Shortbelly Rockfish, Sebastes Jordan;: L Son )

Total Page:16

File Type:pdf, Size:1020Kb

Shortbelly Rockfish, Sebastes Jordan;: L Son ) hydroacoustic and midwater trawl segment of the rockfish survey) Ma­ Shortbelly Rockfish, Sebastes jordan;: l son ). A Large Unfished Resource in Preparation of this paper was Waters Off California prompted by the interest shown by both fishermen and processors in developing a fishery for shortbelly rockfish. The WILLIAM H. LENARZ objectives of the paper are to sum­ marize information on the species and: I) Describe the biology of the species, 2) make first approximations of the reaction of the stock(s) to various levels Introduction objects such as reefs or kelp more often of fishing, 3) review the rockfish survey than most, if not all, Cal ifornia rep­ results with regard to fishing, 4) review The shortbelly rockfish, Sebastes resentatives of the genus. Occasional potential of a fishery, and 5) discuss jordani, is one of the more distinctive catches have been made by purse sein­ management options for the fishery. members of the 57 species of rockfish ers fishing in southern California wa­ (genus Sebastes) which are reported ters, and the species predominated in Biology from California waters. The species ob­ midwater and demersal trawl catches of tains its common name from the fact rockfish off central California in the Larval and Juvenile Stages that its vent is about midway between 1977 rockfish survey (Gunderson and Moser et al. (1977) summarized the origin of the anal fi n and insertion of Sample, 1980). available information on larval and the pelvic fin, while the vent of other Shortbelly rockfish have been re­ juvenile stages of shortbelly rockfish. species of rockfish is located farther ported from San Benito Island, Baja The larvae are released at an average back, much closer to the origin of the California, Mexico (Moser et aI., 1977) size of 5.4 mm by the ovoviviparous anal fin. The shortbelly rockfish also to La Perouse Bank, British Columbia females between January and April. has a more strongly incised tail and a (Miller and Lea, 1972). Miller and Lea Larvae were collected between north­ more fusiform shape than most also report maximum depth as 283 m ern Baja California, Mexico, and as far rockfish. (155 fathoms) and maximum total north as San Francisco, Calif. Their Moser et al. (1977) noted that larvae length as 305 mm (12 inches). samples were not taken north of San of shortbelly rockfish are the longest at While there is no fishery for Francisco. While larvae were collected birth of eastern Pacific rockfish studied shortbelly rockfish, the species appears as far as 278 km (150 miles) offshore, to date. Also, the larval period is long to be very abundant in California wa­ all above-average catches were taken prior to transformation to the juvenile ters. Moser et al. (1977) estimated that much closer to shore. They also re­ stage when compared with other east­ larvae of shortbelly rockfish composed ported that larvae metamorphose to ern Pacific rockfish. These features, in 20 percent of all rockfish larvae taken in juveniles at 27 mm and appear to begin addition to the pigmentation pattern and a sampling program off southern forming schools at the surface at that morphometrics of young larvae, are California and 12 percent off central time. Juveniles up to 62.8 mm have remarkably similar to those of the California in 1966. While the catch of been taken by dip nets under night redfish or ocean perch, S. marinus, shortbelly larvae compared with all lights. On the other hand, specimens as group of the Atlantic Ocean. rockfish larvae was higher off southern small as 70 mm were taken by bottom Another distinction of adult California than central California, the trawling during the rockfish survey. shortbelly rockfish is that it occurs in catch per standard haul was higher off midwater and away from underwater central California (4.22 larvae) than Growth southern California (2.65 larvae). The Shortbelly rockfish, while being one biomass in a limited area of its range, of the smaller species of rockfish, has William H. Lenarz is with the Tiburon Labora­ between Pt. Ano Nuevo and Pt. San the highest rate of growth completion tory, Southwest Fisheries Center, National Marine Fisheries Service, NOAA, 3150 Paradise Pedro, was estimated to be 295,000 (k) of 10 California species studied by Drive, Tiburon, CA 94920. metric tons (t) from the results of the Phillips (1964). The von Bertalanffy ABSTRACT-Shortbellyrockfish, Sebas­ imations ofthe effect offishing on the stock, 'Mason, 1. E. 1978. Preliminary report on the tes jordani, appear to be abundant in 3) a review of the rockfish survey results hydroacoustic/midwater trawl survey for rockfish conducted off parts of the American and Cana­ to 4) California waters and present the potential with regard fishing, a review of the dian west coasts during July 12-September 30, for development ofa new largefishery in the potential for development of a fishery, and 1977. Unpubl. manuscr., 6 p. Northwest and area. This paper contains: 1) A description 5) a discussion of management options for Alaska Fisheries Center, NMFS, NOAA, 2725 ofthe biology ofthe species, 2)first approx- the fishery. Montlake Blvd. E., Seattle, WA 98112. 34 Marine Fisheries Review growth curve was used to describe fish from several sources and evalua­ growth: tion of selectivity is not possible. Data Females from the surveys (Fig. 2) indicated that = -k(f-f ») L f L x(l-e O 28 females grow larger than males and at­ Moles tain maximum size at a slower rate of where L f = total length (mm) at t, 24 completion (lower k). Growth does not t = age in years, appear to be related to depth ofcapture, k = growth completion 20 but there are insufficient data from the rate, survey to arrive at conclusive results. to= theoretical age when Length-Weight fish is length 0, and The length-weight relationship was Lx = estimate of average estimated by Phillips to be log W = length attained at a +{3logL, where W = weight in maximum age. pounds, L = total length (mm), a = -8.05202, and {3 = 3.1518. Phillips combined age-length data from Maturation, Fecundity, and both sexes and made his estimates from 1 2 3 " 5 6 7 8 9 10 Sex Composition back-calculated lengths (estimates of Age (yeors) length at time of formation of each an­ Phillips (1964) reported that 50 per­ nual ring on a scale) made from scale cent of shortbelly rockfish "... are Figure I.-Von Bertalanffy growth readings and measurements. He as­ mature when 6Jh inches [16.5 cm] curves for Sebastesjordani estimated long, or 3 years old." The fecundity­ sumed that scales form at birth. My from this study and by Phillips experience with several other species of (1964). length relationship, estimated by me rockfish indicates that scales form when from Phillips' data on to specimens is the fish reach about 20 mm. Thus the In F = a + /3lnL, where F = fecundity back-calculations of Phillips probably (numbers of eggs), L = total length slightly under-estimate lengths of (mm), a = -8.43523, and f3 = 32 young fish. 3.30611. Additional data on growth are avail­ About 45 percent of the survey 2. able from the rockfish survey. Otoliths catches of shortbelly rockfish between from 1,081 specimens were read. 14 cm and 27 cm were males. Few of Opaque zones of fast growth were just 2' the fish larger than 27 cm were males. beginning to be formed at the time of 20 Movements sampling (midsummer). Phillips' ~ back-calculations appear to be at the .c While many aspects of the life his­ '"e I. end of the growth season (midwinter). ~ tory of shortbelly rockfish appear in the ;; Thus fish from the rockfish survey ~ literature, nothing could be found on should be 0.5 year older than those Phil­ 12 movements. Tagging studies on blue lips used. Phillips used total lengths, rockfish, S. mystinus, Miller and while fork lengths were measured for Geibel (1973); yellowtail rockfish, S. the rockfish survey. Total length is flavidus, Carlson and Haight (1972); about 15 mm greater than fork length copper rockfish, S. caurinus, Dewees for shortbelly rockfish, and the survey (1970); and black-and-yellow rockfish, data were adjusted accordingly. The <l 5 7 8 9 10 S. chrysomelas, and gopher rockfish, program BGC2 (Abramson, 1971) was Age (yeors) S. carnatus, Hallacher (1977) and Lar­ used to estimate parameters of the son (1977) indicated little movement. growth curve. The estimate ofk for the Figure 2.-Von Bertalanffy growth However, these five species do not have survey data, 0.27721, is very close to curves for female and male Sebastes strongly incised tails or fusiform the estimate by Phillips, 0.27520. The jordani. L x is 324 mm for females bodies. These aspects of morphology estimates of L x are also close, 315 and 290 mm for males; k is 0.2112 for females and 0.2980 for males. would suggest that shortbelly rockfish (Phillips) and 30I (survey). Compari­ are stronger swimmers and are better son of the two growth curves (Fig. I) adapted to swim away from predators reveals that the main differences occur and/or make more extensive move­ at young ages. As previously men­ mesh size of the nets used by the survey ments than the other fi ve species (Hob­ tioned, Phillips probably underesti­ may have selected for relatively large son and Chess, 1978). Analyses of mated length offish at young ages. Also fish at young ages. Phillips obtained catch rates of Pacific ocean perch, S. March-April 1980 35 alutus, indicate considerable move­ ment into relatively shallow waters dur­ ~228m ing spring and summer and return to LN.44'59'N deeper water in the winter (Gunderson, '::UL C C 1972).
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • Behaviour and Patterns of Habitat Utilisation by Deep-Sea Fish
    Behaviour and patterns of habitat utilisation by deep-sea fish: analysis of observations recorded by the submersible Nautilus in "98" in the Bay of Biscay, NE Atlantic By Dário Mendes Alves, 2003 A thesis submitted in partial fulfillment of the requirements for the degree of Master Science in International Fisheries Management Department of Aquatic Bioscience Norwegian College of Fishery Science University of Tromsø INDEX Abstract………………………………………………………………………………….ii Acknowledgements……………………………………………………………………..iii page 1.INTRODUCTION……………………………………………………………………1 1.1. Deep-sea fisheries…………………………………………………………….……..1 1.2. Deep-sea habitats……………………………………………………………………2 1.3. The Bay of Biscay…………………………………………………………………..3 1.4. Deep-sea fish locomotory behaviour………………………………………………..4 1.5. Objectives……………………………………………………………………...……4 2.MATERIAL AND METHODS…………………………………………….…..……5 2.1. Dives, data collection and environments……………………………………………5 2.2. Video and data analysis……………………………………………………...……...7 2.2.1. Video assessment and sampling units………………………………...…..7 2.2.2. Microhabitats characterization…………………………………….……...8 2.2.3. Grouping of variables……………………………………………………10 2.2.4. Co-occurrence of fish and invertebrate fauna……………………………10 2.2.5. Depth and temperature relationships…………………………………….10 2.2.6. Multivariate analysis……………………………………………………..11 2.2.7. Locomotory Behaviour………………………………………………......13 3.RESULTS……………………………………………………………………………14 3.1. General characterization of dives………………………………………………….14 3.1.1. Species richness, habitat types and sampling……………………………14 3.1.2. Diving profiles, depth and temperature………………………………….17 3.1.3. Fish distribution according to depth and temperature………………...…18 3.2. Habitat use………………………………………………………………………....20 3.2.1. Independent dive analysis……………………………………………..…20 3.2.1.1. Canonical correspondence analysis (CCA), Dive 22……………...…..20 3.2.1.2. Canonical correspondence analysis (CCA), Dive 34………………….22 3.2.1.3. Canonical correspondence analysis (CCA), Dive 35………………….24 3.2.1.4.
    [Show full text]
  • Age and Growth of Pontinus Kuhlii (Bowdich, 1825) in the Canary Islands*
    SCI. MAR., 65 (4): 259-267 SCIENTIA MARINA 2001 Age and growth of Pontinus kuhlii (Bowdich, 1825) in the Canary Islands* L.J. LÓPEZ ABELLÁN, M.T.G. SANTAMARÍA and P. CONESA Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Carretera de San Andrés, s/n, 38120 Santa Cruz de Tenerife. España. E-mail: [email protected] SUMMARY: Pontinus kuhlii is a Scorpaenidae which forms part of the bottom longline by-catch in the Canary Islands fish- eries within setting operations from 200 to 400 metres depth. Information on their biology and on the age determination and growth of the species is very scarce. The main objective of the study was to look at this biological aspect based on 421 spec- imens caught in the Canarian Archipelago during the period July 1996 and August 1997, 286 of which were male, 130 female and 5 indeterminate. Age was determined through the interpretation of annual growth rings of otoliths and scales, and the results fitted the von Bertalanffy growth function. Otolith sectionings were discarded due to annuli losses caused by the edge structure. The structures used in age interpretation showed numerous false rings that made the process difficult, causing 17% of the cases to be rejected. However, the age interpretations from scales showed less variability in relation to the whole otolith. The ages of the specimens ranged from 6 to 18 years for males and from 6 to 14 years for females. The growth parameters for males were: K= 0.132, L∞ = 46.7 and to= 1.74; for females: K= 0.094, L∞= 46.3 and to= 0.05; and for the total: K= 0.095, L∞= 52.2 and to= 1.01.
    [Show full text]
  • Status of the Chilipepper Rockfish, Sebastes Goodei, in 2007
    Status of the Chilipepper rockfish, Sebastes goodei, in 2007 John C. Field Groundfish Analysis Team Fisheries Ecology Division Southwest Fisheries Science Center 110 Shaffer Rd. Santa Cruz, CA 95060 [email protected] EXECUTIVE SUMMARY Stock Structure: This assessment applies to the chilipepper rockfish (Sebastes goodei) in the waters off of California and Oregon, in the region bounded by the U.S./Mexico border in the south through the Columbia River in the north. Although the distribution is described in the literature as ranging from Queen Charlotte Sound (British Columbia) to Bahia Magdalena (Baja California Sur), the region of greatest abundance is found between Point Conception and Cape Mendocino, California. Catch History: Chilipepper rockfish have been one of the most important commercial target species in California waters since the 1880s, as well as an important recreational target in Southern California waters historically, and an important recreational target in central and northern California more recently (following the movement of recreational fishing effort to deeper waters in the 1970s and 1980s). Catches were estimated to have begun in 1892, and are estimated to have ranged from several hundred to nearly 1000 tons throughout the first half of the 20th century. Gear types are grouped into four general categories; trawl, hook and line, setnet, and recreational; since World War II a majority has been taken with trawl gear, although hook and line, setnet, and recreational gear have accounted for between 20 and 40% of landings for most of the last three decades. As early rockfish landings were only reported at the genus level, a combination of historical data and publications, as well as anecdotal accounts of early line, trawl, and recreational fisheries, were used to reconstruct the fraction of catch by gear and sector assumed to be chilipepper.
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 121, NUMBER 8 WESTERN ATLANTIC SCORPIONFISHES BY ISAAC GINSBURd U. S. Fish and Wildlife Service -f'SS^af-o m (Publication 4106) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 28, 1953 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 121, NUMBER 8 WESTERN ATLANTIC SCORPIONFISHES BY ISAAC GINSBURG U. S. Fish and Wildlife Service (Publication 4106) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 28, 1953 2^^e Bovi (§&itimovi (preec BALTIMORE, MS., n. S. A. WESTERN ATLANTIC SCORPIONFISHES By ISAAC GINSBURG U. S. Fish and Wildlife Service INTRODUCTION The present state of the taxonomy of the western Atlantic scor- paenids leaves much to be desired. The literature is filled with inade- quate original or supplementary descriptions of species, containing many unessential details of little or no practical use for the correct determination of the species, while the critical characters that dis- tinguish the species often are not considered adequately. I found it well-nigh impossible to identify and distinguish the species properly by the use of current accounts. One of the main factors that operate to bedevil the taxonomist who conscientiously tries to identify his specimens is the undue multiplication by past authors of the number of fictitious species. Such untenable "species" have been established, in large measure, as a result of failure to elaborate properly, or even to take into consideration, the intraspecific range of variability of taxonomic characters, or their change with growth which, in the scorpaenids, is considerable. The multiplication of names that have been proposed for scorpaenid species that have no existence in fact is as confusing as the grouping of two or more closely related species under one name that has entered into the literature of other families.
    [Show full text]
  • Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition
    NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by James Wilder Orr, Michael A. Brown, and David C. Baker U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center August 2000 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center. This document should be cited as follows: Orr, J. W., M. A. Brown, and D. C. Baker. 2000. Guide to rockfishes (Scorpaenidae) of the genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, second edition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-117, 47 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by J. W. Orr,1 M. A. Brown, 2 and D. C. Baker 2 1 Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center 7600 Sand Point Way N.E.
    [Show full text]
  • Gopher Rockfish
    Summary of Data Sources for Stock Assessments for the Species in the Nearshore Fisheries Management Plan (NFMP) Teresa Ish1,2 Meisha Key3 Yasmin Lucero1 1 Center for Stock Assessment Research (CSTAR), Department of Applied Mathematics and Statistics, UC Santa Cruz, Santa Cruz, CA 95064 2 Also with Sustainable Fishery Advocates, P.O. Box 233, Santa Cruz, CA 95061 3 California Department of Fish and Game, 20 Lower Ragsdale Drive, #100 Monterey, CA 93940 February 1, 2005 Table of Contents Scope and structure of report 1 Table 1: Ranking of species by data richness 2 Descriptions of data sources 3 Table 2: Summary of data by data source 10 Individual species reports and data summary tables Black rockfish (Sebastes melanops) 12 Black and yellow rockfish (Sebastes chrysomelas) 16 Blue rockfish (Sebastes mystinus) 20 Brown rockfish (Sebastes auriculatus) 24 Cabezon (Scorpaenichthys marmoratus) 28 Calico rockfish (Sebastes dalli) 32 China rockfish (Sebastes nebulosus) 35 Copper rockfish (Sebastes caurinus) 39 Gopher rockfish (Sebastes carnatus) 42 Grass rockfish (Sebastes rastrelliger) 46 Kelp greenling (Hexagrammos decagrammus) 50 Kelp rockfish (Sebastes atrovirens) 53 Monkeyface prickleback eel (Cebidichthys violaceus) 57 Olive rockfish (Sebastes serranoides) 60 Quillback rockfish (Sebastes maliger) 63 Rock greenling (Hexagrammos lagocephalus) 66 Scorpionfish (Scorpaena guttata) 68 Sheephead (Semicossyphus pulcher) 71 Treefish (Sebastes serriceps) 74 Scope and structure of report The purpose of this report is to summarize the data sources that are available for the 19 nearshore species identified in the Nearshore Fisheries Management Plan (NFMP), to provide a means for the California Fish and Game to determine which species have enough data to assess and where more data need to be collected.
    [Show full text]
  • Rockfish Resources of the South Central California Coast
    140-155 Stephens 11/13/06 9:02 PM Page 140 STEPHENS ET AL.: ROCKFISH RESOURCES OF SOUTH CENTRAL CA CalCOFI Rep., Vol. 47, 2006 ROCKFISH RESOURCES OF THE SOUTH CENTRAL CALIFORNIA COAST: ANALYSIS OF THE RESOURCE FROM PARTYBOAT DATA, 1980–2005 JOHN STEPHENS DEAN WENDT DEBRA WILSON-VANDENBERG California Polytechnic State University California Polytechnic State University, California Department of Fish and Game San Luis Obispo and Vantuna Research Group San Luis Obispo 20 Lower Ragsdale Drive 2550 Nightshade Place 2550 Nightshade Place Monterey, California 93940 Arroyo Grande, California 93420 Arroyo Grande, California 93420 [email protected] JAY CARROLL ROYDEN NAKAMURA ERIN NAKADA Tenera Environmental, Inc. Biological Sciences Biological Sciences 141 Suburban Road, Suite A2 California Polytechnic State University California Polytechnic State University San Luis Obispo, California 93401 San Luis Obispo, California 93407 San Luis Obispo, California 93407 STEVEN RIENECKE JONO WILSON Biological Sciences Biological Sciences California Polytechnic State University California Polytechnic State University San Luis Obispo, California 93407 San Luis Obispo, California 93407 ABSTRACT including Lenarz (1987), Ralston (1998), Gunderson Rockfishes (Sebastes spp.) have historically comprised (1998), and Love et al. (1998, 2002). Rockfish are long- a large proportion of catches in the nearshore recre­ lived, slow to mature (iteroparous), and therefore sub­ ational fishery in California, but declining populations ject to pre-spawning mortality (Leaman 1991). Two of some species have led to increasingly restrictive man­ factors, overfishing and climate change, are considered agement of the resource. This report summarizes new primarily responsible for the declining marine fish pop­ and existing data on rockfishes of the south central coast ulations in much of California.
    [Show full text]
  • (Scorpaeniformes, Scorpaenidae): GENOME CHARACT
    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, 2011, том 45, № 3, с. 434–445 ГЕНОМИКА. ТРАНСКРИПТОМИКА УДК 577.21 THE COMPLETE MITOCHONDRIAL GENOME OF THE MARBLED ROCKFISH Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae): GENOME CHARACTERIZATION AND PHYLOGENETIC CONSIDERATIONS © 2011 TianJun Xu, YuanZhi Cheng, XueZhu Liu, Ge Shi, RiXin Wang* Key Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, China Received April 02, 2010 Accepted for publication May 12, 2010 The complete mitochondrial genome sequence of the marbled rockfish Sebastiscus marmoratus (Scorpaeni formes, Scorpaenidae) was determined and phylogenetic analysis was conducted to elucidate the evolutionary relationship of the marbled rockfish with other Sebastinae species. This mitochondrial genome, consisting of 17301 bp, is highly similar to that of most other vertebrates, containing the same gene order and an identical number of genes or regions, including 13 proteincoding genes, two ribosomal RNAs, 22 transfer RNAs, and one putative control region. Most of the genes are encoded on the Hstrand, while the ND6 and seven tRNA genes (for Gln, Ala, Asn, Tyr, Ser (UCA), Glu, and Pro) are encoded on the Lstrand. The reading frame of two pairs of genes overlapped on the same strand (the ATPase 8 and 6 genes overlapped by ten nucleotides; ND4L and ND4 genes overlapped by seven nucleotides). The possibly nonfunctional lightstrand replication origin folded into a typical stemloop secondary structure and a conserved motif (5'GCCGG3') was found at the base of the stem within the tRNACys gene. An extent terminationassociated sequence (ETAS) and conserved sequence blocks (CSB) were identified in the control region, except for CSB1; unusual long tandem repeats were found at the 3' end of the control region.
    [Show full text]