Ruthenium-Mediated Electrochemical Destruction of Organic Wastes by L

Total Page:16

File Type:pdf, Size:1020Kb

Ruthenium-Mediated Electrochemical Destruction of Organic Wastes by L Ruthenium-Mediated Electrochemical Destruction of Organic Wastes By L. Davidson, Y Quinn and D. E Steele AE-4 Technology plc, Dounreay, Scotland No industrial process is 100 per cent efficient and the generation of waste, both organic and inorganic, is an unavoidable reality. The recycling of waste is becoming increasingly important as concerns about the environment and the availability of resources come more to the fore, but there remain many waste streams which are not yet suitable for recovery of their reusable content, on the grounds of cost orpracticality Historical13 the disposal of such wastes has been either via incineration or release into the environment after neutralisation or imrnobilisation, in a landfill site or into a drain or sewer, or the like. These options are becoming more restricted as regulations tighten and public perception of any but the most benign discharges worsens. This paper sets out reasons for using electrochemical oxidation with a ruthenium electro- catalyst to provide aneffective and environmentally friendly alternative to other technologies. Electrochemical oxidation can effect mineralisation of toxic organic species with minimal generation of secondary waste and eflicient recovery of the ruthenium mediator and is particularly suited for the treatment of highly chlorinated and aromatic compounds. Organic wastes, of the types which cannot furans which are highly toxic and limited, by be converted into benign biodegradable species, Regulatory bodies, to low ppb levels in the dis- are often treated by oxidation, usually inciner- charges. Toxic waste incineration has thus tended ation, although other chemical treatments are to become very 'high-tech' in recent years, with sometimes used. Many of the oxidants which only a few highly specialised facilities treating could be used are ruled out by cost or toxicity. most of the waste destined for combustion. The use of air for such oxidations, normally Public perception of incinerators, particularly by high temperature incineration, is the cheap- those treating toxic wastes, is poor or hostile, est in terms of reagents. The current best-avail- and the licensing of new facilities in most coun- able technology is capable of achieving essen- tries in the developed world is becoming very tially complete destruction of even refractory difficult and sometimes almost impossible. materials. However, the combustion products from many organic materials, in particular chlo- rinated species, contain acidic gases (for exam- Table I ple, hydrogen chloride, sulphur oxides and nitro- Comparison of Oxidation Costs* gen oxides) which must be scrubbed to very low levels before discharge. As excess air is always Oxidant Cost/rnole of [O] equivalent, f used, the volumes of gases for treatment tend to be large, leading to large scrubbers and other Electron 0.01 related equipment, and associated increased Hydrogen peroxide 0.058 costs. Incomplete combustion, possibly due to Potassium dichromate (Cr"') 0.1 8 Ceric nitrate (Ce'") 8.68 maloperation, can lead to the production of sec- ondary species, such as dioxins and dibenzo- * The Appendix contains more details of comparative costs Platinum Metals Rev., 1998, 42, (3), 90-98 90 CO+COl ottgas catholyte recycle Fig. 1 The design of the plant used for the ruthenium-mediated oxidation of highly toxic industrial waste. The cell at the centre of the process has ruthenium chloride or hydrated ruthenium oxide added to the anolyte. Platinum coated anodes are used for the flow-cells However, the use of electrochemical oxidation development by AEA Technology for some time to treat organic industrial waste gives a cheaper, as a possible process for the complete oxidation cleaner and renewable alternative: the ‘electron’. of a number of types of organic waste or the The ‘electron’is also cheaper than chemical oxi- organic waste component in a mixed waste. dants on a per/mole basis, see Table I. However, in the silver-mediated system, the In principle, electrochemical oxidation has a presence of sigdicant amounts of halogen (usu- number of advantages over oxidation using con- ally chlorine) in the organics being oxidised can ventional oxidising agents. In practice, however, result in the formation of substantial amounts direct electrochemical oxidation of organic of insoluble silver halide(s), which are, at best, species is often difficult due to mass transfer and a nuisance. kinetic restraints at the electrode surface and Here an alternative, ruthenium-mediated elec- competing reactions with the electrolyte. Many trochemical system is described, see Figure 1, of the restrictions can be overcome by the use which has many similarities to the SILVER IITM of a mediator which is easily oxidised at the system but which is not affected by the presence anode surface to a species which then reacts of halogen, and in particular by chlorine. in the bulk solution with the organic substrate. The mediator can be re-oxidised at the anode Chemical Considerations for further use and can thus be termed an elec- In order to understand the internal workings trocatalyst as it is not consumed in the overall of the ruthenium-mediated oxidation system, it reaction. is necessary to consider some aspects of the The silver-mediated electrochemical oxida- aqueous chemistry of ruthenium. Ruthenium tion of organics (SILVER IITM)has been under can form compounds with a multiplicity of Platinum Metals Rev., 1998, 42, (3) 91 oxidation states, ranging from -2 to +8. Its (iii) Partial oxidation of Ru(1V) in neutral or chemistry in aqueous solution mainly relates to acid solution, followed by disproportionation, the +3, +4, +6, +7 and +8 oxidation states, with forms ruthenium tetroxide. the +3 and +4 states being the most stable. Ruthenium is normally supplied as the trichlo- Ruthenium Tetroxide ride, "RuCl,.(H,O)," (n = 2 or 3), a very solu- Volatile RuO, @.p. - 130°C), like isostructural ble dark red-brown solid which contains a com- OsO,, is a powerful and unstable oxidising agent. plex mixture of chloro and chlorohydroxo It may be prepared from an acidic solution or complexes, many of which are polymeric and suspension of any one of a number of ruthe- contain mainly Ru(IV) (1). nium salts or hydrated RuO, by treatment with Although "ruthenium(II1) trichloride" is the a powerful oxidant, such as MnO;, Cl,, IO;, form in which ruthenium is initially added to Celt or NaOCl (bleach). Pure RuO, is not par- the ruthenium-mediated electrolytic system, ticularly stable in either the liquid or vapour Ru(IV), in the form of hydrated RuOzis of much phase and tends to decompose, eventually form- greater significance. The great insolubility of ing RuO,. It is freely soluble in organic solvents, this oxide in water ensures that its production although its reactivity limits the solvents which is favoured when ruthenium 0x0-anions in high can be used (typically CCl, or CHCl,, plus some valent states are reduced (in a similar manner polar solvents with little nucleophilic charac- to the easy formation of insoluble MnO, when ter). These solutions of RuO, are reasonably MnO; is used as an oxidant). stable if kept in the dark and with a slight excess The hydrated oxide can be dissolved oxida- of the oxidant which formed the tetroxide. It tively (for example, using oxygen, persulfate is not normally prepared in bulk quantities, but or permanganate) in alkaline solution (pH > is generated for immediate use. 12) to yield a solution of the orange ruthenate ion, Ru0,Z- (Rum)): Organic Oxidation by Ruthenium 0x0-Species RU'~O,+ 40H- + RuwO:- + 2Hz0+ 2e Ruthenate, perruthenate and, in particular, Ruthenate is only stable at high pH and in the ruthenium tetroxide have all been studied as absence of reducing agents. If the pH is low- oxidants for organic synthesis. RuO, has been ered, Ru0,Z- disproportionates to give hydrated studied fairly comprehensively and prepara- Ru(N)O, and green perruthenate, Ru(VII)O,-: tive oxidations in both the aqueous and organic phases (mainly in unreactive solvents like CHC1, 3Ru"O:- + 4H' + RuIVO2+ 2RuV"0L + 2H20 and CCl,) have been described (2, 3), with the Perruthenate solutions are unstable and exact conditions being tailored to suit the par- decompose, either with the formation of 0, and ticular synthesis. RuO,: One of the first investigations of organic oxi- dations using RuO, included the following 4Ruw0; + 4H' + 4Ru"02 + 30, + 2Hz0 description using only 10 mg of tetroxide with or, if the pH is below - 7.5, the decomposition some common solvents: can produce RuO,: "Benzene - vigorous explosion; pyridine - no 4Rum0, + 4H' + RuNOz+ 3RuW"0,+ 2H20 explosion, only flame; anhydrous ether - small explo- sion, followed by yellow jlame" (4). Important points to note from the above are: (i) The favoured reduced form of uncomplexed Of particular interest in the context of destruc- ruthenium in near-neutral aqueous solution is tive, rather than synthetic, oxidation by RuO, Ru(IV)oz. are the following properties: (ii) Uncomplexed ruthenium exists in aqueous The solubility of RuO, in both polar and non- solution as neutral or anionic species. polar organic solvents, allows oxidation to take Platinum Metals Rev., 1998,42, (3) 92 place within an immiscible organic phase rather and is the basis for a worldwide industry with than only at the aqueoudorganic interface. a capacity of millions of tonnedyear (8). RuO, cleaves many C=C bonds, usually The principal process at the anode surface yielding carbonyl compounds in the first instance. is oxidation of chloride ions (with very minor RuO, is able to oxidise saturated hydrocar- oxidation of water to form oxygen): bons under mild conditions (5). 2C1- C12 2e The complete oxidation of the highly toxic + + and relatively unreactive polychlorodibenzo-p- At the low pH normally encountered in dioxins (6) and polychlorinated biphenyls (7) chlorine cells, the product is gaseous chlorine. by RuO, has been reported. As the pH is raised, the hydrolysis of the chlo- Aromatic nuclei are attacked and are rine to form HOCl begins to predominate and completely degraded.
Recommended publications
  • Ruthenium Tetroxide (Ruo4) Oxidation of N-Alkyllactams Proceeded Regioselectively Depend- Ing on the Size of Lactam Ring, Except for the Seven-Membered Ring
    No. 1 357 Chem. Pharm. Bull. 35(1) 357-363 (1987) Ruthenium Tetroxide Oxidation of N-Alkyllactams SHIGEYUKIYOSHIFUJI,* YUKIMI ARAKAWA, and YOSHIHIRONITTA Schoolof Pharmacy,Hokuriku University,Kanagawa-machi, Kanazawa920-11, Japan (ReceivedJuly 31, 1986) Ruthenium tetroxide (RuO4) oxidation of N-alkyllactams proceeded regioselectively depend- ing on the size of lactam ring, except for the seven-membered ring. Four- and eight-membered N- methyl- and N-ethyllactams were oxidized at the exocyclic ƒ¿-carbon adjacent to nitrogen to produce the N-acyllactams and NH-lactams, while five- and six-membered lactams underwent endocyclic oxidation to yield the cyclic imides. Oxidation of seven-membered lactams yielded a mixture of products arising from both exocyclic and endocyclic oxidations. These regioselectivities were confirmed in the oxidation of substrates having a tertiary carbon at the oxidation position. Keywords•\oxidation; ruthenium tetroxide oxidation; regioselective oxidation; hydroxyl- ation; imide synthesis; N-alkyllactam; N-acyllactam; imide; ruthenium tetroxide; two-phase method Ruthenium tetroxide (RuO4) is a good reagent for the conversion of N-acylated cyclic amines to the corresponding lactams,1) by oxidation of one of two carbons adjacent to nitrogen. As a common feature of the RuO4 oxidation in this conversion (la to 2 in Chart 1) and in the transformation of cyclic ethers into the corresponding lactones,2) it has been considered that RuO4 predominantly oxidizes a secondary carbon rather than a tertiary one. However, as reported previously,3) we obtained an opposite result in the RuO4 oxidation of some 1-azabicycloalkan-2-ones, such as quinolizidin-4-one (1b), which gave the hydroxylated products, such as 3, resulting from the oxidation of the tertiary carbon.
    [Show full text]
  • Ruthenium Tetroxide Page 1 of 1 0.5% Aqueous Solution
    U.S. Corporate Headquarters Polysciences Europe GmbH Polysciences Asia-Pacific, Inc. 400 Valley Rd. Badener Str. 13 2F-1, 207 Dunhua N. Rd. Warrington, PA 18976 69496 Hirschberg an der Bergstrasse Taipei, Taiwan 10595 1(800) 523-2575 / (215) 343-6484 Germany (886) 2 8712 0600 1(800)343-3291 fax +(49) 06201 845 20 0 (886) 2 8712 2677 fax [email protected] +(49) 06201 845 20 20 fax [email protected] [email protected] TECHNICAL DATA SHEET 320 Ruthenium Tetroxide Page 1 of 1 0.5% Aqueous Solution BACKGROUND AND PROPERTIES: Ruthenium tetroxide has an acrid odor. Vapors are irritating to eyes and In its crystal form, ruthenium (VIII) oxide (RuO4), m.w. 165.7, is a golden respiratory tract. Wear protective goggles and gloves. Handle only in a yellow, volatile solid which sublimes at room temperature. It has mp of hood. In case of spillage, flush with sodium bisulfite solution to decompose 25.4°C and bp of 40°C. It is sparingly soluble in water (2% w/v at 20°C), RuO4 and then flush with plenty of water. but freely soluble in carbon tetrachloride. Solvents such as ether, alcohol, benzene and pyridine react violently with RuO4. Ruthenium tetroxide is ORDERING INFORMATION: not only less volatile and less toxic1 than osmium tetroxide but it is also a Cat. # Description Size stronger oxidizing agent.1-3 It reacts with many organic compounds like 18253 Ruthenium tetroxide, 5 x 10mL olefins, sulfides, primary and secondary alcohols, and aldehydes. It also 0.5% stabalized aqueous solution 10 x 10mL degrades benzene rings.3 25 x 10mL *Supplied in ampoules APPLICATIONS AND INSTRUCTIONS: Ruthenium tetroxide is closely related to osmium tetroxide and is useful REFERENCES: as a staining agent for Electron Microscopy of polymers and their blends, 1.
    [Show full text]
  • United States Patent (19) 11) 4,132,569 Depablo Et Al
    United States Patent (19) 11) 4,132,569 DePablo et al. (45) Jan. 2, 1979 (54) RUTHENIUM RECOVERY PROCESS 3,997,337 12/1976 Pittie et al. ........................ 423/22 X (75) Inventors: Raul S. DePablo, Painesville; David 4,002,470 l/1977 Isa et al. ............................ 423/22 X E. Harrington, Mentor; William R. OTHER PUBLICATIONS Bramstedt, Chardon, all of Ohio Biswas et al., Indian J. Chen, "A Note on the Alkali (73) Assignee: Diamond Shamrock Corporation, Nitrate Fusion for Quant. Est. of Ru'', vol. 6, Jan. 1968, Cleveland, Ohio pp. 51-52. 21) Appl. No.: 845,437 Durkin, Metallurgia, "How to Descale Titanium', May 1954, p. 256. 22) Filed: Oct. 25, 1977 (51) Int. Cl’................................................ B08B 3/08 Primary Examiner-Marc L. Caroff (52) U.S. C. .......................................... 134/3; 134/10; Attorney, Agent, or Firm-John C. Tiernan 134/13; 252/415; 423/22; 423/491 57 ABSTRACT (58) Field of Search ................. 134/3, 10, 13; 423/22, 423/491; 75/83, 121; 252/415 Ruthenium is stripped from a catalyst or electrode sub strate by immersion in a fluoboric acid solution, con (56) References Cited verted to ruthenium oxide, and the ruthenium oxide is U.S. PATENT DOCUMENTS then converted to the alpha ruthenium trichloride for 3,573,100 3/1971 Beer ......................................... 134/3 use in the preparation of fresh catalyst and/or elec 3,706,600 12/1972 Pumphrey et al... 4 & or 134/3 trodes. 3,761,312 9/1973 Entwisle et al. ..... ... 134/3 X 3,761,313 9/1973 Entwisle et al. ..... 84 134/3 8 Claims, No Drawings 4,132,569 1.
    [Show full text]
  • Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-Species
    Molecules 2014, 19, 6534-6582; doi:10.3390/molecules19056534 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-species Vincenzo Piccialli Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ―Federico II‖, Via Cintia 4, 80126, Napoli, Italy; E-Mail: [email protected]; Tel.: +39-081-674111; Fax: +39-081-674393 Received: 24 February 2014; in revised form: 14 May 2014 / Accepted: 16 May 2014 / Published: 21 May 2014 Abstract: In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C–C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII) oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP) has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO) for the mild oxidation of primary and secondary alcohols to carbonyl compounds.
    [Show full text]
  • Comparative Effect of Osmium Tetroxide and Ruthenium Tetroxide on Penicillium Sp. Hyphae and Saccharomyces Cerevisiae Fungal
    Biomédica 2003;23:225-31 USE OF OsO4 AND RuO4 FOR FUNGAL CELL WALL ULTRASTRUCTURE TECHNICAL NOTE Comparative effect of osmium tetroxide and ruthenium tetroxide on Penicillium sp. hyphae and Saccharomyces cerevisiae fungal cell wall ultrastructure Orlando Torres-Fernández 1, Nelly Ordóñez 2 1 Laboratorio de Microscopía Electrónica, Instituto Nacional de Salud, Bogotá, D.C., Colombia. 2 Laboratorio de Patología, Instituto Nacional de Salud, Bogotá, D.C., Colombia. The fungal cell wall viewed through the electron microscope appears transparent when fixed by the conventional osmium tetroxide method. However, ruthenium tetroxide post-fixing has revealed new details in the ultrastructure of Penicillium sp. hyphae and Saccharomyces cerevisiae yeast. Most significant was the demonstration of two or three opaque diverse electron dense layers on the cell wall of each species. Two additional features were detected. Penicillium septa presented a three-layered appearance and budding S. cerevisiae yeast cell walls showed inner filiform cell wall protrusions into the cytoplasm. The combined use of osmium tetroxide and ruthenium tetroxide is recommended for post-fixing in electron microscopy studies of fungi. Key words: fungal cell wall, fungal ultrastructure, osmium tetroxide, ruthenium tetroxide, Penicillium sp., Saccharomyces cerevisiae. Efecto comparativo del tetróxido de osmio y del tetróxido de rutenio como fijadores sobre la ultraestructura de la pared celular de hongos Al microscopio electrónico, la pared celular de los hongos es de apariencia translúcida en especímenes procesados mediante la posfijación convencional con tetróxido de osmio. La posfijación con tetróxido de rutenio reveló nuevos detalles ultraestructurales en hifas de Penicillium sp. y en levaduras de Saccharomyces cerevisiae. El aspecto más destacado fue la modificación en la transparencia de la pared celular, característica de la fijación con tetróxido de osmio.
    [Show full text]
  • Ruthenium Tetroxide Destroys Dioxin the OXIDATIVE CONTROL of AROMATIC POLLUTANTS
    Ruthenium Tetroxide Destroys Dioxin THE OXIDATIVE CONTROL OF AROMATIC POLLUTANTS By David C. Ayres Westfield College, University of London Ruthenium tetroxide is a powerful oxidising be used with advantage. The rate of these agent and has been widely used in laboratories oxidations is approximately doubled for every for small scale oxidations as it reacts rapidly IOOC rise in temperature. with most oxidisable organic functional groups Ruthenium tetroxide is toxic, but less so than at ambient temperature (I). In such conditions a osmium tetroxide; its solutions may be safely solution of ruthenium tetroxide in carbon handled in closed systems or in fume cupboards. tetrachloride is often employed, the organic A 2 per cent aqueous solution can be safely solvent taking up the ruthenium tetroxide as it obtained from warm ruthenium is generated by the oxidation of ruthenium dioxide/hypochlorite by its entrainment in a trichloride with aqueous hypochlorite. Initially stream of air followed by collection in a cooled the ruthenium tetrachloride solution is yellow, trap. In water there is considerable rate and a clear indication that the oxidative reac- enhancement compared to reactions in carbon tion is taking place is given by the precipitation tetrachloride. of black insoluble ruthenium dioxide. As the hypochlorite is capable of continuously Potential Industrial Applications regenerating the ruthenium tetroxide from the From a practical point of view, two specific hydrated dioxide, only catalytic quantities of examples of aqueous oxidations indicate the ruthenium compounds are required. industrial possibilities. Potassium permanganate is used com- Mono- and dichlorophenols are oxidised mercially for the oxidative control of air extremely rapidly.
    [Show full text]
  • Q3D(R1) Elemental Impurities
    Q3D(R1) Elemental Impurities Guidance for Industry U. S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Q3D(R1) Elemental Impurities Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: [email protected] https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs and/or Office of Communication, Outreach and Development Center for Biologics Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 71, Room 3128 Silver Spring, MD 20993-0002 Phone: 800-835-4709 or 240-402-8010 Email : [email protected] https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1) ....................................................................................................... 1 II. SCOPE (2).........................................................................................................................
    [Show full text]
  • The Preparation and Characterization of Some Alkanethiolatoosmium Compounds Harold Harris Schobert Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 The preparation and characterization of some alkanethiolatoosmium compounds Harold Harris Schobert Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Schobert, Harold Harris, "The preparation and characterization of some alkanethiolatoosmium compounds " (1970). Retrospective Theses and Dissertations. 4357. https://lib.dr.iastate.edu/rtd/4357 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-14,258 SCHOBERT, Harold Harris, 1943- THE PREPARATION AND CHARACTERIZATION OF SOME ALKANETHIOLATOOSMIUM COMPOUNDS. Iowa State University, Ph.D., 1970 Chemistry, inorganic University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEH MICROFILMED EXACTLY AS RECEIVED THE PREPARATION AND CHARACTERIZATION OF SOME ALKANETHIOLATOOSMIUM COMPOUNDS by Harold Harris Schobert A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Inorganic Chemistry Approved: Signature was redacted for privacy. Signature was redacted for
    [Show full text]
  • Unclassified Unclassified
    UNCLASSIFIED ANL-4265 Photostat Price $ ff 3o Microfilm Price $ Jf­ b> O MINUTES OF CONFERENCE ON THE CHEMISTRY Available from the Office of Technical Services OF RUTHENIUM, DECEMBER 13 AND 14, 1948 Department of Commerce Washington 25, D. C. By H. Baxman, E. Turk, and L. Deutsch < ) f CLASSIFICATION CANCELLED I DATE FEB 14 1957 QJg E S e For The Atomic Energy Commission ~ o Z sE s*­ « E . E _* o v> *­ O 01 J a> jr c a) C o <­> •- g — x a Chief, Declassification Branch * o III "> o ; £ °- 8> " ""S S- c 12 'I o .2 .2 E o = "= "P Dec. 16, 1955 Ex a o ~ Q­ .E S E p _2 "° .E J ­g | ^ X <­> *• .E E O O J) J2 x £ c *o .2 ■£ ~ c Argonne National Lab. 0> V 4. O £ o o Q. X s 1! Lemont, 111. o 2 X O j s a f> o o * E ■I e Z "" .0 |£ Q. o 2 o> i o < « "8 u o 9­ 2 ™ .2 •> .2 c ■£ o c O .2 e a Ul c jo "o c E ° c Q. » S .9 > 3 -I 2 i £ S S ° ­o .a o "5 s i ; o> 8. j x"S s. i c 3 8­» UNITED STATES ATOMIC ENERGY COMMISSION £ U E 5 1 £ 8 .2 I w Technical Information Service, Oak Ridge, Tennessee V. c» tj p £• E 6 * I o £ ~ e «• £ i2 ­£• « Ti o 1 8 8. 8 .E £ P i. ■* P §1 TJ O S w ­C o i 8 3 'x 3 P 5 J o T; * * * E i\ 'c 3 S £ If.
    [Show full text]
  • Removal of Ruthenium from PUREX Process
    Journal of NUCLEAR SCIENCE and TECHNOLOGY, 26[3], pp. 358~364 (March 1989). Removal of Ruthenium from PUREX Process Extraction of Ruthenium Tetroxide with Paraffin Oil and Filtration of Ruthenium Dioxide Kenji MOTOJIMA Kaken Co., Ltd.* Received December 24, 1988 Ruthenium in nitric acid solution is oxidized by the addition of ceric nitrate to ruthenium tetroxide, which is extracted with n-paraffin oil. Ruthenium tetroxide in paraffin is immediately reduced by the solvent to black ruthenium dioxide as suspension, which can be readily filtered off through the ordinary cellulose filter paper. Through the combined process of extraction and filtration, the ruthenium in a nitric acid solution can be eliminated. KEYWORDS: ruthenium, ruthenium tetroxide, ruthenium dioxide, nitrosglruthe- nium complexes, ceric nitrate, n-paraffin oil, solvent extraction, filtration, spent fuel reprocessing, PUREX Procss, fission products uranium and plutonium are contaminated I. INTRODUCTION by radio-ruthenium. Ruthenium is known to be one of the most As a result, the possibility of the rel- trouble-some nuclides of fission products be- ease of radio-ruthenium in the environment cause it has large fission yield and relatively increases. long half lives. (103Ru: 39.8 d; 106Ru: 368 d) (2) In the process of the concentration of Moreover, the chemistry of ruthenium is very highly radioactive aqueous waste, contain- complicated. It has many oxidation states ing many nitrates of fission products and (0~8), and forms a large number of complexes. nitric acid, ruthenium is oxidized to volatile Ruthenium tetroxide is especially volatile, and tetroxide by nitric acid, and escapes to the it is mainly this property which causes many vapor phase.
    [Show full text]
  • United States Patent Office Patented June 6, 1972
    3,668,005 United States Patent Office Patented June 6, 1972 2 metal support in a molten bath of an oxide of a metal 3,668,005 of the platinum group under pressurized oxygen. Finally, PROCESS FOR THE COATING OF ELECTRODES coating methods have also been described which are Guy Sluse, Rixensart, and Gustave Joanaes, Abolens, Belgium, assignors to Solvay & Cie, Brussels, Belgium carried out by electroStatic pulverization under vacuum No Drawing. Filed Jan. 11, 1971, Ser. No. 105,628 or in the presence of oxygen and even by means of a Claims priority, applicag xemburg, Jan. 9, 1970, plasma generator. 168 SUMMARY OF THE INVENTION Int, Cl, B44d 1/18 U.S. C. 117. 25 13 Claims One of the objects of the present invention is to rem 0 edy difficulties encountered with known metal electrodes coated with a metal oxide of the platinum group by pro ABSTRACT OF THE DISCLOSURE viding a low over-voltage stable electrode which is espe Electrodes coated with ruthenium dioxide are manu cially suitable as an anode for the electrolysis of aqueous factured by applying an anchoring layer containing at solutions of alkali metal halides, and which also may be least one compound oxidizable by ruthenium tetroxide 5 used advantageously for other electrolytic and electro to the area of an etched metal support wherein the ru chemical techniques, such as the production of peroxide thenium dioxide is to be fixed, exposing the thus coated salts, for the protection of the cathode, for the oxidation support to ruthenium tetroxide in the gaseous state, which of organic compounds and for fuel batteries.
    [Show full text]
  • Ruthenium Catalysed Oxidations of Organic Compounds by Ernest S
    Ruthenium Catalysed Oxidations of Organic Compounds By Ernest S. Gore Johnson Matthey Inc., West Chester, Pennsylvania Ruthenium and its complexes can be used to catalyse the oxidation, both homogeneous and heterogeneous, of a wide range of organic subs- trates. These include olefins, alkynes, arenes, alcohols, aldehydes, ketones, ethers, sulphides, amines, and phosphines. A wide variety of oxidants can be used under mild conditions; conversions and selectivities are usually high, and the catalyst can be easily recovered. Ruthenium can also be used to catalyse the oxidative destruction of pollutants in both gas and liquid phases. The synthetic use of ruthenium tetroxide as ruthenium tetroxide reactions (9). With the an oxidant for organic compounds was first emphasis shifting to ruthenium catalysed reac- reported in I 95 3 by Djerassi and Engle (I).The tions, new reactions have been discovered and scope of ruthenium oxidations was greatly conditions have been found which have expanded by Berkowitz and Rylander in 1958 improved the selectivity and yields of these (2). All of these early workers used ruthenium reactions. Thus it is appropriate to survey the tetroxide as a stoichiometric oxidant; however, subject again to summarise the state of the art. ruthenium tetroxide is rather inconvenient to use in this way. It is troublesome to prepare, Experimental Conditions expensive, and its strong oxidising power tends Many different ruthenium catalysts and to make it less selective than other oxidants. oxidants have been used. Of these, the most Caution-ruthenium tetroxide is an extremely common catalysts are RuCldPPhJ, powerful and volatile oxidant; it should only be RuCl,.xH,O, and RuO,.xH,O, and the most handled in a well ventilated area and when common oxidants are HOOAc, NaIO,, O,, and wearing appropriate protective clothing.
    [Show full text]