006 NBP0602A Cruise Report, available online at: http://shaldril.rice.edu/PDFs/NBP0602A.pdf.

Andruleit, H., 1996. A filtration technique for quantitative studies of coccoliths. Micropaleontology, 42: 403-406.

Andruleit, H., 1997. Coccolithophore fluxes in the Norwegian-Greenland Sea: Seasonality and assemblage alterations. Marine Micropaleontology, 31: 45-64.

Andruleit, H., Rogalla, U., and Stäger, S., 2005. Living coccolithophores recorded during the onset of upwelling conditions off Oman in the western Arabian Sea. Journal of Nannoplankton Research, 27: 1-14.

Backman, J., 1980. Miocene-Pliocene nannofossils and sedimentation rates in the Hatton-Rockall Basin, NE Atlantic Ocean. Stockholm Contributions in Geology, 36: 1-91.

Backman, J. and Raffi, I., 1997. Calibration of Miocene nannofossil events to orbitally tuned cyclostratigraphy from Ceara Rise. In: Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 154. College Station, TX (Ocean Drilling Program), pp. 83-99.

Barron, E.J., 1987. Global Cretaceous Paleogeography – International Geologic Correlation Program Project 191. Palaeogeography, Palaeoclimatology, Palaeoecology, 59: 207-214.

Baumann, K.-H. and Freitag, T., 2004. Pleistocene fluctuations in the northern Benguela Current system as revealed by coccolith assemblages. Marine Micropaleontology, 52: 195-215.

Baumann, K.-H. and Sprengel, C., 2000. Morphological variations of selected coccolith species in a sediment trap north of the Canary Islands. Journal of Nannoplankton Research, 22: 185-193.

160 Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M., and Kinkel, H., 2005. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: A review. Paläontologische Zeitschrift, 79: 93-112.

Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot, F., and Labeyrie, L., 1997. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 278: 1451-1454.

Beltran, C., de Rafélis, M., Minoletti, F., and Renard, M., 2007. Coccolithδ 18O and alkenone records in middle Pliocene orbitally controlled deposits: High-frequency temperature and salinity variations of sea surface water. Geochemistry, Geophysics, Geosystems, 8: Q05003, doi:10.1029/2006GC001483.

Benkhelil, J., Mascle, J., and Tricart, P., 1995. The Guinea continental margin: An example of a structurally complex transform margin. Tectonophysics, 248: 117-137.

Berger, A.L., 1999. Climate 400 kyr ago, a key to the future. Transactions of the American Geophysical Union (Eos), 80(46): F555.

Berger, A. and Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10: 297-317.

Berger, W.H., Killingley, J.S., and Vincent, E., 1978. Stable isotopes in deep-sea carbonates: Box Core ERDC-92, West Equatorial Pacific. Oceanologica Acta, 1: 203-216.

Berger, W.H., Yasuda, M.K., Bickert, T., Wefer, G., and Takayama, T., 1994. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806. Geology, 22: 463-467.

Berggren, W.A., Kent, D.V., Swisher, C.C., Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J. (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation: A Unified Temporal Framework for an Historical Geology. Society for Sedimentary Geology Special Publication, 54: 29-212.

Billard, C. and Inouye, I., 2004. What is new in coccolithophore biology? In: Thierstein, H.R. and Young, J.R., (Eds.) Coccolithophores: From Molecular Processes to Global Impact. Springer-Verlag, Berlin, Heidelberg, pp. 1-29.

Billups, K., Rickaby, R.E.M., and Schrag, D.P., 2004. Cenozoic pelagic Sr/Ca records: Exploring a link to paleoproductivity. Paleoceanography, 19: PA3005, doi:10.1029/2004PA001011.

161 Boeckel, B., Baumann, K.-H., Henrich, R., and Kinkel, H., 2006. Coccolith distribution patterns in South Atlantic and surface sediments in relation to environmental gradients. Deep-Sea Research I, 1073-1099.

Bollmann, J., 1997. Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments. Marine Micropaleontology, 29: 319-350.

Bollmann, J., Baumann, K.-H., and Thierstein, H.R., 1998. Global dominance of Gephyrocapsa coccoliths in the late Pleistocene: Selective dissolution, evolution, or global environmental change? Paleoceanography, 13: 517-529.

Bollmann, J., Brabec, B., Cortés, M.Y., and Geisen, M., 1999. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method). Marine Micropaleontology, 38: 29-38.

Bollmann, J., Henderiks, J., and Brabec, B., 2002. Global calibration of Gephyrocapsa coccolith abundance in Holocene sediments for paleotemperature assessment. Paleoceanography, 17: 1035, doi:10.1029/2001PA000742.

Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S., 1992. Evidence for massive discharged of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360: 245-249.

Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J. and Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365: 143-147.

Bopp, L., Kohfeld, K.E., Le Quéré, C., and Aumont, O., 2003. Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography, 18: 1046, doi:10.1029/2002PA000810.

Bown, P.R. (Ed.), 1998. Calcareous Nannofossil Biostratigraphy. Cambridge University Press, Cambridge, 315p.

Bown, P.R. and Young, J.R., 1994. Introduction. In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishing, Dordrecht, The Netherlands, pp. 1-15.

Bralower, T.J., Sliter, W.V., Arthur, M.A., Leckie, R.M., Allard, D., and Schlanger, S.O., 1993. Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous). American Geophysical Union Schlanger Memorial Volume, Monograph 73, pp. 5-37.

Bralower, T.J., Leckie, R.M., Sliter, W.V., and Thierstein, H.R., 1995. An integrated Cretaceous microfossil biostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J. (Eds.), Geochronology, Time Scales and Global Stratigraphic

162 Correlation: A Unified Temporal Framework for an Historical Geology. Society for Sedimentary Geology Special Publication, 54: 65-79.

Bramlette, M.N. and Riedel, W.R., 1954. Stratigraphic value of discoasters and some other microfossils related to recent coccolithophores. Journal of Paleontology, 28: 385-403.

Bramlette, M.N. and Sullivan, F.R., 1961. Coccolithophorids and related Nannoplankton of the early Tertiary in California. Micropaleontology, 7: 129-167.

Bramlette, M.N. and Wilcoxon, J.A., 1967. Middle Tertiary calcareous nannoplankton of the Cipero Section, Trinidad, W.I. Tulane Studies in Geology, 5: 93-131.

Brand, L.E., 1994. Physiological ecology of marine coccolithophores. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 39-49.

Brassell, S.C., Eglinton, G., Marlow, I.T., Pflaumann, U., and Sarnthein, M., 1986. Molecular stratigraphy: A new tool for climatic assessment. Nature, 320: 129-133.

Bréhéret, J.G., 1978. Biostratigraphie du Pleistocene superieur et de l’Holocene de deux crottes de l’Atlantique Nord a l’aide des coccolithes. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences. D, Sciences Naturelles, 287: 599-601.

Broecker, W.S., 1979. A revised estimate for the radiocarbon age of North Atlantic Deep Water. Journal of Geophysical Research, 84: 3218-3226.

Broecker, W.S., 1994. Massive iceberg discharges as triggers for global climate change. Nature, 372: 421-424.

Broecker, W.S., Bond, G., Klas, M., Clark, E., and McManus, J., 1992. Origin of the northern Atlantic’s Heinrich events. Climate Dynamics, 6: 265-273.

Broerse, A.T.C., Ziveri, P., van Hinte, J.E., and Honjo, S., 2000. Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W). Deep-Sea Research II, 47: 1877-1905.

Budziak, D., Schneider, R.R., Rostek, F., Müller, P.J., Bard, E., and Wefer, G., 2000. Late Quaternary insolation forcing on total organic carbon and C37 alkenone variations in the Arabian Sea. Paleoceanography, 15: 307-321.

Bukry, D., 1971. Coccolith stratigraphy Leg 7, Deep Sea Drilling Project. In: Winterer, E.L. et al., Initial Reports of the Deep Sea Drilling Project, 7. Washington (U.S. Government Printing Office), pp. 1513-1528.

163 Bukry, D., 1973a. Low-latitude coccolith biostratigraphic zonation. In: Edgar, N.T., Saunders, J.B., et al., Initial Reports of the Deep Sea Drilling Project, 15. U.S. Government Printing Office, Washington D.C., pp. 685-703.

Bukry, D., 1973b. Coccolith stratigraphy, eastern equatorial Pacific, Leg 16 Deep Sea Drilling Project. In: van Andel, T.H., Heath, G.R., et al., Initial Reports of the Deep Sea Drilling Project, 16. Washington (U.S. Government Printing Office), pp. 653-711.

Bukry, D., 1974. Coccoliths as paleosalinity indicators – Evidence from Black Sea. In: Degens, E.T. and Ross, D.A. (Eds.), The Black Sea – Geology, Chemistry and Biology. American Association of Petroleum Geologists Memoir, 20: 353-363.

Bukry, D., 1975. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32. In: Larson, R.L., Moberly, R., et al., Initial Reports of the Deep Sea Drilling Project, 32. Washington (U.S. Government Printing Office), pp.677-701.

Burckle, L.H., 1993. Late Quaternary interglacial stages warmer than present. Quaternary Science Reviews, 12: 825-831.

Cachão, M. and Moita, M.T., 2000. Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Marine Micropaleontology, 39: 131-155.

Calvo, E., Villanueva, J., Grimalt, J.O., Boelaert, A., and Labeyrie, L., 2001. New insights into the glacial latitudinal temperature gradients in the North Atlantic. K ' Results from U 37 sea surface temperatures and terrigenous inputs. Earth and Planetary Science letters, 188: 509-519.

Calvo, E., Pelejero, C., Logan, G.A., and De Deckker, P., 2004. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography, 19: PA2020, doi:10.1029/2003PA000992.

Caron, M., 1985. Cretaceous planktonic foraminifera. In: Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K., (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, pp. 17-86.

Čepek, P., 2001. Calcareous nannoplankton from the ‘Boreal’ Late Albian of NW Germany (Kirchrode I borehole): Its biostratigraphy and cyclicity. Palaeogeography, Palaeoclimatology, Palaeoecology, 174: 181-197.

Čepek, P. and Hay, W.W., 1969. Calcareous nannoplankton and biostratigraphic subdivision of the Upper Cretaceous. Gulf Coast Association of Geological Societies, Transactions, 19: 323-336.

Chappell, J. and Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature, 324: 137-140.

164 Cléroux, C., Cortijo, E., Duplessy, J.-C., and Zahn, R., 2007. Deep-dwelling foraminifera as thermocline temperature recorders. Geochemistry, Geophysics, Geosystems, 8: Q04N11, doi:10.1029/2006GC001474.

CLIMAP Project Members, 1981. Seasonal reconstructions of the Earth’s surface at the Last Glacial Maximum. Geological Society of America Map Chart Series, MC-36, Boulder, CO.

Cohen, C.L.D., 1964. Coccolithophorids from two Caribbean deep-sea cores. Micropaleontology, 10: 231-250.

Colmenero-Hidalgo, E., Flores, J.-A., Sierro, F.J., Ángeles Bárcena, M., Löwemark, L., Schönfeld, J., and Grimalt, J.O., 2004. Ocean surface water response to short-term climate changes revealed by coccolithophores from the Gulf of Cadiz (NE Atlantic) and Alboran Sea (W Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology, 205: 317-336.

Concheyro, A., Olivera, A., Santillana, S., Marenssi, S., and Rinaldi, C., 1991. Nanofosiles calcareos del cretacico superior de isla marambia, Antartica, Congreso Geologico Chileno. Resumenes Presentados, 6: 825-828.

Concheyro, A., Robles Hurtado, G.M., and Olivero, E.B., 1995. Sedimentology and calcareous nannofossils from the Upper Cretaceous-Paleocene of James Ross Island area, Antarctica, VII International Symposium on Antarctic Earth Sciences, p. 88 (abstract).

Corliss, B.H., Sun, X., Brown, C.W., and Showers, W.J., 2006. Influence of seasonal primary productivity on δ13C of North Atlantic deep-sea benthic foraminifera. Deep- Sea Research I, 53: 740-746.

Covington, J.M., 1986. Upper Cretaceous nannofossils from the Niobrara Formation of Kansas: Biostratigraphy and cell paleomorphology. Florida State University (M.S. Thesis), Tallahassee, FL, 88p.

Crame, J.A., Francis, J.E., Cantrill, D.J., and Pirrie, D., 2004. Maastrichtian stratigraphy of Antarctica. Cretaceous Research, 25: 411-423.

Cros, L., Kleijne, A., Zeltner, A., Billard, C., and Young, J.R., 2000a. New examples of holoccolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. Marine Micropaleontology, 39: 1-34.

Cros, L., Kleijne, A., and Young, J.R., 2000b. Coccolithophorid diversity in the genus Polycrater and possible relationships with other genera. Journal of Nannoplankton Research, 22: 92.

165 Curry, W.B. and Oppo, D.W., 2005. Glacial water mass geometry and the distribution of 13 δ C of ΣCO2 in the western Atlantic Ocean. Paleoceanography, 20: PA1017, doi:10.1029/2004/PA001021.

Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Svelnbjörnsdottir, A.E., Jouzel, J., and Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364: 218-220.

de Kaenel, E., Siesser, W.G., and Murat, A., 1999. Pleistocene calcareous nannofossil biostratigraphy and the western Mediterranean sapropels, Sites 974 to 977 and 979. In: Zahn, R., Comas, M.C., and Klaus, A. (Eds.), Proceedings of the Ocean Drilling Program, Sicentific Results, 161. College Station, TX (Ocean Drilling Program), pp. 159-183.

Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R.G.J., Frankignoulle, M., Vieira Borges, A., Riebesell, U., and Gattuso, J.-P., 2005. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles, 19: GB2023, doi:10.1029/2004GB002318.

Di Stefano, E. and Incarbona, A., 2004. High-resolution palaeoenvironmental reconstruction of ODP Hole 963D (Sicily Channel) during the last deglaciation based on calcareous nannofossils. Marine Micropaleontology, 52: 241-254.

Driever, B.W.M., 1988. Calcareous nannofossil biostratigraphy and paleoenvironmental interpretation of the Mediterranean Pliocene. Utrecht Micropaleontological Bulletin, 36: 1-245.

Duplessy, J.C., Shackleton, N.J., Fairbanks, R.G., Labeyrie, L., Oppo, D., and Kallel, N., 1988. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3: 343-360.

Edvardsen, B., Eikrem, W., Green, J.C., Andersen, R.A., Moon-Van der Staay, S.Y., and Medlin, L.K., 2000. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, 39: 19-35.

Elderfield, H. and Ganssen, G., 2000. Reconstruction of temperature δ18O of surface ocean waters using Mg/Ca of planktonic foraminferal calcite. Nature, 405: 442-445.

Emiliani, C., 1955. Pleistocene temperatures. Journal of Geology, 63: 538-578.

Emiliani, C., 1966. Paleotemperature analysis of Caribbean cores P6304-8 and P6304- 9 and a generalized temperature curve for the past 425,000 years. Journal of Geology, 74: 109-124.

166 Epstein, S. and Mayeda, T., 1953. Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4: 213-224.

Epstein, S., Buchsbaum, R., Lowenstam, J.A., and Urey, H.C., 1951. Carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 62: 417-425.

Erba, E., 1992. Middle Cretaceous calcareous nannofossils from the Western Pacific (Leg 129): Evidence for paleoequatorial crossings. In: Larson, R.L., Lancelot, Y., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 129. College Station, TX (Ocean Drilling Program), pp. 189-201.

Erba, E., Guasti, G., and Castradori, D., 1989. Calcareous nannofossils record fertility and temperature cycles: Evidence from the Albian Gault Clay Formation. International Nannoplankton Association Newsletter, 11: 57-58.

Erba, E., Castradori, D., Guasti, G., and Ripepe, M., 1992. Calcareous nannofossils and Milankovitch cycles: The example of the Albian Gault Clay Formation (southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 93: 47-69.

Eshet, Y. and Almogi-Labin, A., 1996. Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. Marine Micropaleontology, 29: 37-61.

Expedition 303 Scientists, 2006. Expedition 303 summary. In: Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists. Proceedings of the Integrated Ocean Drilling Program, 303/306. College Station, TX (Integrated Ocean Drilling Program Management International, Inc.), doi:10.2204/iodp.proc.303306.101.2006.

Expedition 306 Scientists, 2006a. Expedition 306 summary. In: Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists. Proceedings of the Integrated Ocean Drilling Program, 303/306. College Station, TX (Integrated Ocean Drilling Program Management International, Inc.), doi:10.2204/iodp.proc.303306.109.2006.

Expedition 306 Scientists, 2006b. Site U1313. In: Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists. Proceedings of the Integrated Ocean Drilling Program, 303/306. College Station, TX (Integrated Ocean Drilling Program Management International, Inc.), doi:10.2204/iodp.proc.303306.112.2006.

Farrimond, P., Eglinton, G., and Brassell, S.C., 1986. Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic. In: Leythaeuser, D. and Rullkötter, J. (Eds.), Advances in Organic Geochemistry 1985. Pergamon, Oxford. Organic Geochemistry, 10: 897-903.

167 Flesche Kleiven, H., Jansen, E., Fronval, T., and Smith, T.M., 2002. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5-2.4 Ma) – Ice- rafted detritus evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 213-223.

Flores, J.-A. and Sierro, F.J., 1997. Revised technique for calculation of calcareous nannofossil accumulation rates. Micropaleontology, 43: 321-324.

Flores, J.-A., Gersonde, R., and Sierro, F.J., 1999. Pleistocene fluctuations in the Agulhas Current Retroflection based on the calcareous plankton record. Marine Micropaleontology, 37: 1-22.

Flores, J.-A., Bárcena, M.A., and Sierra, F.J., 2000. Ocean-surface and wind dynamics in the Atlantic Ocean off northwest Africa during the last 140,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 161: 459-478.

Flores, J.-A., Marino, M., Sierra, F.J., Hodell, D.A., and Charles, C.D., 2003. Calcareous plankton dissolution pattern and coccolithophore assemblages during the last 600 kyr at ODP Site 1089 (Cape Basin, South Atlantic): Paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 196: 409-426.

Forchheimer, S., 1968. The Gault-Cenomanian, Cenomanian and Turonian coccoliths from borehole Hoellviken I. Sveriges Geologiska Undersoekning, Ser. C, Avhandlingar och Uppsatser 6(635), 64p.

Fresnel, J., 1994. A heteromorphic life cycle in two coastal coccolithophorids, Hymenomonas lacuna and Hymenomonas coronata (Prymnesiophyceae). Canadian Journal of Botany, 72: 1455-1462.

Fresnel, J. and Billard, C., 1991. Pleurochrysis placolithoides sp. nov. (Prymnesiophyceae), a new marine coccoloithophorid with remarks on the status of cricolith-bearing species. British Phycological Journal, 26: 67-80.

Fresnel, J. and Probert, I., 2005. The ultrastructure and life cycle of the coastal coccolithophorid Ochrosphaera neapolitana (Prymnesiophyceae). European Journal of Phycology, 40: 105-122.

Gale, A.S., Kennedy, W.J., Burnett, J.A., Caron, M., and Kidd, B.E., 1996. The Late Albian to Early Cenomanian succession at Mont Risou near Rosans (Drôme, SE France): An integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes). Cretaceous Research, 17: 515-606.

Gallagher, L., 1989. Reticulofenestra: A critical review of taxonomy and evolution. In: Crux, J. and Van Heck, S.E. (Eds.), Nannofossils and their Applications. Proceedings of the 2nd International Nannofossil Association Conference, London, 1987, pp. 41-45.

168 Gartner, S., 1969. Correlation of Neogene planktonic foraminifer and calcareous nannofossil zones. Transactions of the Gulf Coast Association Geological Society, 19: 585-599.

Gartner, S., 1972. Late Pleistocene calcareous nannofossils in the Caribbean and their interoceanic correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 12: 169-191.

Gartner, S., 1973. Absolute chronology of the late Neogene calcareous nannofossil succession in the Equatorial Pacific. Geological Society of America Bulletin, 84: 2021-2034

Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Marine Micropaleontology, 2: 1-25.

Gartner, S., 1988. Paleoceanography of the mid-Pleistocene. Marine Micropaleontology, 13: 23-46.

Gartner, S. and Emiliani, C., 1976. Nannofossil biostratigraphy and climatic stages of Pleistocene Brunhes epoch. American Association of Petroleum Geologists Bulletin, 60: 1562-1564.

Geisen, M., Billard, C., Broerse, A.T.C., Cros, L., Probert, I., and Young, J.R., 2002. Life-cycle associations involving pairs of holococcolithophorid species: Intraspecific variation or cryptic speciation? European Journal of Phycology, 37: 531-550.

Geisen, M, Young, J.R., Probert, I., Sáez, A.G., Baumann, K.-H., Sprengel, C., Bollmann, J., Cros, L., De Vargas, C., and Medlin, L.K., 2004. Species level variation in coccolithophores. In: Thierstein, H.R. and Young, J.R., (Eds.) Coccolithophores: From Molecular Processes to Global Impact. Springer-Verlag, Berlin, Heidelberg, pp. 327-366.

Geitzenauer, K.R., Roche, M.B., and McIntyre, A., 1977. Coccolith biogeography from North Atlantic and Pacific surface sediments. In: Ramsay, A.T.S. (Ed.), Oceanic Micropaleontology. Academic Press, New York, pp. 973-1008.

Gibbs, S.J., Young, J.R., Bralower, T.J., and Shackleton, N.J., 2005. Nannofossil evolutionary events in the mid-Pliocene: An assessment of the degree of synchrony in the extinctions of Reticulofenestra pseudoumbilicus and Sphenolithus abies. Palaeogeography, Palaeoclimatology, Palaeoecology, 217: 155-172.

Giraudeau, J., 1992. Distribution of Recent nannofossils beneath the Benguela system: Southwest African continental margin. Marine Geology, 108: 219-237.

169 Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., van Veen, P., Thierry, J., and Huang, Z., 1994. A Mesozoic time scale. Journal of Geophysical Research, 99: 24,051-24,074.

Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W., and Lourens, L., 2004. A new geological time scale with special reference to Precambrian and Neogene. Episodes, 27: 83-100.

Grelaud, M., Beaufort, L., Cuven, S., and Buchet, N., 2009. Glacial to interglacial primary production and El Niño-Southern Oscillation dynamics inferred from coccolithophores of the Santa Barbara Basin. Paleoceanography, 24: PA1203, doi:10.1029/2007PA001578.

Hagelberg, T. and Pisias, N., 1991. Linear and nonlinear couplings between orbital forcing and the marine 18δO record during the late Neogene. Paleoceanography, 6: 729-746.

Handoh, I.C., Bigg, G.R., Jones, E.J.W., and Inoue, M., 1999. An ocean modeling study of the Cenomanian Atlantic: Equatorial paleo-upwelling, organic-rich sediments and the consequences for a connection between the proto-North and South Atlantic. Geophysical Research Letters, 26: 223-226.

Harrison, K.G., 2000. Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography, 15: 292-298.

Harwood, D.M., 1988. Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. In: Feldmann, R.M. and Woodburne, M.O. (Eds.), Geology and Paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir, 169: 55-129.

Hay, W.W., 1970. Calcareous nannofossils from cores recovered on Leg 4. In: Bader, R.G. et al., Initial Reports of the Deep Sea Drilling Project, 4. Washington (U.S. Government Printing Office), pp. 455-501.

Hay, W.W. and Beaudry, F.M., 1973. Calcareous Nannofossils – Leg 15, Deep Sea Drilling Project. In: Edgar, N.T., Saunders, J.B., et al., Initial Reports of the Deep Sea Drilling Project, 15. Washington (U.S. Government Printing Office), pp. 625-683.

Hay, W.W. and Mohler, H.P., 1967. Calcareous nannoplankton from early Tertiary rocks at Pont Labau, France, and Paleocene-Early Eocene correlations. Journal of Paleontology, 41: 1505-1541.

Hay, W.W., Mohler, H.P., Roth, P.H., Schmidt, R.R., and Boudreaux, J.E., 1967. Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and

170 Caribbean-Antillean area and transoceanic correlation. Transactions of the Gulf Coast Association of Geological Societies, 17: 428-480.

Hays, J.D., Imbrie, J., and Shackleton, N.J., 1976. Variations in Earth’s orbits: Pacemaker of the Ice Ages. Science, 194: 1121-1132.

Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29: 142-152.

Henderiks, J. and Bollmann, J., 2004. The Gephyrocapsa sea surface palaeothermometer put to the test: Comparison with alkenone and foraminifera proxies off NW Africa. Marine Micropaleontology, 50: 161-184.

Herrle, J.O., 2002. Paleoceanographic and paleoclimatic implications on mid- Cretaceous black shale formation in the Vocontian Basin and the Atlantic: Evidence from calcareous nannofossils and stable isotopes. Tubinger Mikropaläontologische Mitteilungen, 27: 1-114.

Herrle, J.O. and Mutterlose, J., 2003. Calcareous nannofossils from the Aptian-Lower Albian of southeast France: Palaeoecological and biostratigraphic implications. Cretaceous Research, 24: 1-22.

Herrle, J.O., Pross, J., Friedrich, O., Kößler, and Hemleben, C., 2003. Forcing mechanisms for mid-Cretaceous black shale formation: Evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology, 190: 399-426.

Hilgen, F.J., Krijgsman, W., Raffi, I., Turco, E., and Zachariasse, W.J., 2000. Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibliscemi (Sicily, Italy). Marine Micropaleontology, 38: 181-211.

Hine, N. and Weaver, P.P.E., 1998. Quaternary. In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishing, Dordrecht, The Netherlands, pp. 266-283.

Hodell, D.A., Charles, C.D., and Ninnemann, U.S., 2000. Comparison of interglacial stages in the South Atlantic sector of the southern ocean for the past 450 kyr: Implifications for Marine Isotope Stage (MIS) 11. Global and Planetary Change, 24: 7-26.

Hodell, D.A., Channell, J.E.T., Curtis, J.H., Romero, O.E., and Röhl, U., 2008. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~640 ka)? Paleoceanography, 23: PA4218, doi:10.1029/2008PA001591.

Howard, W.R., 1997. A warm future in the past. Nature, 388: 418-419.

171 Huber, B.T., 1988. Upper Campanian-Paleocene foraminifera from the James Ross Island region, Antarctic Peninsula. In: Feldmann, R.M. and Woodburne, M.O. (Eds.), Geology and Paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir, 169: 163-252.

Huber, B.T., Harwood, D.M., and Webb, P.N., 1983. Upper Cretaceous microfossil biostratigraphy of Seymour Island, Antarctic Peninsula. Antarctic Journal of the United States (1983 annual edition), 17: 72-74.

Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E.M., Hall, I.R., Colmenero- Hidalgo, E., Gittins, J.R., Green, D.R.H., Tyrrell, T., Gibbs, S.J., von Dassow, P., Rehm, E., Armbrust, E.V., and Boessenkool, K.P., 2008. Phytoplankton calcification in a high-CO2 world. Science, 320: 336-340.

Imbrie, J. and Kipp, N.G., 1971. A new micropaleontological method for quantitative paleoclimatology. Applications to a late Pleistocene Caribbean core. In: Turekian, K.K. (Ed.), The late Cenozoic glacial ages. Yale University Press, New Haven, pp. 71-131.

Incarbona, A., Di Stefano, E., Sprovieri, R., Bonomo, S., Censi, P., Dinarès-Turell, J., and Spoto, S., 2008. Variability in the vertical structure of the water column and paleoproductivity reconstruction in the central-western Mediterranean during the Late Pleistocene. Marine Micropaleontology, 69: 26-41.

Inouye, I. and Kawachi, M., 1994. The haptonema. In: Green, J.C. and Leadbetter, B.S.C. (Eds.), The Haptophyte Algae. The Systematics Association Special Volume 51, Clarendon Press, Oxford, pp. 73-89.

Jakubowski, M., 1987. A proposed Lower Cretaceous calcareous nannofossil zonation scheme for the Moray Firth area of the North Sea. Abhandlungen der Geologischen Bundesanstalt, 39: 99-119.

Jenkins, A., 1999. The impact of melting ice on ocean waters. Journal of Physical Oceanography, 29: 2370-2381.

Jordan, R.W. and Kleijne, A., 1994. A classification system for living coccolithophores. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 83-105.

Jordan, R.W. and Young, J.R., 1990. Proposed changes to the classification system of living coccolithophorids. International Nannoplankton Association Newsletter, 12: 15- 18.

Jordan, R.W., Cros, L., and Young, J.R., 2004. A revised classification scheme for living Haptophytes. Micropaleontology, 50 (Supplement 1: Advances in the biology, ecology and taphonomy of extant calcareous nannoplankton): 55-79.

172 Kale, A.S. and Phansalkar, V.G., 1989. Black shale facies from Albian of Cretaceous of South India. Astracts, 28th International Geological Conference, 2: 149-150.

Kameo, K., Shearer, M.C., Droxler, A.W., Mita, I., Watanabe, R., and Sato, T., 2004. Glacial-interglacial surface water variations in the Caribbean Sea during the last 300 ky based on calcareous nannofossil analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 212: 65-76.

Kamptner, E., 1943. Zur Revision der Coccolitheneen-Spezies Pontosphaera huxleyi Lohmann. Anz Akad Wiss Wien, Math -Naturw Kl, 80(11): 43-49.

Kamptner, E., 1956. Das Kalkskelett von Coccolithus huxleyi (Lohmann) Kamptner und Gephyrocapsa oceanica Kamptner (Coccolithineae). Archiv für Protistenkunde, 101: 171-202.

Kamptner, E., 1963. Coccolithineen-Skelettreste aus Tiefseeablagerungen des Pazifischen Ozeans. Ann. Naturhist. Mus., Wien, 66: 139-204.

Kennedy, W.J., Gale, A.S., Bown, P.R., Caron, M., Davey, R.J., Gröcke, D., and Wray, D.S., 2000. Integrated stratigraphy across the Aptian-Albian boundary in the Marnes Bleues, at the Col de Pré-Guittard, Arnayon (Drôme), and at Taratonne (Alpes-de- Haute-Provence), France: A candidate Global Boundary Stratotype Section and Boundary Point for the base of the Albian Stage. Cretaceous Research, 21: 591-720.

Kennedy, W.J., Gale, A.S., Lees, J.A., and Caron, M., 2004. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes, 27: 21-32.

Kleijne, A., 1991. Holococcolithophorids from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. Marine Micropaleontology, 17: 1-76.

Knappertsbusch, M., 1993. Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Marine Micropaleontology, 21: 219-247.

Knappertsbusch, M., Cortes, M.Y., and Thierstein, H.R., 1997. Morphologic variability of the coccolithophorid Calcidiscus leptoporus in the plankton, surface sediments and from the Early Pleistocene. Marine Micropaleontology, 30: 293-317.

Kumar, N., Anderson, R.F., Mortlock, R.A., Froelich, P.N., Kubik, P., Dittrich-Hannen, B., and Suter, M., 1995. Increased biological productivity and export production in the glacial Southern Ocean. Nature, 378: 675-680.

Leckie, R.M., Bralower, T.J., and Cashman, R., 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17: 1041, doi:10.1029/2001PA000623.

173 Lees, J.A., 2002. Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean. Cretaceous Research, 23: 537-634.

Lees, J.A., Bown, P.R., and Mattioli, E., 2005. Problems with proxies? Cautionary tales of calcareous nannofossil paleoenvironmental indicators. Micropaleontology, 51: 333-343.

Legge, H.-L., Mutterlose, J., Arz, H.W., and Pätzold, J., 2008. Nannoplankton successions in the northern Red Sea during the last glaciation (60 to 14.5 ka BP): Reactions to climate change. Earth and Planetary Science Letters, 270: 271-279.

Lisiecki, L.E. and Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003, doi:10.1029/2004PA001071.

Locarnini, R.A., Michonov, A.V., Antonov, J.I., Boyer, T.P. and Garcia, H.E., 2006. World Ocean Atlas 2005, Volume I: Temperature. In: Levitus, S. (Ed.) NOAA Atlas NESDIS 61, Washington, D.C. (U.S. Government Printing Office), 182p.

Loeblich Jr., A.R. and Tappan, H., 1966. Annotated index and bibliography of the calcareous nannoplankton. Phycologia, 5(2/3): 81-216.

Loeblich Jr., A.R. and Tappan, H., 1970. Annotated index and bibliography of the calcareous nannoplankton V. Phycologia, 9(2): 157-174.

López-Otálvaro, G.-E., Flores, J.-A., Sierro, F.J., and Cacho, I., 2008. Variations in coccolithophorid production in the Eastern Equatorial Pacific at ODP Site 1240 over the last seven glacial-interglacial cycles. Marine Micropaleontology, 69: 52-69.

Lourens, L.J., Hilgen, F.J., Shackleton, N.J., Laskar, J., and Wilson, D., 2004. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (Eds.), A Geological Time Scale 2004. Cambridge University Press, Cambridge, pp. 409-440.

Macellari, C.E., 1988. Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island. In: Feldmann, R.M. and Woodburne, M.O. (Eds.), Geology and Paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir, 169: 25-53.

Macellari, C. and Huber, B.T., 1982. Cretaceous stratigraphy of Seymour Island, East Antarctic Peninsula. Antarctic Journal of the United States (1982 annual edition), 17: 68-70.

Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G., and Fütterer, D.K., 1993. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in southern ocean deep water: Implications for glacial ocean circulation models. Paleoceanography, 8: 587-610.

174 Malinverno, E., Prahl, F.G., Popp, B.N., and Ziveri, P., 2008. Alkenone abundance and its relationship to the coccolithophore assemblage in Gulf of California surface waters. Deep-Sea Research I, 55: 1118-1130.

Manivit, H., 1979. Le nannoplancton du stratotype de l’Albien: biozonation, systèmatique, nannofaciès, palèoecologie. In Rat, P. (Ed.), L’Albian de l’Aube. Les Stratotypes Français, Paris (C.N.R.S.), pp. 307-340.

Marlowe, I.T., Brassell, S.C., Eglinton, G., and Green, J.C., 1984. Long chain unsaturated ketones and esters in living algae and marine sediments. Organic Geochemistry, 6: 135-141.

Marlowe, I.T., Brassell, S.C., Eglinton, G., and Green, J.C., 1990. Long-chain aleknones and alkyl alkenoates and the fossil coccolith record of marine sedments. Chemical Geology, 88: 349-375.

Martin, J.H., 1990. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5: 1-13.

Martin, J.H. and Fitzwater, S.E., 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331: 341-343.

Martin, J.H., Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., Tanner, S.J., Hunter, C.N., Elrod, V.A., Nowicki, J.L., Coley, T.L., Barber, R.T., Lindley, S., Watson, A.J., Van Scoy, K., Law, C.S., Liddicoat, M.I., Ling, R., Stanton, T., Stockel, J., Collins, C., Anderson, A., Bidigare, R., Ondrusek, M., Latasa, M., Millero, F.J., Lee, K., Yao, W., Zhang, J.Z., Friederich, G., Sakamoto, C., Chavez, F., Buck, K., Kolber, Z., Greene, R., Falkowski, P., Chisholm, S.W., Hoge, F., Swift, R., Yungel, J., Turner, S., Nightingale, P., Hatton, A., Liss, P., and Tindale, N.W., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371: 123-129.

Martini, E., 1970. Standard Paleogene calcareous nannoplankton zonation. Nature, 226: 560-561.

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci, A. (Ed.), Proceedings of the II Planktonic Conference, Roma, 1970. Edizioni Tecnoscienza, Rome, pp. 739-785.

Martini, E. and Worlsey, T., 1970. Standard Neogene calcareous nannoplankton zonation. Nature, 225: 289-290.

Matsuoka, H. and Okada, H., 1989. Quantitative analysis of Quaternary nannoplankton in the subtropical northwestern Pacific Ocean. Marine Micropaleontology, 14: 97-118.

Matsuoka, H. and Okada, H., 1990. Time-progressive morphometric changes of the genus Gephyrocapsa in the Quaternary sequence of the tropical Indian Ocean, Site

175 709. In: Duncan, R.A., Backman, J., Peterson, L.C. et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 115. College Station, TX (Ocean Drilling Program), pp. 255-270.

Mayer, L., Pisias, N., Janecek, T., and the Shipboard Scientific Party, 1992. Explanatory Notes. In: Mayer, L., Pisias, N., Janecek, T., et. al. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, 138. College Station, TX (Ocean Drilling Program), pp. 13-42.

McIntyre, A., 1967. Coccoliths as paleoclimatic indicators of Pleistocene glaciation. Science, 158: 1314-1317.

McIntyre, A. and Bé, A.W.H., 1967. Modern Coccolithophoridae of the Atlantic Ocean – I. Placoliths and crytoliths. Deep-Sea Research, 14: 561-597.

McIntyre, A. and McIntyre, R., 1971. Coccolith concentration and differential solution in oceanic sediments. In: Funnell, B.M. and Riedel, W.R. (Eds.), The Micropaleontology of the Oceans. Cambridge University Press, Cambridge, pp. 253- 261.

McIntyre, A., Bé, A.W.H., and Roche, M.B., 1970. Modern Pacific coccolithophorida: A paleontological thermometer. Transactions of the New York Academy of Sciences, 32(6): 720-731.

McManus, J.F., Oppo, D.W., and Cullen, J.L., 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283: 971-975.

Mix, A.C., Bard, E., Eglinton, G., Keigwin, L.D., Ravelo, A.C., and Rosenthal, Y., 2000. Alkenones and multiproxy strategies in paleoceanographic studies. Geochemistry, Geophysics, Geosystems, 1: 2000GC000056.

Molfino, B. and McIntyre, A., 1990a. Nutricline variations in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 5: 997-1008.

Molfino, B. and McIntyre, A., 1990b. Precessional forcing of nutricline dynamics in the Equatorial Atlantic. Science, 249: 766-769.

Müller, P. and Seuss, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans: I. Organic carbon preservation. Deep Sea Research Part A, 26: 1347-1362.

Mutterlose, J., 1992a. Biostratigraphy and palaeobiogeography of Early Cretaceous calcareous nannofossils. Cretaceous Research, 13: 167-189.

176 Muterlose, J., 1992b. Migration and evolution patterns of floras and faunas in marine Early Cretaceous sediments of NW Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 94: 261-282.

Mutterlose, J., 1992c. Lower Cretaceous nannofossil biostratigraphy off northwestern Australia (Leg 123). In: Gradstein, F.M., Ludden, J.N, et al., (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 123. U.S. Government Printing Office, Washington, D.C., pp. 343-368.

Mutterlose, J. and Kessels, K., 2000. Early Cretaceous calcareous nannofossils from high latitudes: Implications for palaeobiogeography and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 160: 347-372.

Mutterlose, J. and Wise, S.W., 1990. Lower Cretaceous nannofossil biostratigraphy of ODP Leg 113 Holes 692B and 693A, continental slope off , Weddell Sea. In: Barker, P.F., Kennett, J.P., et al., (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 113. College Station, TX (Ocean Drilling Program), pp. 325-351.

Narciso, A., Cachão, M., and de Abreu, L., 2006. Coccolithus pelagicus subsp. pelagicus versus Coccolithus pelagicus subsp. braarudii (Coccolithophore, Haptophyta): A proxy for surface subarctic Atlantic waters off Iberia during the last 200 kyr. Marine Micropaleontology, 59: 15-34.

Nuernberg, D., 1995. Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern latitudes. Journal of Foraminiferal Research, 25: 350-368.

Okada, H., 2000. Neogene and Quaternary calcareous nannofossils from the Blake Ridge, Sites 994, 995, and 997. In: Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), pp. 331-341.

Okada, H. and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology, 5: 321-325.

Okada, H. and Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep-Sea Research, 20: 355-374.

Okada, H. and McIntyre, A., 1977. Modern coccolithophores of the Pacific and North Atlantic Oceans. Micropaleontology, 23: 1-55.

Okada, H. and Wells, P., 1997. Late Quaternary nannofossil indicators of climate change in two deep-sea cores associated with the Leeuwin Current off Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 131: 413-432.

177 Parke, M. and Adams, I., 1960. The motile (Crystallolithus hyalinus Gaarder and Markali) and non-motile phases in the life history of Coccolithus pelagicus (Wallich) Schiller. Journal of the Marine Biological Association of the United Kingdom, 39: 263-274.

Paytan, A., Kastner, M., and Chavez, F., 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274: 1355-1357.

Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils. In: Bolli, H., Perch-Nielsen, K., and Saunders, J.B. (Eds.). Plankton Stratigraphy. Cambridge University Press, New York, pp. 427-554.

Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436.

Pflaumann, U., Sarnthein, M., Chapman, M., d’Abreu, L., Funnell, B., Huels, M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S., Vautravers, M., Vogelsang, E., and Weinelt, M., 2003. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography, 18: doi:10.1029/2002PA000774.

Pienaar, R.N., 1994. Ultrastructure and calcification of coccolithophores. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 13-37.

Pirrie, D., Crame, J.A., Lomas, S.A., and Riding, J.B., 1997. Late Cretaceous stratigraphy of the Admiralty Sound region, James Ross Basin, Antarctica. Cretaceous Research, 18: 109-137.

Pospichal, J.J. and Wise, S.W., 1990. Maestrichtian calcareous nannofossil biostratigraphy of Maud Rise ODP Leg 113 Sites 689 and 690, Weddell Sea. In: Barker, P.F., Kennett, J.P., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 113. College Station, TX (Ocean Drilling Program), pp. 465-487.

Poulsen, C.J., Barron, E.J., Arthur, M.A., and Peterson, W.H., 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography, 16: 576-592.

Prahl, F.G. and Wakeham, S.G., 1987. Calibration of unsaturated patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 330: 367-369.

178 Prahl, F.G., Muehlhausen, L.A., and Zahnle, D.L., 1988. Further evaluation of long- chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta, 52: 2303-2310.

Probert, I. and Houdan, A., 2004. The laboratory culture of coccolithophores. In: Thierstein, H.R. and Young, J.R., (Eds.) Coccolithophores: From Molecular Processes to Global Impact. Springer-Verlag, Berlin, Heidelberg, pp. 217-249.

Pujos, A., 1985a. Quaternary nannofossils from Goban Spur, Eastern North Atlantic Ocean, Deep Sea Drilling Project Holes 548 and 549A. In: Graciansky, P.C. de, Poag, W., et al., Initial Reports of the Deep Sea Drilling Project, 80. Washington, D.C. (U.S. Government Printing Office), pp. 767-792.

Pujos, A., 1985b. Cenozoic nannofossils, central equatorial Pacific, Deep Sea Drilling Project Leg 85. In: Mayer, L., Theyer, F., et al., Initial Reports of the Deep Sea Drilling Project, 85. Washington, D.C. (U.S. Government Printing Office), pp. 581- 607.

Pujos, A., 1987. Late Eocene to Pleistocene medium-sized and small-sized “Reticulofenestrids”. In: Stradner, H. and Perch-Nielsen, K. (Eds.), Proceedings of the International Nannoplankton Association Meeting, Vienna 1985. Abhandlungen der Geologischen Bundesanstalt, 39: 239-277.

Pujos, A., 1992. Calcareous nannofossils of Plio-Pleistocene sediments from the northwestern margin of tropical Africa. In: Summerhayes, C.P., Press, W.L., and Emeis, K.C. (Eds.), Upwelling Systems: Evolution since the Early Miocene. Geological Society Special Publication, 64: 343-359.

Raffi, I., 2002. Revision of the early-middle Pleistocene calcareous nannofossil biochronology (1.75-0.85 Ma). Marine Micropaleontology, 45: 25-55.

Raffi, I. and Flores, J.-A., 1995. Pleistocene through Miocene calcareous nannofossils from eastern equatorial Pacific Ocean (Leg 138). In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 138. College Station, TX (Ocean Drilling Program), pp. 517-536.

Raffi, I., Backman, J., Rio, D., and Shackleton, N.J., 1993. Plio-Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677. Paleoceanography, 8: 387-408.

Raffi., I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25: 3113-3137.

179 Raymo, M.E., Ruddiman, W.F., Backman, J., Clement, B.M., and Martinson, D.G., 1989. Late Pliocene variation in northern hemisphere ice sheets and North Atlantic deep water circulation. Paleoceanography, 4: 413-446.

Raymo, M.E., Ruddiman, W.F., Shackleton, N.J., and Oppo, D.W., 1990. Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y. Earth and Planetary Science Letters, 97: 353-368.

Raymo, M.E., Hodell, D., and Jansen, E., 1992. Response of deep ocean circulation to initiation of northern hemisphere glaciation (3-2 Ma). Paleoceanography, 7: 645-672.

Rea, D., 1994. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Reviews of Geophysics, 32: 159-195.

Renaud, S. and Klaas, C., 2001. Seasonal variations in the morphology of the coccolithophore Calcidiscus leptoporus off Bermuda (N. Atlantic). Journal of Plankton Research, 23: 779-795.

Renaud, S., Ziveri, P., and Broerse, A.T.C., 2002. Geographical and seasonal differences in morphology and dynamics of the coccolithophore Calcidiscus leptoporus. Marine Micropaleontology, 46: 363-385.

Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E., and Morel, F.M.M., 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 364-367.

Rinaldi, C.A., 1982. The Upper Cretaceous in the James Ross Island Group. In: Craddock, C. (Ed.), Antarctic Geoscience. The University of Wisconsin Press, Madison, Wisconsin, pp. 281-286.

Rio, D., 1982. The fossil distribution of the coccolithophore genus Gephyrocapsa Kamptner and related Plio-Pleistocene chronostratigraphic problems. In: Prell, W.L., Gardner, J.V. et al., Initial Reports of the Deep Sea Drilling Project, 68. Washington, D.C. (U.S. Government Printing Office), pp. 325-343.

Rio, D., Fornaciari, E., and Raffi, I., 1990. Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). In: Duncan, R.A., Backman, J., Peterson, L.C. et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 115. College Station, TX (Ocean Drilling Program), pp. 175-235.

Robles Hurtado, G.M. and Concheyro, A., 1995. Sedimentologia y bio-cronoestratigrafia (nanofosiles calcareos) del Nunatak Sanctuary Cliffs (cretacico superior), Isla Cerro Nevado, Antartica. VI Congreso Argentino de Paleontologia y Bioestragrafia, Actas, pp. 231-237.

180 Rosenthal, Y., Boyle, E.A., and Slowey, N., 1997. Environmental controls on the incorporation of Mg, Sr, F and Cd into benthic foraminifera shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochimica et Cosmochimica Acta, 61: 3633-3643.

Rostek, F., Bard, E., Beaufort, L., Sonzogni, C., and Ganssen, G., 1997. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep- Sea Research II, 44: 1461-1480.

Roth, P.H., 1970. Oligocene calcareous nannoplankton biostratigraphy. Eclogae Geologicae Helvetiae, 63: 799-881.

Roth, P.H., 1973. Calcareous nannofossils – Leg 17, Deep Sea Drilling Project. In: Winterer, E.L., Ewing, J.L., et al., Initial Reports of the Deep Sea Drilling Project, 17. U.S. Government Printing Office, Washington, D.C., pp. 695-741.

Roth, P.H., 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean. In: Benson, W.E., Sheridan, R.E., et al., Initial Reports of the Deep Sea Drilling Project, 44. U.S. Government Printing Office, Washington, D.C., pp. 731-760.

Roth, P.H., 1994. Distribution of coccoliths in oceanic sediments. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 199-218.

Roth, P.H. and Berger, W.H., 1975. Distribution and dissolution of coccoliths in the south and central Pacific. In: Sliter, W.V., Bé, A.W.H., and Berger, W.H. (Eds.), Dissolution of Deep-Sea Carbonates. Cushman Foundation for Foraminiferal Research Special Publication, 13: 87-113.

Roth, P.H. and Bowdler, J.L., 1981. Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. Society of Economic Paleontologists and Mineralogists Special Publication, 32: 517-546.

Roth, P.H. and Coulbourn, W.T., 1982. Floral and solution patterns of coccoliths in surface sediments of the North Pacific. Marine Micropaleontology, 7: 1-52.

Roth, P.H. and Krumbach, K.R., 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Ocean: Implications for palaeoceanography. Marine Micropaleontology, 10: 235-266.

Roth, P.H., Mullin, M.M., and Berger, W.H., 1975. Coccolith sedimentation by fecal pellets: Laboratory experiments and field observations. Geological Society of America Bulletin, 86: 1079-1084.

181 Ruddiman, W.F., 1977. North Atlantic ice-rafting: A major change at 75,000 years before the present. Science, 196: 1208-1211.

Ruddiman, W.F. and McIntyre, A., 1976. Northeast Atlantic paleoclimatic changes over the past 600,000 years. In: Cline, R.M. and Hays, J.D. (Eds.), Investigations of Late Quaternary Paleoceanography and Paleoclimatology. Geological Society of America Memoir, 145: 111-146.

Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., and Backman, J., 1989. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 4: 353-412.

Sachs, J.B. and Skinner, H.C., 1973. Calcareous nannofossils and late Pliocene – early Pleistocene biostratigraphy Louisiana continental shelf. Tulane Studies in Geology and Paleontology, 10: 113-162.

Sáez, A.G., Probert, I., Geisen, M., Quinn, P., Young, J.R., and Medlin, L.K., 2003. Pseudo-cryptic speciation in coccolithophores. Proceedings of the National Academy of Sciences, 100: 7163-7168.

Samtleben, C. and Bickert, T., 1990. Coccoliths in sediment traps from the Norwegian Sea. Marine Micropaleontology, 16: 39-64.

Samtleben, C., Schäfer, P., Andruleti, H., Baumann, A., Baumann, K.-H., Kohly, A., Matthiessen, J., and Schröder-Ritzrau, 1995. Plankton in the Norwegian-Greenland Sea: From living communities to sediment assemblages – an actualistic approach. Geologische Rundschau, 84: 108-136.

Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., and Pflaumann, U., 1981. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature, 293: 193-196.

Schlanger, S.O., Jenkyns, H.C., and Premoli Silva, I., 1981. Volcanism and vertical tectonics in the Pacific basin related to global transgression. Earth and Planetary Science Letters, 52: 435-339.

Shafik, S., 1985. Calcareous nannofossils from the Toolebuc Formation, Eromanga Basin, Australia. BMR Journal of Australian Geology and Geophysics, 9: 171-181.

Shackleton, N.J. and Opdyke, N.D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific Core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3: 39-55.

Shackleton, N.J., Baldauf, J.G., Flores, J.-A., Iwai, M., Moore, Jr., T.C., Raffi, I., and Vincent, E., 1995a. Biostratigraphic summary for Leg 138. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proceedings of

182 the Ocean Drilling Program, Scientific Results, 138. College Station, TX (Ocean Drilling Program), pp. 517-536.

Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., and Schneider, D.A., 1995b. A new late Neogene time scale: Application to Leg 138. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 138. College Station, TX (Ocean Drilling Program), pp. 517-536.

Shipboard Scientific Party, 2004a. Leg 207 summary. In: Erbacher, J., Mosher, D.C., Malone, M.J., et al. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, 207. College Station TX (Ocean Drilling Program), pp. 1-89.

Shipboard Scientific Party, 2004b. Site 1258. In: Erbacher, J., Mosher, D.C., Malone, M.J., et al. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, 207. College Station, TX (Ocean Drilling Program), pp.1-117.

Shulenberger, E., 1983. Water column studies near a melting Arctic iceberg. Polar Biology, 2: 149-158.

Siesser, W.G., 1993. Calcareous nannoplankton. In: Lipps, J.H. (Ed.), Fossil prokaryotes and protists. Blackwell Scientific Publications, Boston, pp. 169-210.

Siesser, W.G., 1994. Historical background of coccolithophore studies. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 1-11.

Siesser, W.G. and Winter, A., 1994. Composition and morphology of coccolithophore skelentons. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 51-62.

Sigal, J., 1977. Essai de zonation du Crétacé méditerranéen á l’aide des foraminiféres planctoniques. Géologie Méditerranéenne, 4: 99-108.

Sissingh, W., 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw, 56: 37-65.

Sliter, W.V., 1989. Biostratigraphic zonation for Cretaceous planktonic foraminifers examined in thin section. Journal of Foraminiferal Research, 19: 1-19.

Sliter, W.V., 1992. Cretaceous planktonic foraminiferal biostratigraphy and paleoceanographic events in the Pacific Ocean with emphasis on indurated sediment. In: Ishizaki, K., and Saito, T. (Eds.), Century of Japanese Micropaleontology. Terra Scientific Publishing Company, Tokyo, pp. 281-299.

183 Smayda, T.J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology; An Annual Review, 8: 353-414.

Smith, A.G., Smith, D.G., and Funnell, B.M., 1994. Atlas of Mesozoic and Cenozoic Coastlines, Cambridge University Press, Cambridge, 99p.

Sprengel, C. and Young, J.R., 2000. First direct documentation of associations of Ceratolithus cristatus ceratoliths, hoop-coccoliths and Neosphaera coccolithomorpha planoliths. Marine Micropaleontology, 39: 39-41.

Stein, R., Hefter, J., Grützner, J., Voelker, A., and Naafs, D.A., 2009. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS 16- 9). Paleoceanography, 24: PA2203, doi:10.1029/2008PA001639.

Stradner, H., 1963. New contributions to Mesozoic stratigraphy by means of nannofossils. Proceedings of the Sixth World Petroleum Congress, 1963, Section 1, Hamburg, pp. 167-182.

Stradner, H. and Edwards, A.R., 1968. Electron microscopic studies on upper Eocene coccoliths from the Oamaru Diatomite, New Zealand. Jahrbuch der Geologischen Bundesanstalt, 13: 1-66.

Street, C. and Bown, P.R., 2000. Palaeobiogeography of Early Cretaceous (Berriasian- Barremian) calcareous nannoplankton. Marine Micropaleontology, 39: 265-291.

Suganuma, Y. and Ogg, J.G., 2006. Campanian through Eocene magnetostratigraphy of Sites 1257-1261, ODP Leg 207, Demerara Rise (western equatorial Atlantic). In: Mosher, D.C., Erbacher, J., and Malone, M.J., (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 207: 1-48 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/207_SR/VOLUME/CHAPTERS/102.PDF

Takahashi, K. and Okada, H., 2000. Environmental control on the biogeography of modern coccolithophores in the southeastern Indian Ocean offshore of Western Australia. Marine Micropaleontology, 39: 73-86.

Takayama, T., 1993. Notes on Neogene calcareous nannofossil biostratigraphy of the Ontong Java Plateau and size variations of Reticulofenestra coccoliths. In: Berger, W.H., Kroenke, L.W., Mayer, L.A., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 130. College Station, TX (Ocean Drilling Program), pp. 179-229.

Takayama, T. and Sato, T., 1986. Coccolith biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94. In: Ruddiman, W.F., Kidd, R.B., Thomas, E., et al.,

184 Initial Reports of the Deep Sea Drilling Project, 94. Washington, D.C. (U.S. Government Printing Office), pp. 651-702.

Thierstein, H.R., 1971. Tentative Lower Cretaceous nannoplankton zonation. Eclogae Geologicae Helvetiae, 64: 459-488.

Thierstein, H.R., 1973. Lower Cretaceous calcareous nannoplankton biostratigraphy. Abhandlungen der Geologischen Bundesanstalt, 29:1-52.

Thierstein, H.R., 1974. Calcareous nannoplankton – Leg 26, Deep Sea Drilling Project. In: Davies, T.A., Luyendyk, B.P., et al., Initial Reports of the Deep Sea Drilling Project, 26. U.S. Government Printing Office, Washington, D.C., pp. 619-667.

Thierstein, H.R., 1977. Mesozoic calcareous nannofossils from the Indian Ocean, DSDP Legs 22 to 27. In: Heirtzler, J.R., Bolli, H.M., Davies, T.A., Saunders, J.B., and Sclater, J. (Eds.), Indian Ocean Geology and Biostratigraphy. American Geophysical Union, Washington, D.C., pp. 339-351.

Thierstein, H.R., Geitzenauer, K.R., Molfino, B., and Shackleton, N.J., 1977. Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology, 5: 400-404.

Thomsen, H.A., Østergaard, J.B., and Hansen, L.E., 1991. Heteromorphic life histories in Arctic coccolithophorids (Prymnesiophyceae). Journal of Phycology, 27: 634-642.

Varol, O, 1998. Palaeogene. In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishing, Dordrecht, The Netherlands, pp. 200- 224.

Villanueva, J., Calvo, E., Pelejero, C., Grimalt, J.O., Boelaert, A., and Labeyrie, L., 2001. A latitudinal productivity band in the central North Atlantic over the last 270 kyr: An alkenone perspective. Paleoceanography, 16: 617-626.

Voelker, A.H.L., Rodrigues, T., Stein, R., Hefter, J., Billups, K., Oppo, D., McManus, J., and Grimalt, J.O., 2009. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes: Does Marine Isotope Stage 11 stand out? Climate of the Past Discussions, 5: 1553-1607.

Voelker, A.H.L., Grützner, J., and Hodell, D.A., in revision. High-frequency changes in surface and deep water hydrography in the mid-latitude North Atlantic during Marine Isotope Stages 11-15: New insights from IODP Sites U1313 and U1308. Geochemisty, Geophysics, Geosystems.

Volkman, J.K., Eglinton, G., Corner, E.D.S., and Sargent, J.R., 1980a. Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments

185 and a coccolithophore Emiliania huxleyi. In: Douglas, A.G. and Maxell, J.R. (Eds.), Advances in Organic Geochemistry 1979. Pergamon, Oxford, pp. 219-227.

Volkman, J.K., Eglinton, G., Corner, E.D.S., and Forsberg, T.E.V., 1980b. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry, 19: 2619-2622.

Volkman, J.K., Barrett, S.M., Blackburn, S.I., and Sikes, E.L., 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochimica et Cosmochimica Acta, 59: 513-520.

Wara, M.W., Ravelo, A.C., and Revenaugh, J.S., 2000. The Pacemaker always rings twice. Paleoceanography, 15: 616-624.

Watkins, D.K., 1989. Nannoplankton productivity fluctuations and rhythmically-bedded pelagic carbonates of the Greenhorn Limestone (Upper Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology, 74: 75-86.

Watkins, D.K. and Bergen, J.A., 2003. Late Albian adaptive radiation in the calcareous nannofossil genus Eiffellithus. Micropaleontology, 49: 231-252.

Watkins, D.K., Wise, S.W., Pospichal, J.J., and Crux, J., 1996. Upper Cretaceous calcareous nannofossil biostratigraphy and paleoceanography of the Southern Ocean. In: Moguilevsky, A., and Whatley, R. (Eds.), Microfossils and oceanic environments. Aberystwyth Press, University of Wales, Aberystwyth, pp. 355-381.

Watkins, D.K., Cooper, M.J., and Wilson, P.A., 2005. Calcareous nannoplankton response to late Albian oceanic anoxic event 1d in the western North Atlantic. Paleoceanography, 20: PA2010, doi:10.1029/2004PA001097.

Weaver, P.P.E. and Pujol. C., 1988. History of the last deglaciation in the Alboran Sea (western Mediterranean) and adjacent North Atlantic as revealed by coccolith floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 64: 35-42.

Wei, W., 1993. Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography, 8: 85-99.

Wei, W. and Pospichal, J.J., 1991. Danian calcareous nannofossil succession at Site 738 in the Southern Indian Ocean. In: Barron, J., Larsen, B., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 119. College Station, TX (Ocean Drilling Program), pp. 495-512.

Wei, W. and Thierstein, H.R., 1991. Upper Cretaceous and Cenozoic calcareous nannofossils of the Kerguelen Plateau (southern Indian Ocean) and Prydz Bay (East Antarctica). In: Barron, J., Larsen, B., et al. (Eds.), Proceedings of the Ocean Drilling

186 Program, Scientific Results, 119. College Station, TX (Ocean Drilling Program), pp. 467-493.

Winter, A., 1982. Paleoenvironmental interpretation of Quaternary coccolith assemblages from the Gulf of Aqaba (Elat), Red Sea. Revista Espanola de Micropaleontologia, 14: 291-314.

Winter, A., Jordan, R.W., and Roth, P.H., 1994. Biogeography of living coccolithophores in oceanic waters. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 161-177.

Wise, S.W., 1983. Mesozoic and Cenozoic calcareous nannofossils recovered by Deep Sea Drilling Project Leg 71 in the Falkland Plateau Region, Southwest Atlantic Ocean. In: Ludwig, W.J., Krasheninnikov, V.A., et al., Initial Reports of the Deep Sea Drilling Project, 80. Washington, D.C. (U.S. Government Printing Office), pp. 481- 550.

Wise, S.W., 1988. Mesozoic-Cenozoic history of calcareous nannofossils in the region of the southern ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 67: 157-179.

Wise, S.W. and Wind, F.H., 1976. Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 36 drilling on the Falkland Plateau, Southwest Atlantic sector of the Southern Ocean. In: Barker, P.F., Dalziel, I.W.D., et al., Initial Reports of the Deep Sea Drilling Project, 36. U.S. Government Printing Office, Washington, D.C., pp. 269-491.

Worsley, T.R., 1971. Calcareous nannofossil zonation of Upper Jurassic and Lower Cretaceous sediments from the Western Atlantic. In: Farinacci, A. (Ed.), Proceedings of the II Planktonic Conference, Roma, 1970, Edizioni Tecnoscienza, Rome, pp. 1301-1322.

Young, J.R., 1990. Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP cores. Journal of Micropaleontology, 9: 71-86.

Young, J.R., 1994. Functions of coccoliths. In: Winter, A. and Siesser, W.G. (Eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 63-82.

Young, J.R., 1998. Neogene. In: Bown, P.R. (Ed.), Calcareous Nannfossil Biostratigraphy. Kluwer Academic Publishing, Dordrecht, The Netherlands, pp. 225- 265.

Young, J.R., Geisen, M., and Probert, I., 2005. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology, 51: 267-288.

187 Ziveri, P., Baumann, K.-H., Böckel, B., Bollmann, J., and Young, J.R., 2004. Biogeography of selected Holocene coccoliths in the Atlantic Ocean. In: Thierstein, H.R. and Young, J.R., (Eds.) Coccolithophores: From Molecular Processes to Global Impact. Springer-Verlag, Berlin, Heidelberg, pp. 403-428.

Zondervan, I., Zeebe, R.E., Rost, B., and Riebesell, U., 2001. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochemical Cycles, 15: 507-516.

188

BIOGRAPHICAL SKETCH

DENISE KAY KULHANEK Born: Lincoln, NE

EDUCATION Doctor of Philosophy, Geological Sciences (2009) Department of Geological Sciences, Florida State University, Tallahassee, FL Dissertation: Kulhanek, D.K., 2009. Calcareous nannoplankton as paleoceanographic and biostratigraphic proxies: Examples from the mid- Cretaceous equatorial Atlantic (ODP Leg 207) and Pleistocene of the Antarctic Peninsula (NBP0602A) and North Atlantic (IODP Exp. 306). PhD Dissertation. Florida State University. 210p.

Master of Science, Geosciences (2000) Department of Geosciences, University of Nebraska, Lincoln Thesis: Kulhanek Rowse, D.K., 2000. Paleocene calcareous nannofossil biostratigraphy and magnetobiochronology from ODP Leg 171B, Blake Nose. MS Thesis. University of Nebraska, Lincoln. 105p.

Bachelor of Science, Geology (1997) Department of Geology, University of Nebraska, Lincoln . Minors: math, anthropology . Phi Beta Kappa . Graduated with distinction

RESEARCH INTERESTS I use microfossils (especially calcareous nannofossils), sediments, and stable isotopes to address paleoceanographic and paleoclimate questions covering a wide span of geologic time. Past projects include looking at changing surface circulation as the central Atlantic opened during the mid-Cretaceous, as well as recovery of the calcareous nannofossils following the K/T boundary mass extinction. Currently I am working with high-resolution calcareous nannofossil data correlated to other proxies (stable isotopes, XRF, and % lithics) to assess centennial- and millennial-scale climate change in the North Atlantic during the late Pleistocene.

TEACHING EXPERIENCE Florida State University GLY3610C (Paleontology) Instructor, Fall 2007 (9 students), 2008 (7 students) GLY4905 (Paleo Lab Directed Independent Study), Summer 2008 (1 student) GLY2100 (Historical Geology) Instructor, Spring 2007 (20 students), 2008 (25 students), Spring 2009 (22 students) GLY2100L (Historical Geology Lab) Teaching Assistant, Spring 2004 (30 students)

189

GLY1000L (Dynamic Earth Lab) Teaching Assistant, Fall 2003 (43 students), 2004 (21 students)

University of Nebraska, Lincoln Geol 103H (Honors Historical Geology) Teaching Assistant for lab, Spring 1999 (~20 students) Geol 102 (Physical Geology Lab) Teaching Assistant, Fall 1997 (28 students), Spring 1998 (25 students), Fall 1998 (28 students)

ACADEMIC EXPERIENCE Fall 2006 Antarctic Marine Geology Research Facility (AMGRF) Graduate Assistant, responsible for day-to-day operation of facility while curators were in Antarctica, including supervising students, overseeing budgets, and ordering supplies 2005-2006 Graduate Research Assistant to Dr. Sherwood Wise, primary responsibility Antarctic DiatomWare database/software 1999-2000 Graduate Research Assistant to Dr. David Watkins, University of Nebraska, Lincoln

PROFESSIONAL EXPERIENCE 2003-2005 Independent Contractor for BP, in-office and wellsite biostratigraphy (25+ days of wellsite work) 2000-2003 Biostratigrapher/geologist, BP, Houston, TX (including 60+ days wellsite biostratigraphy experience in the Gulf of Mexico)

RESEARCH CRUISES March/April 2006 SHALDRIL II: Northwestern Weddell Sea (Punta Arenas, Chile), RV/IB Nathaniel B. Palmer, staff scientist/calcareous nannofossil paleontologist, cruise report EDITOR (see Anderson et al., 2006) (36 days) March/April 2005 IODP Expedition 306: North Atlantic Paleoclimate Study II (Ponta Delgada, Azores to Dublin, Ireland), R/V Joides Resolution, calcareous nannofossil paleontologist (49 days)

ACADEMIC AWARDS Best student presentation, International Nannoplankton Association 11 Meeting, 2006 Outstanding graduate presentation, Nebraska Academy of Sciences, 1999 Outstanding Undergraduate Achievement in Science, Graduate Women in Science Award, 1997

FUNDING HISTORY 10th International Symposium on Antarctic Earth Science Travel Grant, 2007, $1,200.00 NSF T306A33, “Paleoclimatic and Biostratigraphic Significance of Calcareous Nannofossils from IODP Expedition 306”, 2006-2008, $26,863.00

190

PROFESSIONAL AFFILIATIONS American Association of Petroleum Geologists American Geophysical Union Association for Women Geoscientists International Nannoplankton Association North American Micropaleontology Section, SEPM

OUTREACH ACTIVITIES 2008-2009 Outreach Coordinator, Antarctic Marine Geology Research Facility 2008-2009 Capital Regional Science & Engineering Fair Judge 2006-2008 AMGRF tour leader for many different groups, including freshmen lab students, women in math and science (WIMSE) groups, various grade school groups, summer camp groups, Boy Scouts, high school science teachers, etc. 2006 SHALDRIL II Cyber Pen Pal to Holy Comforter Elementary School students, with subsequent classroom visit and presentation 2001-2003 Mentor to two grade school students in Houston, TX 2001-2003 Junior Achievement volunteer teacher in Houston, TX Summer 1998 Taught 2-week geology course at Montessori school in Lincoln, NE (ages 3-12)

PUBLICATIONS Hagino, K. and Kulhanek, D.K., 2009. Data Report: Calcareous nannofossils from upper Pliocene and Pleistocene, Expedition 306 Sites U1313 and U1314. In: Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists. Proceedings of the Integrated Ocean Drilling Program, Volume 303/306: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.), doi:10.2204/iodp.proc.303306.206.2009.

Kulhanek, D.K., 2007. Paleocene and Maastrichtian calcareous nannofossils from clasts in Pleistocene glaciomarine muds from the Northern James Ross Basin, Western Weddell Sea, Antarctica. In Cooper, A.K. and Raymoud, C.R., et al. (Eds.), Antarctica: A Keystone in a Changing World - Online Proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper 019; doi: 10.3133/of2007-1047.srp019.

Wise, S.W., Olney, M., Covington, J.M., Egerton, V.M, Jiang, S., Kulhanek, D.K., Ramdeen, S., Schrader, H.M., Sims, P.A., Wood, A.S., Davis, A., Davenport, D.R., Doepler, N., Falcon, W., Lopez, C., Pressley, T., Swedberg, O.L. and Harwood, D.M., 2007. Cenozoic Antarctic DiatomWare/BugCam: An aid for research and teaching. In Cooper, A.K. and Raymoud, C.R., et al. (Eds.), Antarctica: A Keystone in a Changing World - Online Proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper 017, 4 p.; doi:10.3133/of2007- 1047.srp017.

191

Anderson, J.B., Wellner, J., Wise, S., Bohaty, S., Manley, P.L., Smith, T., and Kulhanek, D.K., 2007. Seismic and chronostratigraphic results from SHALDRIL II, northwestern Weddell Sea. In Cooper, A.K. and Raymoud, C.R., et al. (Eds.), Antarctica: A Keystone in a Changing World - Online Proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper 094; doi: 10.3133/of2007-1047.srp094.

Kulhanek, D.K. and Wise, S.W., 2006. Albian calcareous nannofossils from ODP Site 1258: Demerara Rise. Revue de Micropaléontologie 49(3): 181-195.

Anderson, J.B., Manley, P.L., Wise, S.W., Smith Wellner, J., Kulhanek, D.K., and the SHALDRIL II Scientific Party, 2006. SHALDRIL II 2006 NBP0602A Cruise Report. Available online at: http://shaldril.rice.edu/PDFs/NBP0602A.pdf

Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists, 2006. Proc. IODP, 303/306: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.303306.2006. Available online at: http://iodp.tamu.edu/publications/exp303_306/30306toc.htm

Stein, R., Kanamatsu, T., Alvarez Zarikian, C., Higgins, S.M., Channell, J.E.T., Aboud, E., Ohno, M., Acton, G.D., Akimoto, K., Bailey, I., Bjorklund, K.R., Evans, H., Nielsen, S.H.H., Fang, N., Ferretti, P., Gruetzer, J., Guyodo, Y.J.B., Hagino, K., Harris, R., Hatakeda, K., Hefter, J., Judge, S.A., Kulhanek, D.K., Nanayama, F., Rashid, H., Sierro Sanchez, F.J., Völker, A., and Zhai, Q., 2006. North Atlantic paleoceanography: The last five million years. Eos, Transactions, American Geophysical Union 87(13): 129, 133.

Expedition Scientists, 2005. North Atlantic climate 2. IODP Prel. Rept., 306. doi:10.2204/iodp.pr.306.2005. Available online at: http://iodp.tamu.edu/publications/PR/306PR/306PR.html

SELECTED CONFERENCE ABSTRACTS Kulhanek, D.K., Voelker, A.H.L., and Grützner, J., 2009. North Atlantic Calcareous Nannoplankton Response during MIS 11-12: Evidence from IODP Site U1313. Geologic Problem Solving with Microfossils II, Houston, TX.

Kulhanek, D.K., Voelker, A.H.L., and Grützner, J., 2008. Centennial-Scale Nannoplankton Productivity Changes in the Mid-latitude North Atlantic during Marine Isotope Stages 11-12: Evidence from IODP Site 1313. Eos, Transactions. American Geophysical Union, 89(3), Fall Meeting Supplement, Abstract PP11B-1395 (poster).

Anderson, J.B., Wellner, J., Smith, T., Wise, S., Kulhanek, D., Manley, P., and Bohaty, S., 2006. SHALDRILL II; record of climate, cryosphere and ecological changes in the Antarctic Peninsula region during the late Paleogene and Neogene. Eos,

192

Transactions, American Geophysical Union, 87, Fall Meeting Supplement, Abstract PP21D-01.

Kulhanek, D.K. and Wise, S.W., 2006. Albian-Cenomanian calcareous nannofossil biostratigraphy and paleoceanography from ODP Site 1258, Demerara Rise. INA11 (talk).

Kulhanek, D.K. and the SHALDRIL II Scientific Party, 2006. Maastrichtian calcareous nannofossils from clasts in Pleistocene glaciomarine muds from the Northern James Ross Basin, Western Weddell Sea, Antarctica. INA11 (poster).

Wise, S.W., Olney, M, Egerton, V.M., Kulhanek, D.K., Covington, J.M., Wood, A.S., Davis, A., Swedberg, O.L., Lopez, C., Davenport, D.R., Pressley, T., Harwood, D.M., and many others, 2005. DiatomWare/BugCam: Demonstration of a work in progress. 18th North American Diatom Symposium (talk).

Kulhanek, D.K. and Watkins, D.K., 2002. Paleocene calcareous nannofossil biostratigraphy and magnetobiochronology from ODP Leg 171B, Blake Nose. Journal of Nannoplankton Research 24: 127 (poster).

Kulhanek Rowse, D.K., 2000. Paleocene calcareous nannofossil biostratigraphy at ODP Leg 171B. Proceedings of the Nebraska Academy of Sciences and Affiliated Societies, 110: 64 (talk).

Kulhanek, D.K., 1999. Calcareous nannofossil radiation following the K-T boundary event at ODP Leg 171B. Proceedings of the Nebraska Academy of Sciences and Affiliated Societies, 109: 74-75 (talk).

193