Sense-Aware Semantic Analysis: a Multi-Prototype Word Representation Model Using Wikipedia

Total Page:16

File Type:pdf, Size:1020Kb

Sense-Aware Semantic Analysis: a Multi-Prototype Word Representation Model Using Wikipedia Sense-aware Semantic Analysis: A Multi-prototype Word Representation Model using Wikipedia Zhaohui Wu†, C. Lee Giles‡† †Computer Science and Engineering, ‡Information Sciences and Technology Pennsylvania State University, University Park, PA 16802, USA [email protected], [email protected] Abstract in the vocabulary, which should not be the case since different words could have a different number of senses. Human languages are naturally ambiguous, which makes it difficult to automatically understand the Second, the sense-specific context clusters are generated semantics of text. Most vector space models (VSM) from free text corpus, whose quality cannot be guaranteed treat all occurrences of a word as the same and build a nor evaluated (Purandare and Pedersen 2004; Schutze¨ 1998). single vector to represent the meaning of a word, which It is possible that contexts of different word senses could be fails to capture any ambiguity. We present sense-aware clustered together because they might share some common semantic analysis (SaSA), a multi-prototype VSM words, while contexts of the same word sense could be for word representation based on Wikipedia, which clustered into different groups since they have no common could account for homonymy and polysemy. The words. For example, apple “Apple Inc.” and apple “Apple “sense-specific” prototypes of a word are produced by Corps” share many contextual words in Wikipedia such clustering Wikipedia pages based on both local and as “computer”, “retail”, “shares”, and “logs” even if we global contexts of the word in Wikipedia. Experimental evaluation on semantic relatedness for both isolated consider a context window size of only 3. words and words in sentential contexts and word sense Thus, the question posed would be how can we build induction demonstrate its effectiveness. a sense-aware semantic profile for a word that can give accurate sense-specific prototypes in terms of both number and quality? And for a given context of the word, can the Introduction model assign the semantic representation of a word that Computationally modeling semantics of text has long been corresponds to the specific sense? a fundamental task for natural language understanding. By comparing existing methods that adopted automat- Among many approaches for semantic modeling, distribu- ic sense induction from free text based on context clus- tional semantic models using large scale corpora or web tering, a better way to incorporate sense-awareness into knowledge bases have proven to be effective (Deerwester semantic modeling is to do word sense disambiguation et al. 1990; Gabrilovich and Markovitch 2007; Mikolov et for different occurrences of a word using manually com- al. 2013). Specifically, they provide vector embeddings for plied sense inventories such as WordNet (Miller 1995). a single text unit based on the distributional context where However, due to knowledge acquisition bottleneck (Gale, it occurs, from which semantic relatedness or similarity Church, and Yarowsky 1992b), this approach may often measures can be derived by computing distances between miss corpus/domain-specific senses and may be out of vectors. However, a common limitation of most vector date due to changes in human languages and web con- space models is that each word is only represented by a tent (Pantel and Lin 2002). As such, we will use Wikipedia, single vector, which cannot capture homonymy and polyse- the largest encyclopedia knowledge base online with rich my (Reisinger and Mooney 2010). A natural way to address semantic information and wide knowledge coverage, as a this limitation could be building multi-prototype models semantic corpus on which to test our Sense-aware Semantic that provide different embeddings for different senses of Analysis SaSA. Each dimension in SaSA is a Wikipedia a word. However, this task is under studied with only a concept/article1 where a word appears or co-occurs with. few exceptions (Reisinger and Mooney 2010; Huang et al. By assuming that occurrences of a word in Wikipedia 2012), which cluster the contexts of a word into K clusters articles of similar subjects should share the sense, the sense- to represent multiple senses. specific clusters are generated by agglomerative hierarchical While these multi-prototype models showed significant clustering based on not only the text context, but also improvement over single prototype models, there are two Wikipedia links and categories that could ensure more fundamental problems yet to be addressed. First, they simply semantics, giving different words their own clusters. The predefine a fixed number of prototypes, K, for every word links give unique identification of a word occurrence by Copyright c 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. 1Each concept corresponds to a unique Wikipedia article. ͞apple͟ linking it to a Wikipedia article which provides helpful local disambiguated information. The categories give global topical labels of a Wikipedia article that could also be Find related concepts helpful for sense induction. For example, while the pure text C1 Apple: The apple is the pomaceous fruit of the apple tree « context of word apple in “Apple Inc.” and “Apple Corps” C2 Pome«&Fruit«&Tree « C5 Apple Inc.: Apple Inc. is an American multinational corporation in Cupertino « could not differentiate the two senses, the categories of the C6 Cupertino, California« C7 Apple Corps: Apple Corps Ltd is a multi-armed multimedia corporation « two concepts may easily show the difference since they have ͙ no category labels in common. Sense induction s1: Our contributions can be summarized as follows: Sense s2: s3: C1, C2, ͙ C5, C6, .. C7, .. We propose a multi-prototype model for word represen- space C3, C4, .. • tation, namely SaSA, using Wikipedia that could give Sense Assignment Weighting sense-aware concepts more accurate sense-specific representation of words with T1: The apple tree is small ... C1 C2 C3 C4 C5 C6 C7 .. multiple senses. apple(T1) = (255 89 163 186 4 0 2 .. ) T2: The apple apple(T2) = (0 0 0 0 688 8 22 ..) We apply SaSA to different semantic relatedness tasks, NH\ERDUGLVVPDOO« • including word-to-word (for both isolated words and words in sentential contexts) and text-to-text, and achieve Figure 1: A demonstrative example for SaSA better performance than the state-of-the-art methods in both single prototype and multi-prototype models. then find all linked concepts in contexts of w from those articles. These concepts compose the vector space of w. Sense-aware Semantic Analysis To calculate rij(w), the “relevance” of w to a concept Cij, SaSA follows ESA by representing a word using Wikipedia we define a new TFIDF based measure, namely TFIDFs, concepts. Given the whole Wikipedia concept set = to capture the sense-aware relevance. TF is the sum of two W C1,...,Cn , a word w, and the concept set that relates to parts: number of occurrences of w in Cij, and number of co- { } occurrences of w and C in a sentence in cluster s . DF the word C(w)= Cw1 ,...,Cwk , SaSA models w as its ij i { } is the number of concepts in the cluster that contains w. sense-aware semantic vector V (wsi )=[ri1(w),...,rih(w)], where rij(w) measures the relevance of w under sense When counting the co-occurrences of w and Cij, Cij has s to concept C , and S(w)= s ,...,s denotes all to be explicitly marked as a Wikipedia link to the concept i ij { 1 m} the senses of w inducted from C(w). Specifically, si = Cij. That’s to say, “apple tree” will be counted as one co- Ci1,...,Cih C(w) is a sense cluster containing a set of occurrence of “apple” and the concept “Tree” i.f.f. “tree” is Wikipedia{ concepts}⊂ where occurrences of w share the sense. linked to “http://en.wikipedia.org/wiki/Tree”. Figure 1 demonstrates the work flow of SaSA. Given a word w, it first finds all Wikipedia concepts that relate to One Sense Per Article w, including those contain w (C1, C5, and C7) and those co- As shown in Figure 1, the one sense per article assumption occur with w as Wikipedia links in w’s contexts (C2, C3, C4, made by SaSA is not perfect. For example, in the article and C6). We define a context of w as a sentence containing it. “Apple Inc.”, among 694 occurrences of “apple”, while most Then it uses agglomerative hierarchical clustering to group occurrences refer to Apple Inc., there are 4 referring to the concepts sharing the sense of w into a cluster. All the the fruit apple and 2 referring to “Apple Corps”. However, sense clusters represent the sense space S(w)= s1,...sm . considering that each Wikipedia article actually focuses on { } Given a context of w, sense assignment will determine the a specific concept, it is still reasonable to believe that the sense of w by computing the distance of the context to one sense per article may hold for most cases. We manually the clusters. Finally, the sense-aware concept vector will checked all the articles listed in Apple disambiguation page be constructed based on the relevance scores of w in the and found that each article has an extremely dominant sense underlying sense. For example, the vectors of “apple” in among all occurrences of the word “apple”. Table 1 gives a T1 and T2 are different from each other since they refer to few examples of sense distribution among four articles. As different senses. They only have some relatedness in C5 and we can see, each article has a dominant sense. We examined C7 where both senses have word occurrences. 100 randomly sampled Wikipedia articles and found that 98% of the articles support the assumption. However, con- Concept Space sidering the two papers “one sense per discourse” (Yarowsky A concept of w should be about w.
Recommended publications
  • The Case for Word Sense Induction and Disambiguation
    Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction and Disambiguation Alexander Panchenko‡, Eugen Ruppert‡, Stefano Faralli†, Simone Paolo Ponzetto† and Chris Biemann‡ ‡Language Technology Group, Computer Science Dept., University of Hamburg, Germany †Web and Data Science Group, Computer Science Dept., University of Mannheim, Germany panchenko,ruppert,biemann @informatik.uni-hamburg.de { faralli,simone @informatik.uni-mannheim.de} { } Abstract Word sense induction from domain-specific cor- pora is a supposed to solve this problem. How- The current trend in NLP is the use of ever, most approaches to word sense induction and highly opaque models, e.g. neural net- disambiguation, e.g. (Schutze,¨ 1998; Li and Juraf- works and word embeddings. While sky, 2015; Bartunov et al., 2016), rely on cluster- these models yield state-of-the-art results ing methods and dense vector representations that on a range of tasks, their drawback is make a WSD model uninterpretable as compared poor interpretability. On the example to knowledge-based WSD methods. of word sense induction and disambigua- Interpretability of a statistical model is impor- tion (WSID), we show that it is possi- tant as it lets us understand the reasons behind its ble to develop an interpretable model that predictions (Vellido et al., 2011; Freitas, 2014; Li matches the state-of-the-art models in ac- et al., 2016). Interpretability of WSD models (1) curacy. Namely, we present an unsuper- lets a user understand why in the given context one vised, knowledge-free WSID approach, observed a given sense (e.g., for educational appli- which is interpretable at three levels: word cations); (2) performs a comprehensive analysis of sense inventory, sense feature representa- correct and erroneous predictions, giving rise to tions, and disambiguation procedure.
    [Show full text]
  • Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph
    mathematics Article Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph Tajana Ban Kirigin 1,* , Sanda Bujaˇci´cBabi´c 1 and Benedikt Perak 2 1 Department of Mathematics, University of Rijeka, R. Matejˇci´c2, 51000 Rijeka, Croatia; [email protected] 2 Faculty of Humanities and Social Sciences, University of Rijeka, SveuˇcilišnaAvenija 4, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Abstract: This paper describes a graph method for labeling word senses and identifying lexical sentiment potential by integrating the corpus-based syntactic-semantic dependency graph layer, lexical semantic and sentiment dictionaries. The method, implemented as ConGraCNet application on different languages and corpora, projects a semantic function onto a particular syntactical de- pendency layer and constructs a seed lexeme graph with collocates of high conceptual similarity. The seed lexeme graph is clustered into subgraphs that reveal the polysemous semantic nature of a lexeme in a corpus. The construction of the WordNet hypernym graph provides a set of synset labels that generalize the senses for each lexical cluster. By integrating sentiment dictionaries, we introduce graph propagation methods for sentiment analysis. Original dictionary sentiment values are integrated into ConGraCNet lexical graph to compute sentiment values of node lexemes and lexical clusters, and identify the sentiment potential of lexemes with respect to a corpus. The method can be used to resolve sparseness of sentiment dictionaries and enrich the sentiment evaluation of Citation: Ban Kirigin, T.; lexical structures in sentiment dictionaries by revealing the relative sentiment potential of polysemous Bujaˇci´cBabi´c,S.; Perak, B. Lexical Sense Labeling and Sentiment lexemes with respect to a specific corpus.
    [Show full text]
  • All-Words Word Sense Disambiguation Using Concept Embeddings
    All-words Word Sense Disambiguation Using Concept Embeddings Rui Suzuki, Kanako Komiya, Masayuki Asahara, Minoru Sasaki, Hiroyuki Shinnou Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki JAPAN, National Institute for Japanese Language and Linguistics, 10-2 Midoricho, Tachikawa, Tokyo, JAPAN, [email protected], kanako.komiya.nlp, minoru.sasaki.01, hiroyuki.shinnou.0828g @vc.ibaraki.ac.jp, [email protected] Abstract All-words word sense disambiguation (all-words WSD) is the task of identifying the senses of all words in a document. Since the sense of a word depends on the context, such as the surrounding words, similar words are believed to have similar sets of surrounding words. We therefore predict the target word senses by calculating the distances between the surrounding word vectors of the target words and their synonyms using word embeddings. In addition, we introduce the new idea of concept embeddings, constructed from concept tag sequences created from the results of previous prediction steps. We predict the target word senses using the distances between surrounding word vectors constructed from word and concept embeddings, via a bootstrapped iterative process. Experimental results show that these concept embeddings were able to improve the performance of Japanese all-words WSD. Keywords: word sense disambiguation, all-words, unsupervised 1. Introduction many words have the same article numbers. Several words Word sense disambiguation (WSD) involves identifying the can have the same precise article number, even when the senses of words in documents. In particular, the WSD task semantic breaks are considered. where the senses of all the words in a document are disam- biguated is referred to as all-words WSD.
    [Show full text]
  • Contrastive Study and Review of Word Sense Disambiguation Techniques S.S
    et International Journal on Emerging Technologies 11 (4): 96-103(2020) ISSN No. (Print): 0975-8364 ISSN No. (Online): 2249-3255 Contrastive Study and Review of Word Sense Disambiguation Techniques S.S. Patil 1, R.P. Bhavsar 2 and B.V. Pawar 3 1Research Scholar, Department of Computer Engineering, SSBT’s COET Jalgaon (Maharashtra), India. 2Associate Professor, School of Computer Sciences, KBC North Maharashtra University Jalgaon (Maharashtra), India. 3Professor, School of Computer Sciences, KBC North Maharashtra University Jalgaon (Maharashtra), India. (Corresponding author: S.S. Patil) (Received 25 February 2020, Revised 10 June 2020, Accepted 12 June 2020) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Ambiguous word, phrase or sentence has more than one meaning, ambiguity in the word sense is a fundamental characteristic of any natural language; it makes all the natural language processing (NLP) tasks vary tough, so there is need to resolve it. To resolve word sense ambiguities, human mind can use cognition and world knowledge, but today, machine translation systems are in demand and to resolve such ambiguities, machine can’t use cognition and world knowledge, so it make mistakes in semantics and generates wrong interpretations. In natural language processing and understanding, handling sense ambiguity is one of the central challenges, such words leads to erroneous machine translation and retrieval of unrelated response in information retrieval, word sense disambiguation (WSD) is used to resolve such sense ambiguities. Depending on the use of corpus, WSD techniques are classified into two categories knowledge-based and machine learning, this paper summarizes the contrastive study and review of various WSD techniques.
    [Show full text]
  • Word Senses and Wordnet Lady Bracknell
    Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All rights reserved. Draft of September 21, 2021. CHAPTER 18 Word Senses and WordNet Lady Bracknell. Are your parents living? Jack. I have lost both my parents. Lady Bracknell. To lose one parent, Mr. Worthing, may be regarded as a misfortune; to lose both looks like carelessness. Oscar Wilde, The Importance of Being Earnest ambiguous Words are ambiguous: the same word can be used to mean different things. In Chapter 6 we saw that the word “mouse” has (at least) two meanings: (1) a small rodent, or (2) a hand-operated device to control a cursor. The word “bank” can mean: (1) a financial institution or (2) a sloping mound. In the quote above from his play The Importance of Being Earnest, Oscar Wilde plays with two meanings of “lose” (to misplace an object, and to suffer the death of a close person). We say that the words ‘mouse’ or ‘bank’ are polysemous (from Greek ‘having word sense many senses’, poly- ‘many’ + sema, ‘sign, mark’).1 A sense (or word sense) is a discrete representation of one aspect of the meaning of a word. In this chapter WordNet we discuss word senses in more detail and introduce WordNet, a large online the- saurus —a database that represents word senses—with versions in many languages. WordNet also represents relations between senses. For example, there is an IS-A relation between dog and mammal (a dog is a kind of mammal) and a part-whole relation between engine and car (an engine is a part of a car).
    [Show full text]
  • How Much Does Word Sense Disambiguation Help in Sentiment Analysis of Micropost Data?
    How much does word sense disambiguation help in sentiment analysis of micropost data? Chiraag Sumanth Diana Inkpen PES Institute of Technology University of Ottawa India Canada 6th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis OUTLINE • Introduction • What is Word Sense Disambiguation • Word Sense Disambiguation and Sentiment Analysis • Dataset • System Description • Results • Error Analysis • Conclusion How much does word sense disambiguation help in sentiment analysis of micropost data? INTRODUCTION • This short paper describes a sentiment analysis system for micro-post data that includes analysis of tweets from Twitter and Short Messaging Service (SMS) text messages. • Use Word Sense Disambiguation techniques in sentiment analysis at the message level, where the entire tweet or SMS text was analysed to determine its dominant sentiment. • Use of Word Sense Disambiguation alone has resulted in an improved sentiment analysis system that outperforms systems built without incorporating Word Sense Disambiguation. How much does word sense disambiguation help in sentiment analysis of micropost data? What is Word Sense Disambiguation (WSD) ? • Any natural language processing system encounters the problem of lexical ambiguity, be it syntactic or semantic. • The resolution of a word’s syntactic ambiguity has largely been by part-of-speech taggers which with high levels of accuracy. • The problem is that words often have more than one meaning, sometimes fairly similar and sometimes completely different. The meaning of a word in a particular usage can only be determined by examining its context. • Word Sense Disambiguation (WSD) is the process of identifying the sense of such words, called polysemic words. How much does word sense disambiguation help in sentiment analysis of micropost data? Word Sense Disambiguation and Sentiment Analysis • Akkaya et al.
    [Show full text]
  • Word Sense Ambiguation: Clustering Related Senses
    WORD SENSE AMBIGUATION: CLUSTERING RELATED SENSES William B. Dolan Microsoft Research billdol @ microsoft.corn Abstract Alter describing the algorithm which accomplishes This paper describes a heuristic approach to this task, we go on to briefly discuss its results. automatically identifying which senses of a machine- Finally, we describe the implications of this work readable dictionary (MRD) headword are has for the task of merging multiple. semantically related versus those which correspond to fundamentally different senses of the word. The The arbitrm'iness of sense divisions inclusion of this information in a lexical database The division of word meanings into distinct profoundly alters the nature of sense disambiguation: dictionary senses and entries is frequently arbitrary the appropriate "sense" of a polysemous word may (Atkins and Levin, 1988; Atkins, 1991), as a now correspond to some set of related senses. Our comparison of any two dictionaries quickly makes technique offers benefits both for on-line semantic clear. For example, consider the verb "mo(u)lt", processing and for the challenging task of mapping whose single sense in the American Heritage word senses across multiple MRDs in creating a Dictionary, Third Edition (AHD3) corresponds to merged lexical database. two senses in Longman's Dictionary of Contemporary English (LDOCE): 2 1. Introduction AHD3 The problem of word sense disambiguation is one !y:part :or a!l of a coat or... which has received increased attention in recent covering; sucli:as feathers;cuticle or skin ' work on Natural Language Processing (NLP) and hfformation Retrieval (IR). Given an occurrence of a LDOCE polysemous word in running text, the task as it is (1) "(of a biid ) to !0se o r thro TMoff (tleatberS) at the generally formulated involves examining a set of seasoii when new feathers grow' .
    [Show full text]
  • Survey of Word Sense Disambiguation Approaches
    Survey of Word Sense Disambiguation Approaches Xiaohua Zhou and Hyoil Han College of Information Science & Technology, Drexel University 3401 Chestnut Street, Philadelphia, PA 19104 [email protected], [email protected] Abstract can be either symbolic or empirical. Dictionaries provide the definition and partial lexical knowledge for each sense. Word Sense Disambiguation (WSD) is an important but However, dictionaries include little well-defined world challenging technique in the area of natural language knowledge (or common sense). An alternative is for a processing (NLP). Hundreds of WSD algorithms and program to automatically learn world knowledge from systems are available, but less work has been done in regard to choosing the optimal WSD algorithms. This manually sense-tagged examples, called a training corpus. paper summarizes the various knowledge sources used for WSD and classifies existing WSD algorithms The word to be sense tagged always appears in a context. according to their techniques. The rationale, tasks, Context can be represented by a vector, called a context performance, knowledge sources used, computational vector (word, features). Thus, we can disambiguate word complexity, assumptions, and suitable applications for sense by matching a sense knowledge vector and a context each class of WSD algorithms are also discussed. This vector. The conceptual model for WSD is shown in figure 1. paper will provide users with general knowledge for choosing WSD algorithms for their specific applications Lexical Knowledge or for further adaptation. (Symbolic & Empirical) Sense Knowledge Word Sense Disambiguation 1. Introduction World Knowledge (Matching ) (Machine Learning) Contextual Word Sense Disambiguation (WSD) refers to a task that Features automatically assigns a sense, selected from a set of pre- Figure 1.
    [Show full text]
  • WORD SENSE DISAMBIGUATION METHOD USING SEMANTIC SIMILARITY MEASURES and OWA OPERATOR DOI: 10.21917/Ijsc.2015.0126
    KANIKA MITTAL AND AMITA JAIN: WORD SENSE DISAMBIGUATION METHOD USING SEMANTIC SIMILARITY MEASURES AND OWA OPERATOR DOI: 10.21917/ijsc.2015.0126 WORD SENSE DISAMBIGUATION METHOD USING SEMANTIC SIMILARITY MEASURES AND OWA OPERATOR Kanika Mittal1 and Amita Jain2 1Department of Computer Science and Engineering, Bhagwan Parshuram Institute of Technology, India E-mail: [email protected] 2Department of Computer Science, Ambedkar Institute of Advanced Communication Technologies & Research, India E-mail: [email protected] Abstract multiple ways based on the context in which they occur i.e. there Query expansion (QE) is the process of reformulating a query to can be more than one meaning of a particular word. For improve retrieval performance. Most of the times user's query example:- contains ambiguous terms which adds relevant as well as irrelevant He went to bank to withdraw cash. terms to the query after applying current query expansion methods. This results in to low precision. The existing query expansion He went to bank to catch fishes. techniques do not consider the context of the ambiguous words The occurrences of the word bank in the two sentences present in the user's query. This paper presents a method for clearly denote different meanings: A financial bank and a type of resolving the correct sense of the ambiguous terms present in the river bank, respectively. query by determining the similarity of the ambiguous term with the other terms in the query and then assigning weights to the similarity. In many cases, even human being naturally intelligent found The weights to the similarity measures of the terms are assigned on it difficult to determine the intended meaning of an ambiguous the basis of decreasing order of distance to the ambiguous term.
    [Show full text]
  • Lexical Semantics
    CS5740: Natural Language Processing Spring 2017 Lexical Semantics Instructor: Yoav Artzi Slides adapted from Dan Jurafsky, Chris Manning, Slav Petrov, Dipanjan Das, and David Weiss Overview • Word sense disambiguation (WSD) – Wordnet • Semantic role labeling (SRL) • Continuous representations Lemma and Wordform • A lemma or citation form – Basic part of the word, same stem, rough semantics • A wordform – The “inflected” word as it appears in text Wordform Lemma banks bank sung sing duermes dormir Word Senses • One lemma “bank” can have many meanings: Sense 1: • …a bank1 can hold the investments in a custodial account… • “…as agriculture burgeons on the east Sense 2: bank 2the river will shrink even more” • Sense (or word sense) – A discrete representation of an aspect of a word’s meaning. • The lemma bank here has two senses Homonymy Homonyms: words that share a form but have unrelated, distinct meanings: bank1: financial institution, bank2: sloping land bat1: club for hitting a ball, bat2: nocturnal flying mammal 1. Homographs (bank/bank, bat/bat) 2. Homophones: 1. Write and right 2. Piece and peace Homonymy in NLP • Information retrieval – “bat care” • Machine Translation – bat: murciélago (animal) or bate (for baseball) • Text-to-Speech – bass (stringed instrument) vs. bass (fish) Quick Test for Multi Sense Words • Zeugma – When a word applies to two others in different senses Which flights serve breakfast? Does Lufthansa serve Philadelphia? Does Lufthansa serve breakfast and San Jose? • The conjunction sounds “weird” – So we have two senses for serve Synonyms • Word that have the same meaning in some or all contexts. – filbert / hazelnut – couch / sofa – big / large – automobile / car – vomit / throw up – Water / H20 • Two words are synonyms if … – … they can be substituted for each other • Very few (if any) examples of perfect synonymy – Often have different notions of politeness, slang, etc.
    [Show full text]
  • Word Sense Disambiguation: a Survey
    International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.5, No.3, July 2015 WORD SENSE DISAMBIGUATION: A SURVEY Alok Ranjan Pal 1 and Diganta Saha 2 1Dept. of Computer Science and Engg., College of Engg. and Mgmt, Kolaghat 2Dept. of Computer Science and Engg., Jadavpur University, Kolkata ABSTRACT In this paper, we made a survey on Word Sense Disambiguation (WSD). Near about in all major languages around the world, research in WSD has been conducted upto different extents. In this paper, we have gone through a survey regarding the different approaches adopted in different research works, the State of the Art in the performance in this domain, recent works in different Indian languages and finally a survey in Bengali language. We have made a survey on different competitions in this field and the bench mark results, obtained from those competitions. KEYWORDS Natural Languages Processing, Word Sense Disambiguation 1. INTRODUCTION In all the major languages around the world, there are a lot of words which denote meanings in different contexts. Word Sense Disambiguation [1-5] is a technique to find the exact sense of an ambiguous word in a particular context. For example, an English word ‘bank’ may have different senses as “financial institution”, “river side”, “reservoir” etc. Such words with multiple senses are called ambiguous words and the process of finding the exact sense of an ambiguous word for a particular context is called Word Sense Disambiguation. A normal human being has an inborn capability to differentiate the multiple senses of an ambiguous word in a particular context, but the machines run only according to the instructions.
    [Show full text]
  • Distributional Lesk: Effective Knowledge-Based Word Sense Disambiguation
    Distributional Lesk: Effective Knowledge-Based Word Sense Disambiguation Dieke Oele Gertjan van Noord CLCG CLCG Rijksuniversiteit Groningen Rijksuniversiteit Groningen The Netherlands The Netherlands [email protected] [email protected] Abstract We propose a simple, yet effective, Word Sense Disambiguation method that uses a combination of a lexical knowledge-base and embeddings. Similar to the classic Lesk algorithm, it exploits the idea that overlap between the context of a word and the definition of its senses provides information on its meaning. Instead of counting the number of words that overlap, we use embeddings to compute the similarity between the gloss of a sense and the context. Evaluation on both Dutch and English datasets shows that our method outperforms other Lesk methods and improves upon a state-of-the- art knowledge-based system. Additional experiments confirm the effect of the use of glosses and indicate that our approach works well in different domains. 1 Introduction The quest of automatically finding the correct meaning of a word in context, also known as Word Sense Disambiguation (WSD), is an important topic in natural language processing. Although the best perform- ing WSD systems are those based on supervised learning methods (Snyder and Palmer, 2004; Pradhan et al., 2007; Navigli and Lapata, 2007; Navigli, 2009; Zhong and Ng, 2010), a large amount of manu- ally annotated data is required for training. Furthermore, even if such a supervised system obtains good results in a certain domain, it is not readily portable to other domains (Escudero et al., 2000). As an alternative to supervised systems, knowledge-based systems do not require manually tagged data and have proven to be applicable to new domains (Agirre et al., 2009).
    [Show full text]