Pdgfrβ Regulates Adipose Tissue Expansion and Glucose

Total Page:16

File Type:pdf, Size:1020Kb

Pdgfrβ Regulates Adipose Tissue Expansion and Glucose 1008 Diabetes Volume 66, April 2017 Yasuhiro Onogi,1 Tsutomu Wada,1 Chie Kamiya,1 Kento Inata,1 Takatoshi Matsuzawa,1 Yuka Inaba,2,3 Kumi Kimura,2 Hiroshi Inoue,2,3 Seiji Yamamoto,4 Yoko Ishii,4 Daisuke Koya,5 Hiroshi Tsuneki,1 Masakiyo Sasahara,4 and Toshiyasu Sasaoka1 PDGFRb Regulates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity Diabetes 2017;66:1008–1021 | DOI: 10.2337/db16-0881 Platelet-derived growth factor (PDGF) is a key factor in The physiological roles of the vasculature in adipose tissue angiogenesis; however, its role in adult obesity remains have been attracting interest from the viewpoint of adipose unclear. In order to clarify its pathophysiological role, tissue expansion and chronic inflammation (1,2). White we investigated the significance of PDGF receptor b adipose tissue (WAT) such as visceral fat possesses the (PDGFRb) in adipose tissue expansion and glucose unique characteristic of plasticity; its volume may change metabolism. Mature vessels in the epididymal white several fold even after growth depending on nutritional adipose tissue (eWAT) were tightly wrapped with peri- conditions. Enlarged adipose tissue is chronically exposed cytes in normal mice. Pericyte desorption from vessels to hypoxia (3,4), which stimulates the production of angio- and the subsequent proliferation of endothelial cells genic factors for the supplementation of nutrients and were markedly increased in the eWAT of diet-induced oxygen to the newly enlarged tissue area (5). Selective ab- obese mice. Analyses with flow cytometry and adipose lation of the vasculature in WAT by apoptosis-inducible tissue cultures indicated that PDGF-B caused the de- peptides or the systemic administration of angiogenic in- PATHOPHYSIOLOGY tachment of pericytes from vessels in a concentration- hibitors has been shown to reduce WAT volumes and result dependent manner. M1-macrophages were a major type in better glucose metabolism profiles in obese mice (1,2,6). of cells expressing PDGF-B in obese adipose tissue. In contrast, pericyte detachment was attenuated and vas- Regarding angiogenic factors, vascular endothelial growth cularity within eWAT was reduced in tamoxifen-inducible factor (VEGF) has been characterized in the most detail conditional Pdgfrb-knockout mice with decreases in ad- and is known to play crucial roles in the neovascular de- – ipocytesizeandchronicinflammation. Furthermore, velopment of adipose tissue with obesity (7 13). Pdgfrb-knockout mice showed enhanced energy expen- PDGF-B is another growth factor and its homodimer diture. Consequently, diet-induced obesity and the asso- activates an intracellular signaling cascade by binding to ciated deterioration of glucose metabolism in wild-type its receptor, PDGF receptor b (PDGFRb) (14,15). It plays mice were absent in Pdgfrb-knockout mice. Therefore, an essential role in fetal vascular development and also PDGF-B–PDGFRb signaling plays a significant role in the contributes to wound healing and tumor growth via development of adipose tissue neovascularization and angiogenic actions in adults (16). PDGFRb is almost re- appears to be a fundamental target for the prevention of strictively expressed in perivascular mesenchymal cells, obesity and type 2 diabetes. particularly in vascular smooth muscle cells and pericytes 1Department of Clinical Pharmacology, University of Toyama, Toyama, Japan Corresponding authors: Toshiyasu Sasaoka, [email protected], and 2Department of Physiology and Metabolism, Brain/Liver Interface Medicine Tsutomu Wada, [email protected]. Research Center, Institute for Frontier Science Initiative, Kanazawa University, Received 19 July 2016 and accepted 17 January 2017. Ishikawa, Japan This article contains Supplementary Data online at http://diabetes 3Metabolism and Nutrition Research Unit, Innovative Integrated Bio-Research .diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0881/-/DC1. Core, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan © 2017 by the American Diabetes Association. Readers may use this article as 4Department of Pathology, University of Toyama, Toyama, Japan long as the work is properly cited, the use is educational and not for profit, and the 5Department of Internal Medicine, Kanazawa Medical University, Ishikawa, work is not altered. More information is available at http://www.diabetesjournals Japan .org/content/license. diabetes.diabetesjournals.org Onogi and Associates 1009 (14,15). Endothelial cell (EC)–derived PDGF-B promotes variable amounts of the 40% glucose solution to maintain the migration of pericytes to neovessels for maturation blood glucose levels at 110 6 20 mg/dL. by covering blood vessels, and these pericytes regulate vascular permeability and sprouting (17). The systemic Cell and Adipose Tissue Cultures deletion of the Pdgfb or Pdgfrb gene results in a lack of Bone marrow–derived macrophages (BMDMs) were pre- pericytes in the vasculature and embryonic lethality with pared, as described previously (4). Bone marrow cells vascular dysfunction (15,18–20). However, it currently re- were treated with 100 nmol/L 4-hydroxytamoxifen to de- mains unclear whether the angiogenic effects of PDGF are lete the Pdgfrb allele for 48 h and differentiated into involved in the mechanisms responsible for the develop- FL-BMDM and Pdgfrb-KO-BMDM, respectively. In adipose ment of adult obesity. tissue cultures, epididymal WAT (eWAT) isolated from lean Therefore, we herein used tamoxifen-inducible condi- 8- to 12-week-old male mice was cut into small pieces tional Pdgfrb-knockout (KO) mice in which PDGFRb was (;3 3 3 mm) and cultured in serum-free DMEM. To ob- deleted during adulthood without affecting vascular de- tain Pdgfrb-KO tissue, adipose tissue pieces from Cre-ER/ fl fl fl fl velopment in the fetal and growing periods for the selec- Pdgfrb ox/ ox or Pdgfrb ox/ ox control mice were incubated tive ablation of Pdgfrb. These mice were fed a normal with 100 nmol/L 4-hydroxytamoxifen for 48 h. These ad- chow diet or a high-fat diet (HFD), and the effects of ipose tissues were treated with or without PDGF-BB (Life the Pdgfrb deletion on adipose tissue vasculature and glu- Technologies) for 24 h and were used for the analysis of cose metabolism were investigated. whole-mount immunofluorescence. RESEARCH DESIGN AND METHODS Immunofluorescence in Sections and Whole-Mount Materials Adipose Tissue fl Human recombinant insulin was provided by Novo Nordisk Immuno uorescence analyses were performed in accor- fi Pharma Ltd. Antibodies and ELISA kits used in this study dance with previous methods with minor modi cations (28). m were listed in Supplementary Table 1. All other reagents of Sections (30- or 40- m slices) were obtained from the mid- analytical grade not elsewhere specified were obtained from dle part of the eWAT using a cryostat (CM 3050S-IV; Leica Sigma-Aldrich or Wako Pure Chemical Industries. Microsystems) and were used in experiments of Fig. 3D and I, and Supplementary Fig. 4D. To conduct whole-mount Mice and Metabolic Analyses immunofluorescence, tissues obtained from the tip region All experimental procedures used in this study were of eWAT, an active area for neoangiogenesis (29), were approved by the Committee of Animal Experiments at stained with antibodies and subsequently incubated with fl fl the University of Toyama. Pdgfrb ox/ ox mice on a C57BL/6 fructose solution as an optical clearing agent to reduce the background were crossbred with Cre-estrogen receptor amount of light scattering in tissues (30) and were used in transgenic mice (The Jackson Laboratory). Their off- experiments shown in Fig. 3A and F.Theimmunofluores- fl fl spring, Cre-ER/Pdgfrb ox/ ox, were orally administered cent images were randomly obtained by a confocal micro- tamoxifen at 9 weeks old (2.25 mg/10 g body wt for 5 scope (TCS-SP5; Leica Microsystems). Blood vessel areas, consecutive days; Cayman) to produce conditional systemic pericyte association levels, and PDGFRb-like immunoreac- D Pdgfrb SYS-KOmice,asshowninFig.1E (21,22). To conduct tivities in each mouse were measured with the ImageJ soft- fl fl experiments appropriately, Pdgfrb ox/ ox littermates of the ware (National Institutes of Health), and the data were same age and sex were treated identically and used as con- averaged. trols (FL). Mice were housed in a temperature-controlled colony room (23 6 3°C) with free access to food and water Real-Time PCR and Western Blotting under a 12-h light-dark cycle (lights on at 7:00 A.M.). Mice The method used for real-time PCR and Western blotting were fed control PicoLab Rodent Diet 20 (chow 3.43 kcal/g; was described previously (23). Primer sequences are listed PMI Nutrition International) or 60 kcal% HFD (5.24 kcal/g; in Supplementary Table 2. D12492; Research Diets Inc.) for 12 weeks, and physiological experiments were performed thereafter. Male mice were Flow Cytometry used in all experiments. The glucose tolerance test (GTT) The fractionation of the stromal vascular fraction (SVF) of andinsulintolerancetest(ITT)wereconductedafter6h eWAT was analyzed by FACSCanto II and FACSAria II for of fasting, as described previously (23,24). Body composition cell sorting (BD Biosciences), as previously described was analyzed with MRI (MRmini SA; DS Pharma Biomedical, (26,31). Data were analyzed by FACS Diva 6.1.2 (BD Bio- Osaka, Japan), as described previously (25,26). sciences) or FCS Express (De Novo Software). Hyperinsulinemic-Euglycemic Clamp Measurement of Energy Consumption and Locomotor Hyperinsulinemic-euglycemic clamp studies were performed Activity after 7–8 days of recovery from cannulation, as described VO2,VCO2, locomotor activity, and food consumption were previously (27). During clamp studies, human insulin at a measured with metabolic chambers (MK-5000RQ; Muroma- concentration of 2.5 mU/kg/min was infused into mice with chi Kikai, Tokyo, Japan), as described previously (25,26). 1010 Role of PDGF-PDGFRb in Adipose Tissue Expansion Diabetes Volume 66, April 2017 Figure 1—Systemic Pdgfrb KO mice exhibited resistance to diet-induced obesity. Mice were fed a chow diet or an HFD from 8 weeks of age.
Recommended publications
  • Platelet-Derived Growth Factor Receptor Expression and Amplification in Choroid Plexus Carcinomas
    Modern Pathology (2008) 21, 265–270 & 2008 USCAP, Inc All rights reserved 0893-3952/08 $30.00 www.modernpathology.org Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas Nina N Nupponen1,*, Janna Paulsson2,*, Astrid Jeibmann3, Brigitte Wrede4, Minna Tanner5, Johannes EA Wolff 6, Werner Paulus3, Arne O¨ stman2 and Martin Hasselblatt3 1Molecular Cancer Biology Program, University of Helsinki, Helsinki, Finland; 2Department of Oncology–Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden; 3Institute of Neuropathology, University Hospital Mu¨nster, Mu¨nster, Germany; 4Department of Pediatric Oncology, University of Regensburg, Regensburg, Germany; 5Department of Oncology, Tampere University Hospital, Tampere, Finland and 6Children’s Cancer Hospital, MD Anderson Cancer Center, Houston, TX, USA Platelet-derived growth factor (PDGF) receptor signaling has been implicated in the development of glial tumors, but not yet been examined in choroid plexus carcinomas, pediatric tumors with dismal prognosis for which novel treatment options would be desirable. Therefore, protein expression of PDGF receptors a and b as well as amplification status of the respective genes, PDGFRA and PDGFRB, were examined in a series of 22 patients harboring choroid plexus carcinoma using immunohistochemistry and chromogenic in situ hybridization (CISH). The majority of choroid plexus carcinomas expressed PDGF receptors with 6 cases (27%) displaying high staining scores for PDGF receptor a and 13 cases (59%) showing high staining scores for PDGF receptor b. Correspondingly, copy-number gains of PDGFRA were observed in 8 cases out of 12 cases available for CISH and 1 case displayed amplification (six or more signals per nucleus). The proportion of choroid plexus carcinomas with amplification of PDGFRB was even higher (5/12 cases).
    [Show full text]
  • Discovery of Orphan Receptor Tie1 and Angiopoietin Ligands Ang1 and Ang4 As Novel GAG-Binding Partners
    78 Chapter 3 Discovery of Orphan Receptor Tie1 and Angiopoietin Ligands Ang1 and Ang4 as Novel GAG-Binding Partners 79 3.1 Abstract The Tie/Ang signaling axis is necessary for proper vascular development and remodeling. However, the mechanisms that modulate signaling through this receptor tyrosine kinase pathway are relatively unclear. In particular, the role of the orphan receptor Tie1 is highly disputed. Although this protein is required for survival, Tie1 has been found both to inhibit and yet be necessary for Tie2 signaling. While differing expression levels have been put forth as an explanation for its context-specific activity, the lack of known endogenous ligands for Tie1 has severely hampered understanding its molecular mode of action. Here we describe the discovery of orphan receptor Tie1 and angiopoietin ligands Ang1 and Ang4 as novel GAG binding partners. We localize the binding site of GAGs to the N- terminal region of Tie1, which may provide structural insights into the importance of this interaction regarding the formation of Tie1-Tie2 heterodimerization. Furthermore, we use our mutagenesis studies to guide the generation of a mouse model that specifically ablates GAG-Tie1 binding in vivo for further characterization of the functional outcomes of GAG-Tie1 binding. We also show that GAGs can form a trimeric complex with Ang1/4 and Tie2 using our microarray technology. Finally, we use our HaloTag glycan engineering platform to modify the cell surface of endothelial cells and demonstrate that HS GAGs can potentiate Tie2 signaling in a sulfation-specific manner, providing the first evidence of the involvement of HS GAGs in Tie/Ang signaling and delineating further the integral role of HS GAGs in angiogenesis.
    [Show full text]
  • 60+ Genes Tested FDA-Approved Targeted Therapies & Gene Indicators
    ® 60+ genes tested ABL1, ABL2, ALK, AR, ARAF, ATM, ATR, BRAF, BRCA1*, BRCA2*, BTK, CCND1, CCND2, CCND3, CDK4, Somatic mutation detection CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, DDR1, DDR2, EGFR, ERBB2 (HER2), ESR1, FGFR1, FGFR2, for approved cancer therapies FGFR3, FGFR4, FLCN, FLT1, FLT3, FLT4, GNA11, GNAQ, HDAC1, HDAC2, HRAS, JAK1, JAK2, KDR, KIT, in solid tumors KRAS, MAP2K1, MET, MTOR, NF1, NF2, NRAS, PALB2, PARP1, PDGFRA, PDGFRB, PIK3CA, PIK3CD, PTCH1, PTEN, RAF1, RET, ROS1, SMO, SRC, STK11, TNK2, TSC1, TSC2 FDA-approved Targeted Therapies & Gene Indicators Abiraterone AR Necitumumab EGFR Ado-Trastuzumab ERBB2 (HER2) Nilotinib ABL1, ABL2, DDR1, DDR2, KIT, PDGFRA, PDGFRB Emtansine FGFR1, FGFR2, FGFR3, FLT1, FLT4, KDR, PDGFRA, Afatinib EGFR, ERBB2 (HER2) Nintedanib PDGFRB Alectinib ALK Olaparib ATM, ATR, BRCA1*, BRCA2*, PALB2, PARP1 Anastrozole ESR1 Osimertinib EGFR Axitinib FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB CDK4, CDK6, CCND1, CCND2, CCND3, CDKN1A, Palbociclib Belinostat HDAC1, HDAC2 CDKN1B, CDKN2A, CDKN2B Panitumumab EGFR Bicalutamide AR Panobinostat HDAC1, HDAC2 Bosutinib ABL1, SRC Pazopanib FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB Cabozantinib FLT1, FLT3, FLT4, KDR, KIT, MET, RET Pertuzumab ERBB2 (HER2) Ceritinib ALK ABL1, FGFR1, FGFR2, FGFR3, FGFR4, FLT1, FLT3, FLT4, Cetuximab EGFR Ponatinib KDR, KIT, PDGFRA, PDGFRB, RET, SRC Cobimetinib MAP2K1 Ramucirumab KDR Crizotinib ALK, MET, ROS1 Regorafenib ARAF, BRAF, FLT1, FLT4, KDR, KIT, PDGFRB, RAF1, RET Dabrafenib BRAF Ruxolitinib JAK1, JAK2 Dasatinib ABL1, ABL2, DDR1, DDR2, SRC, TNK2
    [Show full text]
  • PSM, a Mediator of PDGF-BB-, IGF-I-, and Insulin-Stimulated Mitogenesis
    Oncogene (2000) 19, 39 ± 50 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc PSM, a mediator of PDGF-BB-, IGF-I-, and insulin-stimulated mitogenesis Heimo Riedel*,1,2, Nasim Yousaf1, Yuyuan Zhao4, Heping Dai1,3, Youping Deng1 and Jian Wang1 1Department of Biological Sciences, Wayne State University, Detroit, Michigan, MI 48202, USA; 2Member, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, MI 48201, USA PSM/SH2-B has been described as a cellular partner of Introduction the FceRI receptor, insulin receptor (IR), insulin-like growth factor-I (IGF-I) receptor (IGF-IR), and nerve The platelet-derived growth factor (PDGF) family growth factor receptor (TrkA). A function has been represents key mitogenic and chemotactic factors that proposed in neuronal dierentiation and development but have been exploited by the Simian sarcoma virus v-sis its role in other signaling pathways is still unclear. To oncogene which results in altered PDGF expression further elucidate the physiologic role of PSM we have (Water®eld et al., 1983). Normal cellular PDGF identi®ed additional mitogenic receptor tyrosine kinases appears in three distinct isoforms as any combination as putative PSM partners including platelet-derived of the PDGF A and B chains which act in paracrine growth factor (PDGF) receptor (PDGFR) beta, hepato- and autocrine mechanisms (Heldin, 1993). PDGF cyte growth factor receptor (Met), and ®broblast growth receptor (PDGFR) signal transduction appears to be factor receptor. We have mapped Y740 as a site of a largely membrane delineated event (Hughes et al., PDGFR beta that is involved in the association with 1996).
    [Show full text]
  • As a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial
    cells Review Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine Asterios S. Tsiftsoglou Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] Abstract: Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is pro- duced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid mat- uration of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis Citation: Tsiftsoglou, A.S. and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consist- Erythropoietin (EPO) as a Key ing of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal Regulator of Erythropoiesis, Bone muscle) explains the EPO pleotropic action as a protection factor for several cells, including the Remodeling and Endothelial multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces Transdifferentiation of Multipotent the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of Mesenchymal Stem Cells (MSCs): EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion Implications in Regenerative of a large number of trophic factors (secretome).
    [Show full text]
  • PDGFRB FISH for Gleevec Eligibility in Myelodysplastic Syndrome/Myeloproliferative Disease (MDS/MPD)
    PDGFRB FISH PRODUCT DATASHEET Proprietary Name: PDGFRB FISH for Gleevec Eligibility in Myelodysplastic Syndrome/Myeloproliferative Disease (MDS/MPD) Established Name: PDGFRB FISH for Gleevec in MDS/MPD INTENDED USE Humanitarian Device. Authorized by Federal law for use in the qualitative detection of PDGFRB gene rearrangement in patients with MDS/MPD. The effectiveness of this device for this use has not been demonstrated. Caution: Federal Law restricts this device to sale by or on the order of a licensed practitioner. PDGFRB FISH for Gleevec Eligibility in Myelodysplastic Syndrome/Myeloproliferative Disease (MDS/MPD) is an in vitro diagnostic test intended for the qualitative detection of PDGFRB gene rearrangement from fresh bone marrow samples of patients with MDS/MPD with a high index of suspicion based on karyotyping showing a 5q31~33 anomaly. The PDGFRB FISH assay is indicated as an aid in the selection of MDS/MPD patients for whom Gleevec® (imatinib mesylate) treatment is being considered. This assay is for professional use only and is to be performed at a single laboratory site. SUMMARY AND EXPLANATION OF THE TEST The PDGFRB FISH assay detects rearrangement of the PDGFRB locus at chromosome 5q31~33 in adult patients with myelodysplastic syndrome/myeloproliferative disease (MDS/MPD). The PDGFRB gene encodes a cell surface receptor tyrosine kinase that upon activation stimulates mesenchymal cell division. Rearrangement of PDGFRB has been demonstrated by classical cytogenetic analysis in an exceedingly small fraction of MDS/MPD patients (~1%), usually cases with a clinical phenotype of chronic myelomonocytic leukemia (CMML). In particular, these patients harbor a t(5:12)(q31;p12) translocation involving the PDGFRB and ETV6 genes.
    [Show full text]
  • Erythropoietin and Its Angiogenic Activity
    International Journal of Molecular Sciences Review Erythropoietin and Its Angiogenic Activity Patrícia Kimáková 1,†, Peter Solár 1,*,† ID , Zuzana Solárová 2, Radovan Komel 3 and Nataša Debeljak 3 ID 1 Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice 04001, Slovak; [email protected] 2 Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University in Košice, Košice 04001, Slovak; [email protected] 3 Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia; [email protected] (R.K.); [email protected] (N.D.) * Correspondence: [email protected]; Tel.: +421-55-234-1199, Fax: +421-55-622-2124 † These authors contributed equally to this work. Received: 26 May 2017; Accepted: 11 July 2017; Published: 13 July 2017 Abstract: Erythropoietin (EPO) is the main hematopoietic hormone acting on progenitor red blood cells via stimulation of cell growth, differentiation, and anti-apoptosis. However, its receptor (EPOR) is also expressed in various non-hematopoietic tissues, including endothelium. EPO is a pleiotropic growth factor that exhibits growth stimulation and cell/tissue protection on numerous cells and tissues. In this article we review the angiogenesis potential of EPO on endothelial cells in heart, brain, and leg ischemia, as well as its role in retinopathy protection and tumor promotion. Furthermore, the effect of EPO on bone marrow and adipose tissue is also discussed. Keywords: erythropoietin; erythropoietin receptor; endothelial; angiogenesis; cancer 1. Introduction Erythropoietin (EPO) is the main hematopoietic cytokine that regulates the formation of red blood cells in the process of hematopoiesis [1].
    [Show full text]
  • Platelet-Derived Growth Factor Isoform Expression in Carbon Tetrachloride
    Laboratory Investigation (2008) 88, 1090–1100 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury Erawan Borkham-Kamphorst1, Evgenia Kovalenko1, Claudia RC van Roeyen2, Nikolaus Gassler3, Michael Bomble1, Tammo Ostendorf 2,Ju¨rgen Floege2, Axel M Gressner1 and Ralf Weiskirchen1 Platelet-derived growth factor (PDGF) has an essential role in liver fibrogenesis, as PDGF-B and -D both act as potent mitogens on culture-activated hepatic stellate cells (HSCs). Induction of PDGF receptor type-b (PDGFRb) in HSC is well documented in single-dose carbon tetrachloride (CCl4)-induced acute liver injury. Of the newly discovered isoforms PDGF- C and -D, only PDGF-D shows significant upregulation in bile duct ligation (BDL) models. We have now investigated the expression of PDGF isoforms and receptors in chronic liver injury in vivo after long-term CCl4 treatment and demonstrated that isolated hepatocytes have the requisite PDGF signaling pathways, both in the naive state and when isolated from CCl4-treated rats. In vivo, PDGF gene expression showed upregulation of all PDGF isoforms and receptors, with values peaking at 4 weeks and decreasing to near basal levels by 8 and 12 weeks. Interestingly, PDGF-C increased significantly when compared to BDL-models. PDGF-A, PDGF-C and PDGF receptor type-a (PDGFRa) correlated closely with in- flammation and steatosis. Immunohistochemistry revealed expression of PDGF-B, -C and -D in areas corresponding to centrilobular necrosis, inflammation and fibrosis, whereas PDGF-A localized in regenerative hepatocytes. PDGFRb was identified along the fibrotic septa, whereas PDGFRa showed positive staining in fibrotic septa and regenerative hepa- tocytes.
    [Show full text]
  • Abstract: Dissecting PDGFRB Function in NPM- ALK Driven Lymphoma
    University of Veterinary Medicine, Vienna Institute of Pathology and Forensic Veterinary Medicine Abstract: Dissecting PDGFRB function in NPM- ALK driven lymphoma Lukas KENNER, Pathology of Laboratory Animals The study of tumor animal models of proven clinical relevance is essential to advance clinical practice. Anaplastic large cell lymphoma (ALCL) is a malignant T-cell Non-Hodgkin lymphoma and frequently associated with the t(2;5) translocation resulting in expression of the Nucleophosmin-Anaplastic Lymphoma Kinase (NPM-ALK) fusion protein. Recent studies by us identified AP-1 transcription factors (TF) JUNB and cJUN as downstream effectors of NPM-ALK. These TFs directly upregulate platelet derived growth factor receptor B (PDGFRB) expression in lymphoma cells. Based on these findings we established a mouse model for ALCL by expressing NPM-ALK under the CD4 promoter, which is the only animal model reflecting the clinical progression and metastatic potential of the disease. Genetic ablation of cJUN and JUNB in this model did not affect tumor incidence, however lymphomas displayed reduced progression, indicated by reduced vascularization as well as a loss of dissemination. This resulted in extended survival; therapeutic inhibition of PDGFRB with the kinase inhibitor imatinib markedly prolonged the life of NPM-ALK transgenic mice. We therefore conclude that cJUN/JUNB driven expression of PDGFRB in lymphoma cells induces stromal alterations in the microenvironment of the initial ALCL tumor, which are essential for tumor progression and dissemination. This is pointing towards tumor cell autonomous as well as microenvironmental functions of signaling cascades in ALK driven ALCL. Therefore this mouse model is suitable to study tumor stroma interactions, which are currently lacking.
    [Show full text]
  • Growth Factors Acting Via Endothelial Cell-Specific Receptor Tyrosine Kinases: Vegfs, Angiopoietins, and Ephrins in Vascular Development
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, Angiopoietins, and ephrins in vascular development Nicholas W. Gale1 and George D. Yancopoulos Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591-6707 USA The term ‘vasculogenesis’ refers to the earliest stages of since been shown to be a critical regulator of endothelial vascular development, during which vascular endotheli- cell development. Not surprisingly, the specificity of al cell precursors undergo differentiation, expansion, and VEGF-A for the vascular endothelium results from the coalescence to form a network of primitive tubules restricted distribution of VEGF-A receptors to these (Risau 1997). This initial lattice, consisting purely of en- cells. The need to regulate the multitude of cellular in- dothelial cells that have formed rather homogenously teractions involved during vascular development sug- sized interconnected vessels, has been referred to as the gested that VEGF-A might not be alone as an endothelial primary capillary plexus. The primary plexus is then re- cell-specific growth factor. Indeed, there has been a re- modeled by a process referred to as angiogenesis (Risau cent explosion in the number of growth factors that spe- 1997), which involves the sprouting, branching, and dif- cifically act on the vascular endothelium. This explosion ferential growth of blood vessels to form the more ma- involves the VEGF family, which now totals at least five ture appearing vascular patterns seen in the adult organ- members. In addition, an entirely unrelated family of ism. This latter phase of vascular development also in- growth factors, known as the Angiopoietins, recently has volves the sprouting and penetration of vessels into been identified as acting via endothelial cell-specific re- previously avascular regions of the embryo, and also the ceptors known as the Ties.
    [Show full text]
  • Review Diverse Roles of Eph Receptors and Ephrins in The
    Developmental Cell, Vol. 7, 465–480, October, 2004, Copyright 2004 by Cell Press Diverse Roles of Eph Receptors Review and Ephrins in the Regulation of Cell Migration and Tissue Assembly Alexei Poliakov, Marisa Cotrina, repulsion of cells, in others they promote adhesion and and David G. Wilkinson* attraction. Recent work has shown that some cells Division of Developmental Neurobiology switch between these distinct responses. This review National Institute for Medical Research will focus on developmental roles of repulsion and at- The Ridgeway, Mill Hill traction responses to Eph/ephrin activation and then London NW7 1AA discuss biochemical mechanisms that may regulate United Kingdom these diverse responses. Structure, Clustering, and Signal Transduction Eph receptor tyrosine kinases and ephrins have key Structure and Binding Specificities of Eph roles in regulation of the migration and adhesion of Receptors and Ephrins cells required to form and stabilize patterns of cell Eph receptors are transmembrane receptor tyrosine ki- organization during development. Activation of Eph nases (RTKs) with a number of distinctive features com- receptors or ephrins can lead either to cell repulsion pared with other RTKs, including the extracellular region or to cell adhesion and invasion, and recent work has comprised of an N-terminal ephrin binding domain, a found that cells can switch between these distinct re- cysteine-rich EGF-like domain, and two fibronectin type sponses. This review will discuss biochemical mecha- III motifs (Figure 1). In addition to a tyrosine kinase do- nisms and developmental roles of the diverse cell re- main, the intracellular region includes a number of con- sponses controlled by Eph receptors and ephrins.
    [Show full text]
  • Biomarkers in Community-Acquired Pneumonia: Still Searching for the One
    EDITORIAL | RESPIRATORY INFECTION Biomarkers in community-acquired pneumonia: still searching for the one Oriol Sibila 1,2 and Marcos I. Restrepo3 Affiliations: 1Servei de Pneumologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. 2Institut d´Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain. 3Division of Pulmonary Diseases and Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Correspondence: Oriol Sibila, Servei de Pneumologia, Hospital de la Santa Creu i Sant Pau, C/ Sant Antoni M. Claret 167, 08025 Barcelona, Spain. E-mail: [email protected] @ERSpublications Fibroblast growth factor 21 (FGF21) predicts severity of illness, clinical stability and mortality in community-acquired pneumonia. Validation is needed to confirm the application of FGF21 in clinical practice. http://ow.ly/SYI730nuRc1 Cite this article as: Sibila O, Restrepo MI. Biomarkers in community-acquired pneumonia: still searching for the one. Eur Respir J 2019; 53: 1802469 [https://doi.org/10.1183/13993003.02469-2018]. Community-acquired pneumonia (CAP) remains a major cause of morbidity and mortality worldwide [1]. Despite advances in antibiotic treatment and medical care, the mortality of CAP is still high in hospitalised patients, especially in those with severe illness [2]. Appropriate initial severity assessment is a crucial step in pneumonia management, since it has been demonstrated that an early recognition of severe CAP patients improves their clinical outcomes [3]. Several tools have been developed to evaluate disease severity, in particular focusing on predicting hospital admission and mortality [4]. However, recent studies have showed that most of these scores are not used routinely in clinical practice and may be inadequate tools to guide appropriate antibiotic treatment [5, 6].
    [Show full text]