Drawing Planar Graphs with Large Vertices and Thick Edges Gill Barequet Dept
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia
55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as soft- ware engineering, database systems, visual interfaces, and computer-aided design. Research on graph drawing has been conducted within several diverse areas, includ- ing discrete mathematics (topological graph theory, geometric graph theory, order theory), algorithmics (graph algorithms, data structures, computational geometry, vlsi), and human-computer interaction (visual languages, graphical user interfaces, information visualization). This chapter overviews aspects of graph drawing that are especially relevant to computational geometry. Basic definitions on drawings and their properties are given in Section 55.1. Bounds on geometric and topological properties of drawings (e.g., area and crossings) are presented in Section 55.2. Sec- tion 55.3 deals with the time complexity of fundamental graph drawing problems. An example of a drawing algorithm is given in Section 55.4. Techniques for drawing general graphs are surveyed in Section 55.5. 55.1 DRAWINGS AND THEIR PROPERTIES TYPES OF GRAPHS First, we define some terminology on graphs pertinent to graph drawing. Through- out this chapter let n and m be the number of graph vertices and edges respectively, and d the maximum vertex degree (i.e., number of edges incident to a vertex). GLOSSARY Degree-k graph: Graph with maximum degree d k. ≤ Digraph: Directed graph, i.e., graph with directed edges. Acyclic digraph: Digraph without directed cycles. Transitive edge: Edge (u, v) of a digraph is transitive if there is a directed path from u to v not containing edge (u, v). -
Upward Planar Drawing of Single Source Acyclic
UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC DIGRAPHS y z MICHAEL D. HUTTON AND ANNA LUBIW Abstract. An upward plane drawing of a directed acyclic graph is a plane drawing of the digraph in which each directed edge is represented as a curve monotone increasing in the vertical direction. Thomassen [24]hasgiven a non-algorithmic, graph-theoretic characterization of those directed graphs with a single source that admit an upward plane drawing. We present an ecient algorithm to test whether a given single-source acyclic digraph has an upward plane drawing and, if so, to nd a representation of one suchdrawing. This result is made more signi cant in lightofthe recent pro of, by Garg and Tamassia, that the problem is NP-complete for general digraphs [12]. The algorithm decomp oses the digraph into biconnected and triconnected comp onents, and de- nes conditions for merging the comp onents into an upward plane drawing of the original digraph. To handle the triconnected comp onentsweprovide a linear algorithm to test whether a given plane drawing of a single source digraph admits an upward plane drawing with the same faces and outer face, which also gives a simpler, algorithmic pro of of Thomassen's result. The entire testing algo- 2 rithm (for general single-source directed acyclic graphs) op erates in O (n )timeandO (n) space (n b eing the number of vertices in the input digraph) and represents the rst p olynomial time solution to the problem. Key words. algorithms, upward planar, graph drawing, graph emb edding, graph decomp osition, graph recognition, planar graph, directed graph AMS sub ject classi cations. -
10 GEOMETRIC GRAPH THEORY J´Anos Pach
10 GEOMETRIC GRAPH THEORY J´anos Pach INTRODUCTION In the traditional areas of graph theory (Ramsey theory, extremal graph theory, random graphs, etc.), graphs are regarded as abstract binary relations. The relevant methods are often incapable of providing satisfactory answers to questions arising in geometric applications. Geometric graph theory focuses on combinatorial and geometric properties of graphs drawn in the plane by straight-line edges (or, more generally, by edges represented by simple Jordan arcs). It is a fairly new discipline abounding in open problems, but it has already yielded some striking results that have proved instrumental in the solution of several basic problems in combinatorial and computational geometry (including the k-set problem and metric questions discussed in Sections 1.1 and 1.2, respectively, of this Handbook). This chapter is partitioned into extremal problems (Section 10.1), crossing numbers (Section 10.2), and generalizations (Section 10.3). 10.1 EXTREMAL PROBLEMS Tur´an’s classical theorem [Tur54] determines the maximum number of edges that an abstract graph with n vertices can have without containing, as a subgraph, a complete graph with k vertices. In the spirit of this result, one can raise the follow- ing general question. Given a class of so-called forbidden geometric subgraphs, what is the maximum number of edgesH that a geometric graph of n vertices can have without containing a geometric subgraph belonging to ? Similarly, Ramsey’s the- orem [Ram30] for abstract graphs has some natural analoguesH for geometric graphs. In this section we will be concerned mainly with problems of these two types. -
A Survey on Graph Drawing Beyond Planarity
A Survey on Graph Drawing Beyond Planarity Walter Didimo1, Giuseppe Liotta1, Fabrizio Montecchiani1 1Dipartimento di Ingegneria, Universit`adegli Studi di Perugia, Italy fwalter.didimo,giuseppe.liotta,[email protected] Abstract Graph Drawing Beyond Planarity is a rapidly growing research area that classifies and studies geometric representations of non-planar graphs in terms of forbidden crossing configurations. Aim of this survey is to describe the main research directions in this area, the most prominent known results, and some of the most challenging open problems. 1 Introduction In the mid 1980s, the early pioneers of graph drawing had the intuition that a drawing with too many edge crossings is harder to read than a drawing of the same graph with fewer edge crossings (see, e.g., [35, 36, 72, 190]). This intuition was later confirmed by a series of cognitive experimental studies (see, e.g., [180, 181, 203]). As a result, a large part of the existing literature on graph drawing showcases elegant algorithms and sophisticated data structures under the assumption that the input graph is planar, i.e., it admits a drawing without edge crossings. When the input graph is non-planar, crossing minimization heuristics are used to insert a small number of dummy vertices in correspondence of the edge crossings, so to obtain a planarization of the input graph. A crossing-free drawing of the planarization can be computed by using one of the algorithms for planar graphs and then the crossings are reinserted by removing the dummy vertices. This approach is commonly adopted and works well for graphs of relatively small size, up to a few hundred vertices and edges (see, e.g., [87, 152]). -
Graph Drawing Tutorial
Graph Drawing Tutorial Isabel F. Cruz Worcester Polytechnic Institute Roberto Tamassia Brown University Graph Drawing 0 Introduction Graph Drawing 1 ■ ■ covers), hierarchies), diagrams), diagrams), hierarchies), applications to visualization of andsystemsforthe algorithms, models, 30 53 41 28 27 47 11 16 21 44 15 14 20 18 52 29 17 56 WWW 22 54 38 63 34 58 45 55 51 31 12 Graph Drawing knowledge representation project management 1 9 13 61 32 46 telecommunications database systems 3 43 40 39 36 59 50 (browsing history) ... 62 42 35 37 software engineering 4 graphs 24 2 25 Graph Drawing 26 23 33 48 10 5 6 57 8 19 7 49 60 2 and networks (ER- (PERT (ring (class (isa Drawing Conventions ■ general constraints on the geometric representation of vertices and edges polyline drawing bend planar straight-line drawing orthogonal drawing Graph Drawing 3 Drawing Conventions planar othogonal straight-line drawing abc e d f g strong visibility representation f a c b d e g Graph Drawing 4 Drawing Conventions ■ directed acyclic graphs are usually drawn in such a way that all edges “flow” in the same direction, e.g., from left to right, or from bottom to top ■ such upward drawings effectively visualize hierarchical relationships, such as covering digraphs of ordered sets ■ not every planar acyclic digraph admits a planar upward drawing Graph Drawing 5 Resolution ■ display devices and the human eye have finite resolution ■ examples of resolution rules: ■ integer coordinates for vertices and bends (grid drawings) ■ prescribed minimum distance between vertices ■ prescribed minimum distance between vertices and nonincident edges ■ prescribed minimum angle formed by consecutive incident edges (angular resolution) Graph Drawing 6 Angular Resolution • The angular resolution ρ of a straight- line drawing is the smallest angle formed by two edges incident on the same vertex • High angular resolution is desirable in visualization applications and in the design of optical communication networks. -
Combinatorial Geometry and Its Algorithmic Applications the Alcalá Lectures
Mathematical Surveys and Monographs Volume 152 Combinatorial Geometry and Its Algorithmic Applications The Alcalá Lectures János Pach Micha Sharir American Mathematical Society http://dx.doi.org/10.1090/surv/152 Combinatorial Geometry and Its Algorithmic Applications The Alcalá Lectures Mathematical Surveys and Monographs Volume 152 Combinatorial Geometry and Its Algorithmic Applications The Alcalá Lectures János Pach Micha Sharir American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona Michael G. Eastwood Ralph L. Cohen J. T. Stafford, Chair Benjamin Sudakov 2000 Mathematics Subject Classification. Primary 05C35, 05C62, 52C10, 52C30, 52C35, 52C45, 68Q25, 68R05, 68W05, 68W20. For additional information and updates on this book, visit www.ams.org/bookpages/surv-152 Library of Congress Cataloging-in-Publication Data Pach, Janos. Combinatorial geometry and its algorithmic applications : The Alcala lectures / Janos Pach, Micha Sharir. p. cm. — (Mathematical surveys and monographs ; v. 152) Includes bibliographical references and index. ISBN 978-0-8218-4691-9 (alk. paper) 1. Combinatorial geometry. 2. Algorithms. I. Sharir, Micha. II. Title. QA167.p332 2009 516.13–dc22 2008038876 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -