Ruthenium Tetroxide (Ruo4) Oxidation of N-Alkyllactams Proceeded Regioselectively Depend- Ing on the Size of Lactam Ring, Except for the Seven-Membered Ring

Total Page:16

File Type:pdf, Size:1020Kb

Ruthenium Tetroxide (Ruo4) Oxidation of N-Alkyllactams Proceeded Regioselectively Depend- Ing on the Size of Lactam Ring, Except for the Seven-Membered Ring No. 1 357 Chem. Pharm. Bull. 35(1) 357-363 (1987) Ruthenium Tetroxide Oxidation of N-Alkyllactams SHIGEYUKIYOSHIFUJI,* YUKIMI ARAKAWA, and YOSHIHIRONITTA Schoolof Pharmacy,Hokuriku University,Kanagawa-machi, Kanazawa920-11, Japan (ReceivedJuly 31, 1986) Ruthenium tetroxide (RuO4) oxidation of N-alkyllactams proceeded regioselectively depend- ing on the size of lactam ring, except for the seven-membered ring. Four- and eight-membered N- methyl- and N-ethyllactams were oxidized at the exocyclic ƒ¿-carbon adjacent to nitrogen to produce the N-acyllactams and NH-lactams, while five- and six-membered lactams underwent endocyclic oxidation to yield the cyclic imides. Oxidation of seven-membered lactams yielded a mixture of products arising from both exocyclic and endocyclic oxidations. These regioselectivities were confirmed in the oxidation of substrates having a tertiary carbon at the oxidation position. Keywords•\oxidation; ruthenium tetroxide oxidation; regioselective oxidation; hydroxyl- ation; imide synthesis; N-alkyllactam; N-acyllactam; imide; ruthenium tetroxide; two-phase method Ruthenium tetroxide (RuO4) is a good reagent for the conversion of N-acylated cyclic amines to the corresponding lactams,1) by oxidation of one of two carbons adjacent to nitrogen. As a common feature of the RuO4 oxidation in this conversion (la to 2 in Chart 1) and in the transformation of cyclic ethers into the corresponding lactones,2) it has been considered that RuO4 predominantly oxidizes a secondary carbon rather than a tertiary one. However, as reported previously,3) we obtained an opposite result in the RuO4 oxidation of some 1-azabicycloalkan-2-ones, such as quinolizidin-4-one (1b), which gave the hydroxylated products, such as 3, resulting from the oxidation of the tertiary carbon. At that time, we predicted that the 1-azabicycloalkan-2-ones might belong not to the category of N-acyl cyclic amines but to that of N-alkyllactams, in terms of RuO4 oxidation. However, to date, there has been no report on the latter category. Here we wish to describe a systematic study on the RuO4 oxidation of N-alkyllactams. As model compounds, simple N-methyl- and N-ethyllactams ranging in size from four- to eight-membered rings were selected for the present work. The RuO4 oxidation of these substrates was carried out at room temperature under catalytic conditions using a catalytic amount of ruthenium dioxide (RuO2) in combination with an excess of 10% aqueous sodium metaperiodate (NaIO4). In the catalytic procedure of RuO4 oxidation, a two-phase system of organic solvent-water is usually employed as a reaction medium and the organic phase is a chlorinated methane such as carbon tetrachloride (CCl4)4) or the combination of CCl4 and Chart 1 358 Vol. 35 (1987) TABLE I. RuO4 Oxidation of N-Alkyllactams I II III IV acetonitrile developed by Sharpless et al.5) Recently we developed a new solvent system of ethyl acetate (AcOEt)-water which gave short reaction times and high yields of the products in the transformation of N-acylated L-proline esters into the corresponding L-pyroglutamic acid derivatives.1c) Therefore, our new system was applied to the present work. However, in the oxidation of the four-membered lactams, the organic phase (AcOEt) was omitted due to the ready solubility of these compounds in water. The oxidation reaction was monitored by observing the disappearance of the starting lactams on thin layer chromatographic (TLC) plates; it proceeded slowly, with a yellow color which indicated the existence of active RuO4 generated in situ from RuO2 under the above conditions. The results are summarized in Table I. A highly regioselective oxidation depending on the ring size of the lactams, except for seven-membered lactams, was observed. Four- and eight-membered lactams were oxidized at the exocyclic ƒ¿-carbon to nitrogen. N-Methyl-ƒÀ-lactam afforded a low yield of the de- methylated NH-lactam. Eight-membered N-methyllactam also gave predominantly the NH- lactam together with a small amount of the N-formyllactam. N-Ethyllactams were transform- ed into the N-acetyllactams (and the NH-lactam in the case of the eight-membered lactam). Formation of the NH-lactams must be based on the elimination of aldehyde (formaldehyde or acetaldehyde) from the intermediates leading to the N-formyl or N-acetyl lactams and/or on the hydrolytic deacylation of the N-acyllactams. Five- and six-membered lactams were oxidized at the endocyclic ƒ¿-carbon to provide the corresponding cyclic imides in high yields. The precursors of these imides are the correspond- ing ƒ¿-hydroxylactams which could be detectable in the early stage of the oxidation on TLC analysis. In an incomplete run with 1-methylpyrrolidin-2-one (5a) using a traditional two- phase system of CCl4—H2O, 2-hydroxy-1-methylpyrrolidine-5-one was isolated from the aqueous phase in 16% yield. When the hydroxy compound was oxidized with RuO4 according to our standard procedure, N-methylsuccinimide (5c) was obtained in 97% yield. Alternatively, treatment of seven-membered lactams with RuO4 provided a mixture of products arising from endocyclic and exocyclic oxidations. Next, in order to confirm the above mentioned regioselectivity depending on the size of the lactam ring, further RuO4 oxidation was done under the same conditions with some N- No. 1 359 alkyllactams bearing a tertiary carbon at the oxidation position. These compounds were chosen because a tertiary carbon is less susceptible to RuO, than a primary or secondary carbon.1,2,4) The results are shown in Chart 2. N-Isopropyl-ƒÀ-lactam (9) was oxidized with Chart 2 360 Vol. 35 (1987) long reaction times to afford two products, an NH-lactam (4c) and a N-acetyllactam (4d), in 35% and 42% yields, respectively. Apparently, this oxidation occurred at the exocyclic tertiary carbon and these products (4c, d) were formed from a common intermediate, the hy- droxylactam (10), which could not be isolated. Presumably 10 was decomposed directly to 4c by the loss of acetone and indirectly to the acetyl derivative (4d) via dehydration to the N- isopropenyllactam (11) and oxidative cleavage of the double bond of 11. RuO4 oxidation of the eight-membered N-isopropyllactam (12) proceeded very sluggishly and was not completed within 30d; a little of the starting lactam (7%) was recovered. This must be due to the difficulty of access of RuO4 to the exocyclic ƒ¿-position. Only a low yield of the exocyclic oxidized product (8c, 25%) was obtained together with the cyclic imide (13, 25%) generated in the kinetically controlled reaction. In this regard, the analogous oxidation of the seven- membered lactams gave reasonable results. N-Isopropylcaprolactam (14) was oxidized exclusively at the endocyclic ƒ¿-position to produce the cyclic imide (15) in 89% yield. On the other hand, the reaction of 1,2-dimethylcaprolactam (16) with RuO4 provided a mixture of products resulting from the exocyclic and endocyclic oxidations: four compounds, 17 (41%), 18 (18%), 19 (19%), and 20 (9%), were obtained on chromatographic separation of the mixture. Although regioselective endocyclic oxidation in the five- and six-membered lactams having a tertiary carbon at the oxidation position has already been observed with 1- azabicycloalkan-2-ones such as 1b (Chart 1),3) 1,2-diethylpiperidin-6-one (21) was examined as a model compound. Thus, treatment of 21 with RuO4 as described above using the CCl4-H2O system gave a 94% yeild of the ring-opened product (23), which is equivalent to the hydroxylactam (22). When the AcOEt-H2O system was used in the above oxidation of 21, the major product was the ring-opened imide (24) as a result of further oxidation of the initially formed amide (23).6) On the basis of the results described above, it is possible to conclude that the RuO4 oxidation of N-alkyllactams proceeds regioselectively depending on the size of the lactam ring, except for the seven-membered ring, even when a saturated tertiary carbon (which has not previously been reported to be oxidized by RuO4) occupies the oxidation position in the four-, five-, and six-membered N-alkyllactams. Recently, a similar type of reaction has been reported in the direct or indirect anodic oxidation of N-alkyllactams.7) Our RuO4 oxidation can be regarded as superior to these oxidations in respect of the high regioselectivity of the reaction and the high yield of the products. Experimental Melting points were taken on a Yanagimoto melting point apparatus. All melting points and boiling points are uncorrected. Infrared (IR) spectra were recorded on a JASCO IRA-2 or a Hitachi 270-30 spectrophotometer. Mass spectra (MS) were measured on a JEOL JMS D-100 or a JEOL JMS D-300 spectrometer. Nuclear magnetic resonance (1H-NMR) spectra were obtained at 23•Ž on a JEOL JNM-MH-100 or a JEOL FX-100 spectrometer with tetramethylsilane as an internal standard. Starting Materials All starting materials were obtained from commercial suppliers (5a, 5b, 6a) or prepared according to the established methods.8). New compounds were characterized as described below. 1-Isopropylazetidin-2-one (9)•\A colorless oil, by 83-85•Ž (17mmHg). MS m/z: 113 (M+). IRcm-1: 1737 (C=O). 1H-NMR (CDCl3) ƒÂ: 1.18 (6H, d, J=7Hz, 2•~CH3), 2.81 (2H, t, J=4Hz, C3-H2), 3.16 (2H, t, J= 4 Hz, C4-H2), 3.75-4.05 (1H, m, CH). 1-Isopropyloctahydroazocin-2-one (12) A colorless oil, by 76•Ž (2 mmHg). MS m/z: 169 (M+). IR v film maxcm-1: 1610 (C=O). 1H-NMR (CDCl3) ƒÂ: 1.14 (6H, d, J= 7 Hz, 2•~CH3), 1.35-1.93 (8H, m, C4-H2, C5-H2, H6- H2, and C7-H2), 2.4-2.61 (2H, m, C3-H2), 3.32-3.47 (2H, m, C8-H2), 4.44-4.92 (1H, m, CH).
Recommended publications
  • Ruthenium Tetroxide Page 1 of 1 0.5% Aqueous Solution
    U.S. Corporate Headquarters Polysciences Europe GmbH Polysciences Asia-Pacific, Inc. 400 Valley Rd. Badener Str. 13 2F-1, 207 Dunhua N. Rd. Warrington, PA 18976 69496 Hirschberg an der Bergstrasse Taipei, Taiwan 10595 1(800) 523-2575 / (215) 343-6484 Germany (886) 2 8712 0600 1(800)343-3291 fax +(49) 06201 845 20 0 (886) 2 8712 2677 fax [email protected] +(49) 06201 845 20 20 fax [email protected] [email protected] TECHNICAL DATA SHEET 320 Ruthenium Tetroxide Page 1 of 1 0.5% Aqueous Solution BACKGROUND AND PROPERTIES: Ruthenium tetroxide has an acrid odor. Vapors are irritating to eyes and In its crystal form, ruthenium (VIII) oxide (RuO4), m.w. 165.7, is a golden respiratory tract. Wear protective goggles and gloves. Handle only in a yellow, volatile solid which sublimes at room temperature. It has mp of hood. In case of spillage, flush with sodium bisulfite solution to decompose 25.4°C and bp of 40°C. It is sparingly soluble in water (2% w/v at 20°C), RuO4 and then flush with plenty of water. but freely soluble in carbon tetrachloride. Solvents such as ether, alcohol, benzene and pyridine react violently with RuO4. Ruthenium tetroxide is ORDERING INFORMATION: not only less volatile and less toxic1 than osmium tetroxide but it is also a Cat. # Description Size stronger oxidizing agent.1-3 It reacts with many organic compounds like 18253 Ruthenium tetroxide, 5 x 10mL olefins, sulfides, primary and secondary alcohols, and aldehydes. It also 0.5% stabalized aqueous solution 10 x 10mL degrades benzene rings.3 25 x 10mL *Supplied in ampoules APPLICATIONS AND INSTRUCTIONS: Ruthenium tetroxide is closely related to osmium tetroxide and is useful REFERENCES: as a staining agent for Electron Microscopy of polymers and their blends, 1.
    [Show full text]
  • United States Patent (19) 11) 4,132,569 Depablo Et Al
    United States Patent (19) 11) 4,132,569 DePablo et al. (45) Jan. 2, 1979 (54) RUTHENIUM RECOVERY PROCESS 3,997,337 12/1976 Pittie et al. ........................ 423/22 X (75) Inventors: Raul S. DePablo, Painesville; David 4,002,470 l/1977 Isa et al. ............................ 423/22 X E. Harrington, Mentor; William R. OTHER PUBLICATIONS Bramstedt, Chardon, all of Ohio Biswas et al., Indian J. Chen, "A Note on the Alkali (73) Assignee: Diamond Shamrock Corporation, Nitrate Fusion for Quant. Est. of Ru'', vol. 6, Jan. 1968, Cleveland, Ohio pp. 51-52. 21) Appl. No.: 845,437 Durkin, Metallurgia, "How to Descale Titanium', May 1954, p. 256. 22) Filed: Oct. 25, 1977 (51) Int. Cl’................................................ B08B 3/08 Primary Examiner-Marc L. Caroff (52) U.S. C. .......................................... 134/3; 134/10; Attorney, Agent, or Firm-John C. Tiernan 134/13; 252/415; 423/22; 423/491 57 ABSTRACT (58) Field of Search ................. 134/3, 10, 13; 423/22, 423/491; 75/83, 121; 252/415 Ruthenium is stripped from a catalyst or electrode sub strate by immersion in a fluoboric acid solution, con (56) References Cited verted to ruthenium oxide, and the ruthenium oxide is U.S. PATENT DOCUMENTS then converted to the alpha ruthenium trichloride for 3,573,100 3/1971 Beer ......................................... 134/3 use in the preparation of fresh catalyst and/or elec 3,706,600 12/1972 Pumphrey et al... 4 & or 134/3 trodes. 3,761,312 9/1973 Entwisle et al. ..... ... 134/3 X 3,761,313 9/1973 Entwisle et al. ..... 84 134/3 8 Claims, No Drawings 4,132,569 1.
    [Show full text]
  • Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-Species
    Molecules 2014, 19, 6534-6582; doi:10.3390/molecules19056534 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-species Vincenzo Piccialli Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ―Federico II‖, Via Cintia 4, 80126, Napoli, Italy; E-Mail: [email protected]; Tel.: +39-081-674111; Fax: +39-081-674393 Received: 24 February 2014; in revised form: 14 May 2014 / Accepted: 16 May 2014 / Published: 21 May 2014 Abstract: In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C–C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII) oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP) has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO) for the mild oxidation of primary and secondary alcohols to carbonyl compounds.
    [Show full text]
  • Comparative Effect of Osmium Tetroxide and Ruthenium Tetroxide on Penicillium Sp. Hyphae and Saccharomyces Cerevisiae Fungal
    Biomédica 2003;23:225-31 USE OF OsO4 AND RuO4 FOR FUNGAL CELL WALL ULTRASTRUCTURE TECHNICAL NOTE Comparative effect of osmium tetroxide and ruthenium tetroxide on Penicillium sp. hyphae and Saccharomyces cerevisiae fungal cell wall ultrastructure Orlando Torres-Fernández 1, Nelly Ordóñez 2 1 Laboratorio de Microscopía Electrónica, Instituto Nacional de Salud, Bogotá, D.C., Colombia. 2 Laboratorio de Patología, Instituto Nacional de Salud, Bogotá, D.C., Colombia. The fungal cell wall viewed through the electron microscope appears transparent when fixed by the conventional osmium tetroxide method. However, ruthenium tetroxide post-fixing has revealed new details in the ultrastructure of Penicillium sp. hyphae and Saccharomyces cerevisiae yeast. Most significant was the demonstration of two or three opaque diverse electron dense layers on the cell wall of each species. Two additional features were detected. Penicillium septa presented a three-layered appearance and budding S. cerevisiae yeast cell walls showed inner filiform cell wall protrusions into the cytoplasm. The combined use of osmium tetroxide and ruthenium tetroxide is recommended for post-fixing in electron microscopy studies of fungi. Key words: fungal cell wall, fungal ultrastructure, osmium tetroxide, ruthenium tetroxide, Penicillium sp., Saccharomyces cerevisiae. Efecto comparativo del tetróxido de osmio y del tetróxido de rutenio como fijadores sobre la ultraestructura de la pared celular de hongos Al microscopio electrónico, la pared celular de los hongos es de apariencia translúcida en especímenes procesados mediante la posfijación convencional con tetróxido de osmio. La posfijación con tetróxido de rutenio reveló nuevos detalles ultraestructurales en hifas de Penicillium sp. y en levaduras de Saccharomyces cerevisiae. El aspecto más destacado fue la modificación en la transparencia de la pared celular, característica de la fijación con tetróxido de osmio.
    [Show full text]
  • Ruthenium Tetroxide Destroys Dioxin the OXIDATIVE CONTROL of AROMATIC POLLUTANTS
    Ruthenium Tetroxide Destroys Dioxin THE OXIDATIVE CONTROL OF AROMATIC POLLUTANTS By David C. Ayres Westfield College, University of London Ruthenium tetroxide is a powerful oxidising be used with advantage. The rate of these agent and has been widely used in laboratories oxidations is approximately doubled for every for small scale oxidations as it reacts rapidly IOOC rise in temperature. with most oxidisable organic functional groups Ruthenium tetroxide is toxic, but less so than at ambient temperature (I). In such conditions a osmium tetroxide; its solutions may be safely solution of ruthenium tetroxide in carbon handled in closed systems or in fume cupboards. tetrachloride is often employed, the organic A 2 per cent aqueous solution can be safely solvent taking up the ruthenium tetroxide as it obtained from warm ruthenium is generated by the oxidation of ruthenium dioxide/hypochlorite by its entrainment in a trichloride with aqueous hypochlorite. Initially stream of air followed by collection in a cooled the ruthenium tetrachloride solution is yellow, trap. In water there is considerable rate and a clear indication that the oxidative reac- enhancement compared to reactions in carbon tion is taking place is given by the precipitation tetrachloride. of black insoluble ruthenium dioxide. As the hypochlorite is capable of continuously Potential Industrial Applications regenerating the ruthenium tetroxide from the From a practical point of view, two specific hydrated dioxide, only catalytic quantities of examples of aqueous oxidations indicate the ruthenium compounds are required. industrial possibilities. Potassium permanganate is used com- Mono- and dichlorophenols are oxidised mercially for the oxidative control of air extremely rapidly.
    [Show full text]
  • Q3D(R1) Elemental Impurities
    Q3D(R1) Elemental Impurities Guidance for Industry U. S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Q3D(R1) Elemental Impurities Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: [email protected] https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs and/or Office of Communication, Outreach and Development Center for Biologics Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 71, Room 3128 Silver Spring, MD 20993-0002 Phone: 800-835-4709 or 240-402-8010 Email : [email protected] https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1) ....................................................................................................... 1 II. SCOPE (2).........................................................................................................................
    [Show full text]
  • The Preparation and Characterization of Some Alkanethiolatoosmium Compounds Harold Harris Schobert Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 The preparation and characterization of some alkanethiolatoosmium compounds Harold Harris Schobert Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Schobert, Harold Harris, "The preparation and characterization of some alkanethiolatoosmium compounds " (1970). Retrospective Theses and Dissertations. 4357. https://lib.dr.iastate.edu/rtd/4357 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-14,258 SCHOBERT, Harold Harris, 1943- THE PREPARATION AND CHARACTERIZATION OF SOME ALKANETHIOLATOOSMIUM COMPOUNDS. Iowa State University, Ph.D., 1970 Chemistry, inorganic University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEH MICROFILMED EXACTLY AS RECEIVED THE PREPARATION AND CHARACTERIZATION OF SOME ALKANETHIOLATOOSMIUM COMPOUNDS by Harold Harris Schobert A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Inorganic Chemistry Approved: Signature was redacted for privacy. Signature was redacted for
    [Show full text]
  • Unclassified Unclassified
    UNCLASSIFIED ANL-4265 Photostat Price $ ff 3o Microfilm Price $ Jf­ b> O MINUTES OF CONFERENCE ON THE CHEMISTRY Available from the Office of Technical Services OF RUTHENIUM, DECEMBER 13 AND 14, 1948 Department of Commerce Washington 25, D. C. By H. Baxman, E. Turk, and L. Deutsch < ) f CLASSIFICATION CANCELLED I DATE FEB 14 1957 QJg E S e For The Atomic Energy Commission ~ o Z sE s*­ « E . E _* o v> *­ O 01 J a> jr c a) C o <­> •- g — x a Chief, Declassification Branch * o III "> o ; £ °- 8> " ""S S- c 12 'I o .2 .2 E o = "= "P Dec. 16, 1955 Ex a o ~ Q­ .E S E p _2 "° .E J ­g | ^ X <­> *• .E E O O J) J2 x £ c *o .2 ■£ ~ c Argonne National Lab. 0> V 4. O £ o o Q. X s 1! Lemont, 111. o 2 X O j s a f> o o * E ■I e Z "" .0 |£ Q. o 2 o> i o < « "8 u o 9­ 2 ™ .2 •> .2 c ■£ o c O .2 e a Ul c jo "o c E ° c Q. » S .9 > 3 -I 2 i £ S S ° ­o .a o "5 s i ; o> 8. j x"S s. i c 3 8­» UNITED STATES ATOMIC ENERGY COMMISSION £ U E 5 1 £ 8 .2 I w Technical Information Service, Oak Ridge, Tennessee V. c» tj p £• E 6 * I o £ ~ e «• £ i2 ­£• « Ti o 1 8 8. 8 .E £ P i. ■* P §1 TJ O S w ­C o i 8 3 'x 3 P 5 J o T; * * * E i\ 'c 3 S £ If.
    [Show full text]
  • Removal of Ruthenium from PUREX Process
    Journal of NUCLEAR SCIENCE and TECHNOLOGY, 26[3], pp. 358~364 (March 1989). Removal of Ruthenium from PUREX Process Extraction of Ruthenium Tetroxide with Paraffin Oil and Filtration of Ruthenium Dioxide Kenji MOTOJIMA Kaken Co., Ltd.* Received December 24, 1988 Ruthenium in nitric acid solution is oxidized by the addition of ceric nitrate to ruthenium tetroxide, which is extracted with n-paraffin oil. Ruthenium tetroxide in paraffin is immediately reduced by the solvent to black ruthenium dioxide as suspension, which can be readily filtered off through the ordinary cellulose filter paper. Through the combined process of extraction and filtration, the ruthenium in a nitric acid solution can be eliminated. KEYWORDS: ruthenium, ruthenium tetroxide, ruthenium dioxide, nitrosglruthe- nium complexes, ceric nitrate, n-paraffin oil, solvent extraction, filtration, spent fuel reprocessing, PUREX Procss, fission products uranium and plutonium are contaminated I. INTRODUCTION by radio-ruthenium. Ruthenium is known to be one of the most As a result, the possibility of the rel- trouble-some nuclides of fission products be- ease of radio-ruthenium in the environment cause it has large fission yield and relatively increases. long half lives. (103Ru: 39.8 d; 106Ru: 368 d) (2) In the process of the concentration of Moreover, the chemistry of ruthenium is very highly radioactive aqueous waste, contain- complicated. It has many oxidation states ing many nitrates of fission products and (0~8), and forms a large number of complexes. nitric acid, ruthenium is oxidized to volatile Ruthenium tetroxide is especially volatile, and tetroxide by nitric acid, and escapes to the it is mainly this property which causes many vapor phase.
    [Show full text]
  • United States Patent Office Patented June 6, 1972
    3,668,005 United States Patent Office Patented June 6, 1972 2 metal support in a molten bath of an oxide of a metal 3,668,005 of the platinum group under pressurized oxygen. Finally, PROCESS FOR THE COATING OF ELECTRODES coating methods have also been described which are Guy Sluse, Rixensart, and Gustave Joanaes, Abolens, Belgium, assignors to Solvay & Cie, Brussels, Belgium carried out by electroStatic pulverization under vacuum No Drawing. Filed Jan. 11, 1971, Ser. No. 105,628 or in the presence of oxygen and even by means of a Claims priority, applicag xemburg, Jan. 9, 1970, plasma generator. 168 SUMMARY OF THE INVENTION Int, Cl, B44d 1/18 U.S. C. 117. 25 13 Claims One of the objects of the present invention is to rem 0 edy difficulties encountered with known metal electrodes coated with a metal oxide of the platinum group by pro ABSTRACT OF THE DISCLOSURE viding a low over-voltage stable electrode which is espe Electrodes coated with ruthenium dioxide are manu cially suitable as an anode for the electrolysis of aqueous factured by applying an anchoring layer containing at solutions of alkali metal halides, and which also may be least one compound oxidizable by ruthenium tetroxide 5 used advantageously for other electrolytic and electro to the area of an etched metal support wherein the ru chemical techniques, such as the production of peroxide thenium dioxide is to be fixed, exposing the thus coated salts, for the protection of the cathode, for the oxidation support to ruthenium tetroxide in the gaseous state, which of organic compounds and for fuel batteries.
    [Show full text]
  • Ruthenium Catalysed Oxidations of Organic Compounds by Ernest S
    Ruthenium Catalysed Oxidations of Organic Compounds By Ernest S. Gore Johnson Matthey Inc., West Chester, Pennsylvania Ruthenium and its complexes can be used to catalyse the oxidation, both homogeneous and heterogeneous, of a wide range of organic subs- trates. These include olefins, alkynes, arenes, alcohols, aldehydes, ketones, ethers, sulphides, amines, and phosphines. A wide variety of oxidants can be used under mild conditions; conversions and selectivities are usually high, and the catalyst can be easily recovered. Ruthenium can also be used to catalyse the oxidative destruction of pollutants in both gas and liquid phases. The synthetic use of ruthenium tetroxide as ruthenium tetroxide reactions (9). With the an oxidant for organic compounds was first emphasis shifting to ruthenium catalysed reac- reported in I 95 3 by Djerassi and Engle (I).The tions, new reactions have been discovered and scope of ruthenium oxidations was greatly conditions have been found which have expanded by Berkowitz and Rylander in 1958 improved the selectivity and yields of these (2). All of these early workers used ruthenium reactions. Thus it is appropriate to survey the tetroxide as a stoichiometric oxidant; however, subject again to summarise the state of the art. ruthenium tetroxide is rather inconvenient to use in this way. It is troublesome to prepare, Experimental Conditions expensive, and its strong oxidising power tends Many different ruthenium catalysts and to make it less selective than other oxidants. oxidants have been used. Of these, the most Caution-ruthenium tetroxide is an extremely common catalysts are RuCldPPhJ, powerful and volatile oxidant; it should only be RuCl,.xH,O, and RuO,.xH,O, and the most handled in a well ventilated area and when common oxidants are HOOAc, NaIO,, O,, and wearing appropriate protective clothing.
    [Show full text]
  • A Study of Model Hydrocarbons
    Molecular Characterisation of Fluidised Catalytic Cracker Feedstocks using Ruthenium Tetroxide Oxidation: a Study of Model Hydrocarbons. by Helen Frances Slurt A thesis submitted to the University of Plymouth in partial fulfilment for the degree of Doctor of Philosophy Petroleum and Environmental Geochemistry Group Department of Environmental Sciences Faculty of Science January 2001 90 0453781 3 ItemNo, Date - 7 FEB 2001 S ClassNo. Contl.No UBRARYSCr ""-'S REFERENCE ONLY LIBRARY STORE The Molecular Characterisation of Fluidised Catalytic Cracker Feedstocks by ruthenium tetroxide oxidation. by Helen Frances Start Abstract The world's proven reserves of crude oil will be depleted in 42 years at the current rate of consumption. Oil refiners are under considerable economic and environmental pressure to improve the efficiency of refining and the quality and definition of products. Statistical and fundamental models are extensively used to more accurately model the important refinery processes such as Fluidised Catalytic Cracking (FCC). A major problem with the fundamental approach is that FCC feedstocks are by definition heavy petroleum fractions, and as such constitute highly complex mixtures of aromatic and aliphatic hydrocarbons. Gas chromatography (GC) analysis of heavy petroleum fractions reveals a broad 'hump' of unresolved compounds termed an Unresolved Complex Mixture (UCM) of hydrocarbons. Conventional instrumental techniques alone are unable to elucidate the composition of UCMs, they are simply loo complex. Oxidative degradation of UCMs has already been used with some success to selectively oxidise aliphatic and aromatic UCMs to reveal some of the structures incorporated in UCMs from various natural and anthropogenic sources. Ruthenium tetroxide (RUO4) attacks aromatic rings at the /pjo-carbon of aromatic moieties.
    [Show full text]