Combinatorial Geometry and Its Algorithmic Applications the Alcalá Lectures

Total Page:16

File Type:pdf, Size:1020Kb

Combinatorial Geometry and Its Algorithmic Applications the Alcalá Lectures Mathematical Surveys and Monographs Volume 152 Combinatorial Geometry and Its Algorithmic Applications The Alcalá Lectures János Pach Micha Sharir American Mathematical Society http://dx.doi.org/10.1090/surv/152 Combinatorial Geometry and Its Algorithmic Applications The Alcalá Lectures Mathematical Surveys and Monographs Volume 152 Combinatorial Geometry and Its Algorithmic Applications The Alcalá Lectures János Pach Micha Sharir American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona Michael G. Eastwood Ralph L. Cohen J. T. Stafford, Chair Benjamin Sudakov 2000 Mathematics Subject Classification. Primary 05C35, 05C62, 52C10, 52C30, 52C35, 52C45, 68Q25, 68R05, 68W05, 68W20. For additional information and updates on this book, visit www.ams.org/bookpages/surv-152 Library of Congress Cataloging-in-Publication Data Pach, Janos. Combinatorial geometry and its algorithmic applications : The Alcala lectures / Janos Pach, Micha Sharir. p. cm. — (Mathematical surveys and monographs ; v. 152) Includes bibliographical references and index. ISBN 978-0-8218-4691-9 (alk. paper) 1. Combinatorial geometry. 2. Algorithms. I. Sharir, Micha. II. Title. QA167.p332 2009 516.13–dc22 2008038876 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 141312111009 Contents Preface and Apology vii Chapter 1. Sylvester–Gallai Problem: The Beginnings of Combinatorial Geometry 1 1. James Joseph Sylvester and the Beginnings 1 2. Connecting Lines and Directions 3 3. Directions in Space vs. Points in the Plane 6 4. Proof of the Generalized Ungar Theorem 7 5. Colored Versions of the Sylvester–Gallai Theorem 10 Chapter 2. Arrangements of Surfaces: Evolution of the Basic Theory 13 1. Introduction 13 2. Preliminaries 16 3. Lower Envelopes 20 4. Single Cells 27 5. Zones 29 6. Levels 32 7. Many Cells and Related Problems 37 8. Generalized Voronoi Diagrams 40 9. Union of Geometric Objects 42 10. Decomposition of Arrangements 49 11. Representation of Arrangements 54 12. Computing Arrangements 56 13. Computing Substructures in Arrangements 58 14. Applications 63 15. Conclusions 70 Chapter 3. Davenport–Schinzel Sequences: The Inverse Ackermann Function in Geometry 73 1. Introduction 73 2. Davenport–Schinzel Sequences and Lower Envelopes 74 3. Simple Bounds and Variants 79 4. Sharp Upper Bounds on λs(n)81 5. Lower Bounds on λs(n)86 6. Davenport–Schinzel Sequences and Arrangements 89 Chapter 4. Incidences and Their Relatives: From Szemer´edi and Trotter to Cutting Lenses 99 1. Introduction 99 2. Lower Bounds 102 v vi CONTENTS 3. Upper Bounds for Incidences via the Partition Technique 104 4. Incidences via Crossing Numbers—Sz´ekely’s Method 106 5. Improvements by Cutting into Pseudo-segments 109 6. Incidences in Higher Dimensions 112 7. Applications 114 Chapter 5. Crossing Numbers of Graphs: Graph Drawing and its Applications 119 1. Crossings—the Brick Factory Problem 119 2. Thrackles—Conway’s Conjecture 120 3. Different Crossing Numbers? 122 4. Straight-Line Drawings 125 5. Angular Resolution and Slopes 126 6. An Application in Computer Graphics 127 7. An Unorthodox Proof of the Crossing Lemma 129 Chapter 6. Extremal Combinatorics: Repeated Patterns and Pattern Recognition 133 1. Models and Problems 133 2. A Simple Sample Problem: Equivalence under Translation 135 3. Equivalence under Congruence in the Plane 137 4. Equivalence under Congruence in Higher Dimensions 139 5. Equivalence under Similarity 141 6. Equivalence under Homothety or Affine Transformations 143 7. Other Equivalence Relations for Triangles in the Plane 144 Chapter 7. Lines in Space: From Ray Shooting to Geometric Transversals 147 1. Introduction 147 2. Geometric Preliminaries 149 3. The Orientation of a Line Relative to n Given Lines 152 4. Cycles and Depth Order 158 5. Ray Shooting and Other Visibility Problems 163 6. Transversal Theory 167 7. Open Problems 170 Chapter 8. Geometric Coloring Problems: Sphere Packings and Frequency Allocation 173 1. Multiple Packings and Coverings 173 2. Cover-Decomposable Families and Hypergraph Colorings 175 3. Frequency Allocation and Conflict-Free Coloring 178 4. Online Conflict-Free Coloring 181 Chapter 9. From Sam Loyd to L´aszl´o Fejes T´oth: The 15 Puzzle and Motion Planning 183 1. Sam Loyd and the Fifteen Puzzle 183 2. Unlabeled Coins in Graphs and Grids 185 3. L´aszl´o Fejes T´oth and Sliding Coins 187 4. Pushing Squares Around 194 Bibliography 197 Index 227 Preface and Apology These lecture notes are a compilation of surveys of the topics that were pre- sented in a series of talks at Alcal´a, Spain, August 31 – September 5, 2006, by J´anos Pach and Micha Sharir. To a large extent, these surveys are adapted from earlier papers written by the speakers and their collaborators. In their present form, the notes aptly describe both the history and the state of the art of these topics. The notes are arranged in an order that roughly parallels the order of the talks. Chapter 1 describes the beginnings of combinatorial geometry: Starting with Sylvester’s problem on the existence of “ordinary lines,” we introduce a number of exciting problems on incidences between points and lines in the plane and in space. This chapter uses the material in Pach, Pinchasi, and Sharir [588, 589]. In Chapter 2 we survey many aspects of the theory of arrangements of surfaces in higher dimensions. It is adapted from Agarwal and Sharir [51]. Readers that have some familiarity with the basic theory of arrangements can start their reading on this topic from this chapter, while those that are complete novices may find it useful to look first at Chapter 3, which studies arrangements of curves in the plane, with special emphasis on Davenport–Schinzel sequences and the major role they play in the theory of arrangements. This chapter is adapted from Agarwal and Sharir [52]. Chapter 4 covers the topic of incidences between points and curves and its many relatives, where a surge of activity has taken place in the past decade. It is adapted from two similar surveys by Pach and Sharir [600, 601]. The study of combinatorial and topological properties of planar arrangements of curves has become a separate discipline in discrete and computational geometry, under the name of Graph Drawing. Some basic aspects of this emerging discipline are dis- cussed in Chapter 5, which is based on the survey by Pach [583]. Some classical questions of Erd˝os on repeated interpoint distances in a finite point set can be re- formulated as problems on the maximum number of incidences between points and circles, spheres, etc. In fact, these questions motivated and strongly influenced the early development of the theory of incidences a quarter of a century ago and they led to the discovery of powerful new combinatorial and topological tools. Many of Erd˝os’s questions can be naturally generalized to problems on larger repeated subpatterns in finite point sets. Based on Brass and Pach [175], in Chapter 6 we outline some of the most challenging open problems of this kind, whose solution would have interesting consequences in pattern matching and recognition. Chapter 7 treats the special topic of lines in three-dimensional space, which is a nice application (or showpiece, if you will) of the general theory of arrange- ments on one hand, and shows up in a variety of only loosely related topics, ranging from ray shooting and hidden surface removal in computer graphics to geometric transversal theory. This chapter partially builds upon a somewhat old paper by Chazelle, Edelsbrunner, Guibas, Sharir, and Stolfi [220], but its second half is new, vii viii PREFACE AND APOLOGY and presents (some of) the recent developments. Some combinatorial properties of arrangements of spheres, boxes, etc., are discussed in Chapter 8. They raise difficult questions on the chromatic numbers and other similar parameters of certain geo- metrically defined graphs and hypergraphs, with possible applications to frequency allocation in cellular telephone networks. Here we borrowed some material from Pach, Tardos, and T´oth [608]. An old and rich area of applications of Davenport–Schinzel sequences and the theory of geometric arrangements is motion planning. Starting with Sam Loyd’s coin puzzles, in Chapter 9 we discuss a number of problems that can be regarded as discrete variants of the “piano movers’ problem” on graphs and grids. Some of the results have applications to the reconfiguration of metamorphic robotic systems. This chapter is based on recent joint papers with Bereg, C˘alinescu, and Dumitrescu [138, 190, 280]. While we have made our best attempts to make these notes comprehensive, they are not at the level of a polished monograph, nor do they provide full coverage of all the relevant recent results and developments. It is our hope that they be a useful source of reference to the rich and extensive theory presented at the Alcal´a series of talks.
Recommended publications
  • Object Oriented Programming
    No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows.
    [Show full text]
  • A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons
    A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons Eric Berberich, Arno Eigenwillig, Michael Hemmer Susan Hert, Kurt Mehlhorn, and Elmar Schomer¨ [eric|arno|hemmer|hert|mehlhorn|schoemer]@mpi-sb.mpg.de Max-Planck-Institut fur¨ Informatik, Stuhlsatzenhausweg 85 66123 Saarbruck¨ en, Germany Abstract. We give an exact geometry kernel for conic arcs, algorithms for ex- act computation with low-degree algebraic numbers, and an algorithm for com- puting the arrangement of conic arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be obtained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations. The algorithm and its implementation are complete (they can handle all cases), exact (they give the mathematically correct result), and efficient (they can handle inputs with several hundred primitives). 1 Introduction We give an exact geometry kernel for conic arcs, algorithms for exact computation with low-degree algebraic numbers, and a sweep-line algorithm for computing arrangements of curved arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be ob- tained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations (Figure 1). A regularized boolean operation is a standard boolean operation (union, intersection, complement) followed by regularization. Regularization replaces a set by the closure of its interior and eliminates dangling low-dimensional features.
    [Show full text]
  • SETL for Internet Data Processing
    SETL for Internet Data Processing by David Bacon A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Computer Science New York University January, 2000 Jacob T. Schwartz (Dissertation Advisor) c David Bacon, 1999 Permission to reproduce this work in whole or in part for non-commercial purposes is hereby granted, provided that this notice and the reference http://www.cs.nyu.edu/bacon/phd-thesis/ remain prominently attached to the copied text. Excerpts less than one PostScript page long may be quoted without the requirement to include this notice, but must attach a bibliographic citation that mentions the author’s name, the title and year of this disser- tation, and New York University. For my children ii Acknowledgments First of all, I would like to thank my advisor, Jack Schwartz, for his support and encour- agement. I am also grateful to Ed Schonberg and Robert Dewar for many interesting and helpful discussions, particularly during my early days at NYU. Terry Boult (of Lehigh University) and Richard Wallace have contributed materially to my later work on SETL through grants from the NSF and from ARPA. Finally, I am indebted to my parents, who gave me the strength and will to bring this labor of love to what I hope will be a propitious beginning. iii Preface Colin Broughton, a colleague in Edmonton, Canada, first made me aware of SETL in 1980, when he saw the heavy use I was making of associative tables in SPITBOL for data processing in a protein X-ray crystallography laboratory.
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Fast Distributed Algorithms for LP-Type Problems of Low Dimension
    Fast Distributed Algorithms for LP-Type Problems of Low Dimension Kristian Hinnenthal Paderborn University, Germany [email protected] Christian Scheideler Paderborn University, Germany [email protected] Martijn Struijs TU Eindhoven, The Netherlands [email protected] Abstract In this paper we present various distributed algorithms for LP-type problems in the well-known gossip model. LP-type problems include many important classes of problems such as (integer) linear programming, geometric problems like smallest enclosing ball and polytope distance, and set problems like hitting set and set cover. In the gossip model, a node can only push information to or pull information from nodes chosen uniformly at random. Protocols for the gossip model are usually very practical due to their fast convergence, their simplicity, and their stability under stress and disruptions. Our algorithms are very efficient (logarithmic rounds or better with just polylogarithmic communication work per node per round) whenever the combinatorial dimension of the given LP-type problem is constant, even if the size of the given LP-type problem is polynomially large in the number of nodes. 2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of computation → Mathematical optimization Keywords and phrases LP-type problems, linear optimization, distributed algorithms, gossip al- gorithms Digital Object Identifier 10.4230/LIPIcs.DISC.2019.23 Funding K. Hinnenthal and C. Scheideler are supported by the DFG SFB 901 (On-The-Fly Com- puting). 1 Introduction 1.1 LP-type Problems LP-type problems were defined by Sharir and Welzl [18] as problems characterized by a tuple (H, f) where H is a finite set of constraints and f : 2H → T is a function that maps subsets from H to values in a totally ordered set (T, ≤) containing −∞.
    [Show full text]
  • Call for Papers RIMS Workshop on Computational Geometry and Discrete Mathematics October 16-18, 2008, Kyoto, Japan
    Call For Papers RIMS Workshop on Computational Geometry and Discrete Mathematics October 16-18, 2008, Kyoto, Japan RIMS Workshop on Computational Geometry and Workshop Organizers: Discrete Mathematics will be held at RIMS (Research Institute for Mathematical Sciences), Tetsuo Asano (JAIST, Japan) Kyoto, October 16-18, 2008. It is an event of RIMS Satoru Fujishige (Kyoto U., Japan) International Project Research 2008, Discrete Satoru Iwata (Kyoto U., Japan) Structures and Algorithms, and intended to provide a Naoki Katoh (Kyoto U., Japan) forum for researchers working in the field of Yoshio Okamoto (Tokyo Inst. Tech, Japan) computational geometry and related topics. Takeshi Tokuyama (Tohoku U., Japan, Chair) Scope: Invited Speakers: The workshop consists of invited talks and presentations on contributed papers. We call for Oswin Aichholzer (T. U. Graz, Austria) submissions of contributed papers on original Boris Aronov (Polytechnic U., USA) research on computational geometry and related Sergey Bereg (U. Texas, USA) topics. Also survey papers on recent results of the Siu Wing Cheng (HKUST, Hong Kong) authors are welcome. Otfried Cheong (KAIST, Korea) Danny Chen (U. Notre Dame, USA) Submissions: Jiri Matousek (Charles U., Czech Republic) Authors should submit short extended abstract in Kurt Mehlhorn (MPI, Germany) PDF format not exceeding 4 pages on A4 (or US Kokichi Sugihara (U. Tokyo, Japan) letter) paper, including author’s names, affiliations, Emo Welzl (ETH, Switzerland) references, and figures. One may use double-column format (we recommend the style of EuroCG). Workshop Web Page : Authors may replace the abstracts with longer ones (up to 10 pages) for the camera-ready version. http://www.dais.is.tohoku.ac.jp/~rimscg08 The submissions should be sent via email to [email protected] Symposium Site: together with your contact information.
    [Show full text]
  • FOCS 2005 Program SUNDAY October 23, 2005
    FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H.
    [Show full text]
  • Representing Graphs by Polygons with Edge Contacts in 3D
    Representing Graphs by Polygons with Side Contacts in 3D∗ Elena Arseneva1, Linda Kleist2, Boris Klemz3, Maarten Löffler4, André Schulz5, Birgit Vogtenhuber6, and Alexander Wolff7 1 Saint Petersburg State University, Russia [email protected] 2 Technische Universität Braunschweig, Germany [email protected] 3 Freie Universität Berlin, Germany [email protected] 4 Utrecht University, the Netherlands [email protected] 5 FernUniversität in Hagen, Germany [email protected] 6 Technische Universität Graz, Austria [email protected] 7 Universität Würzburg, Germany orcid.org/0000-0001-5872-718X Abstract A graph has a side-contact representation with polygons if its vertices can be represented by interior-disjoint polygons such that two polygons share a common side if and only if the cor- responding vertices are adjacent. In this work we study representations in 3D. We show that every graph has a side-contact representation with polygons in 3D, while this is not the case if we additionally require that the polygons are convex: we show that every supergraph of K5 and every nonplanar 3-tree does not admit a representation with convex polygons. On the other hand, K4,4 admits such a representation, and so does every graph obtained from a complete graph by subdividing each edge once. Finally, we construct an unbounded family of graphs with average vertex degree 12 − o(1) that admit side-contact representations with convex polygons in 3D. Hence, such graphs can be considerably denser than planar graphs. 1 Introduction A graph has a contact representation if its vertices can be represented by interior-disjoint geometric objects1 such that two objects touch exactly if the corresponding vertices are adjacent.
    [Show full text]
  • Final Report (Sections B and C)
    EuroGIGA Final report (Sections B and C) Deadline: 01/12/2014 Section B. Progress report B1. CRP progress and scientific highlights (max. 1500 words) 1. The collaborative work (c.400‐750 words) a. With reference to the CRP objectives and work plan, describe the work undertaken by the CRP and the contribution of each Individual Project to the collaboration in terms of its specific expertise and tasks/responsibilities. How closely did the partners work together? The work plan was divided into 13 work‐packages, each being supervised by one IP (some IPs were responsible for more work‐packages, these were those whose teams consisted of more sites – IP1‐CZ was responsible for WP01 (Prague) and WP08 (Brno) and IP2‐DE was responsible for WP02 (Wurzburg), WP10 (Berlin), WP11 (Dortmund) and WP12 (Tubingen)). The original work plan from the project proposal contained only 12 work‐packages, the last one was added during the life of the project when a new AP4 (Munster) was added. All teams responsible for particular work‐packages actively worked in their areas of proposed research, achieved many new results and published many scientific papers. But most importantly, mainly as a result of extensive networking activities, researchers from all IPs and APs actively collaborated and achieved results for different work‐packages. For instance, WP01 received contributions from IP1‐CZ, IP2‐DE, IP5‐PL and AP1‐IT, WP03 received contributions from IP2‐DE, IP3‐CH, AP1‐IT and AP3‐DE, and WP07 received contributions from IP1‐CZ, IP2‐DE, IP3‐CH and AP2‐NL. Each Individual Project contributed to at least two work‐packages.
    [Show full text]
  • Breakthrough in My Favorite Open Problem of Mathematics: Chromatic Number of the Plane Alexander Soifer
    Breakthrough in My Favorite Open Problem of Mathematics: Chromatic Number of the Plane Alexander Soifer [I] can’t offer money for nice problems of other people because then I will really go broke… It is a very nice problem. If it were mine, I would offer $250 for it. – Paul Erdős Boca Raton, February 1992 1. Chromatic Number of the Plane: The Problem On behalf of all enthusiasts of this problem, let me express gratitude to my friend, the late Edward Nelson, who created this problem at a tender age of 18 in November 1950: What is the smallest number of colors sufficient for coloring the plane in such a way that no two points of the same color are unit distance apart? This number is called the chromatic number of the plane and is denoted by . In 1961, the Swiss geometer Hugo Hadwiger admitted that he was not the author of the problem, even though the name “Harwiger-Nelson” got stuck to the problem, just as Cardano did not author the Cardano Formula, and Pythagoras Theorem was known a millennium before the great Greek was born. Such is life with credits in mathematics. Right at problem’s birth, Eddie Nelson determined the lower bound of 4, and his 20-year old friend John Isbell, 20 figured out the upper bound of 7: = 4, or 5, or 6, or 7 A very broad spread. Which one is the value of ? Paul Erd"os thought 5. On May 28, 2009, during the DIMACS Ramsey Theory International Workshop that I organized on request of DIMACS Director Fred Roberts, I asked the distinguished audience to determine the chromatic number of the plane by democratic means of a vote.
    [Show full text]
  • Lipics-Socg-2017-9.Pdf (0.9
    A Universal Slope Set for 1-Bend Planar Drawings Patrizio Angelini1, Michael A. Bekos2, Giuseppe Liotta3, and Fabrizio Montecchiani4 1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen, Germany [email protected] 2 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen, Germany [email protected] 3 Universitá degli Studi di Perugia, Perugia, Italy [email protected] 4 Universitá degli Studi di Perugia, Perugia, Italy [email protected] Abstract We describe a set of ∆−1 slopes that are universal for 1-bend planar drawings of planar graphs of maximum degree ∆ ≥ 4; this establishes a new upper bound of ∆ − 1 on the 1-bend planar slope number. By universal we mean that every planar graph of degree ∆ has a planar drawing with at most one bend per edge and such that the slopes of the segments forming the edges belong to the given set of slopes. This improves over previous results in two ways: Firstly, the best previously 3 known upper bound for the 1-bend planar slope number was 2 (∆ − 1) (the known lower bound 3 being 4 (∆ − 1)); secondly, all the known algorithms to construct 1-bend planar drawings with O(∆) slopes use a different set of slopes for each graph and can have bad angular resolution, while our algorithm uses a universal set of slopes, which also guarantees that the minimum angle π between any two edges incident to a vertex is (∆−1) . 1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory Keywords and phrases Slope number, 1-bend drawings, planar graphs, angular resolution Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.9 1 Introduction This paper is concerned with planar drawings of graphs such that each edge is a poly-line with few bends, each segment has one of a limited set of possible slopes, and the drawing has good angular resolution, i.e.
    [Show full text]
  • Analytical Framework for Recurrence-Network Analysis of Time Series
    Analytical framework for recurrence-network analysis of time series Jonathan F. Donges,1, 2, ∗ Jobst Heitzig,1 Reik V. Donner,1 and J¨urgenKurths1, 2, 3 1Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany 2Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany 3Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom (Dated: August 13, 2018) Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems. While there are already many successful applications ranging from medicine to paleoclima- tology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret an "-recurrence network as a discrete subnetwork of a \continuous" graph with uncountably many vertices and edges corresponding to the system's attractor. This step allows us to show that various statistical measures commonly used in complex network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex geometric properties of the attractor on the scale given by ". In particular, we introduce local measures such as the "-clustering coefficient, mesoscopic measures such as "-motif density, path-based measures such as "-betweennesses, and global measures such as "-efficiency. This new analytical basis for the so far heuristically motivated network measures also provides an objective criterion for the choice of " via a percolation threshold, and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli and logistic maps, periodic and two-dimensional quasi-periodic motions, and for hyperballs and hypercubes, by deriving analytical expressions for the novel measures and com- paring them with data from numerical experiments.
    [Show full text]