Genexpressionsanalyse Boviner Mesenchymaler Stammzellen Und Deren in Vitro Differenzierten Folgelinien

Total Page:16

File Type:pdf, Size:1020Kb

Genexpressionsanalyse Boviner Mesenchymaler Stammzellen Und Deren in Vitro Differenzierten Folgelinien Genexpressionsanalyse boviner mesenchymaler Stammzellen und deren in vitro differenzierten Folgelinien Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Martin Schulze Geboren am 05. April 1981 in Essen Mainz, August 2015 I DEKAN UND PRÜFUNGSKOMMISSION Dekan: Prof. Dr. XXX 1. Berichterstatter: Prof. Dr. XXX 2. Berichterstatter: Prof. Dr. XXX Tag der mündlichen Prüfung: II INHALTSVERZEICHNIS INHALTSVERZEICHNIS 1 Einleitung ...................................................................................................................... 1 1.1 Stammzellen und ihre Nutzung in Medizin und Forschung ......................... 1 1.2 Mesenchymale Stammzellen als Vertreter der adulten Stammzellen ........... 6 1.3 Genexpressionsanalyse im Hochdurchsatz mittels Microarrays und Sequenziertechniken der neuen Generation ............................................................... 11 1.4 Bioinformatische Auswertung von NGS Daten zur Genexpressionsanalyse 21 1.5 Zielsetzung ........................................................................................................... 23 2 Material und Methoden ............................................................................................. 25 2.1 Isolation Mesenchymaler Stammzellen aus dem Knochenmark des Rindes 25 2.2 Charakterisierung der Zellkulturen ................................................................. 26 2.2.1 Immunohistochemische Färbungen von undifferenzierten MSC ........ 27 2.2.2 Charakterisierung von MSC durch Nachweis zelllinientypischer Transkripte mittels RT-PRC und Sanger Sequenzierung ..................................... 28 2.3 Differenzierung Mesenchymaler Stammzellen .............................................. 31 2.3.1 In vitro Differenzierung von undifferenzierten MSC zu Adipozyten . 31 2.3.2 In vitro Differenzierung von undifferenzierten MSC zu Osteoblasten 32 2.3.3 In vitro Differenzierung von undifferenzierten MSC zu Chondrozyten 33 2.4 Charakterisierung von aus MSC differenzierten Folgelinien ....................... 34 2.4.1 Nachweis chondrogener Differenzierung durch Alcian Blue Färbung 34 2.4.2 Nachweis Adipogener Differenzierung durch Oil Red O Färbung ..... 35 2.4.3 Nachweis Osteogener Differenzierung durch Alzarin Red S Färbung 35 2.5 Herstellung, Hybridisierung und Auswertung von Plasmid – DNA Microarrays zur Genexpressionsanalye ...................................................................... 36 III INHALTSVERZEICHNIS 2.5.1 Gewinnung der Plasmid – DNA Sonden durch Retransformation chemisch kompetenter Zellen ................................................................................... 37 2.5.2 Isolation von Plasmid-DNA im 96er Format .......................................... 38 2.5.3 Herstellen der Plasmid-DNA Microarrays durch Spotten .................... 38 2.5.4 Lineare Amplifikation von mRNA in zwei aufeinanderfolgenden Schritten ....................................................................................................................... 39 2.5.5 Hybridisierung, Scan und Auslesen der Plasmid-DNA Microarrays . 41 2.5.6 Auswertung der Plasmid-DNA Microarrays .......................................... 42 2.6 Genexpressionsanalyse mittels Illumina NGS Sequenzierungen (RNA – Seq) 43 2.6.1 Kartierung von Sequenzen gegen annotierte Bereiche des Rindergenoms mit Hilfe der CLC Genomics Workbench ......................................... 46 2.6.2 BLASTn Abgleich der Illumina Sequenzen mit der NCBI Unigene Datenbank des Rindes ............................................................................................... 47 2.6.3 Assemblierung von Illumina Sequenzen und Annotation der Contigs mittels BLASTn Abgleich mit der Refseq RNA Datenbank ................................. 49 2.6.4 Bestimmung differenzieller Genexpression ............................................ 50 2.7 Einordnung der Genexpressionsprofile in einen übergeordneten biologischen Kontext ...................................................................................................... 51 2.7.1 GLobaler Vergleich der Genexpressionsprofile ...................................... 52 2.7.2 Analyse der Genexpression – FAC der 100 stärkstexprimierten Gene mittels DAVID ............................................................................................................ 53 2.7.3 Analyse differenziell exprimierter Gene – Abgleich mit biologischen Pathways und Zuordnen der Genontologie ........................................................... 54 2.7.4 Assemblierung von unkartierten Sequenzen und Charakterisierung noch nicht annotierter Transkripte .......................................................................... 55 2.8 Übersicht über die bioinformatischen Hilfsmittel .......................................... 57 2.9 Puffer und Lösungen .......................................................................................... 59 3 Ergebnisse .................................................................................................................... 60 3.1 Isolierung und in vitro Kultur Mesenchymaler Stammzellen ....................... 60 3.2 Charakterisierung Mesenchymaler Stammzellen .......................................... 61 3.2.1 Nachweis MSC typischer Antigene mittels Immunohistochemie und Test auf Mycoplasmen Kontamination ................................................................... 61 3.2.2 Nachweis MSC typischer Transkripte durch RT-PCR ........................... 62 3.3 In vitro Differenzierung der MSC ..................................................................... 65 3.3.1 Adipogene Differenzierung der MSC ...................................................... 65 IV INHALTSVERZEICHNIS 3.3.2 Osteogene Differenzierung der MSC ....................................................... 66 3.3.3 Chondrogene Differenzierung der MSC.................................................. 68 3.4 RNA - Präparation und RNA - Amplifizierung ............................................. 69 3.4.1 Präparation von Gesamt-RNA aus Zellkulturen .................................... 70 3.4.2 Lineare Amplifikation von RNA .............................................................. 71 3.5 Bestimmung differenzieller Genexpression mittels Plasmid - DNA Microarrays ...................................................................................................................... 73 3.5.1 Herstellung der Plasmid-DNA Microarrays ........................................... 74 3.5.2 Bestimmung differenzieller Genexpression mittels Microarrays – Vergleich von undifferenzierten MSC und Osteoblasten ..................................... 76 3.5.3 Bestimmung differenzieller Genexpression mittels Microarrays – Vergleich von undifferenzierten MSC und Chondrozyten .................................. 77 3.5.4 Bestimmung differenzieller Genexpression mittels Microarrays – Vergleich von undifferenzierten MSC und Adipozyten ...................................... 79 3.6 Genexpressionsanalyse mittels Illumina Hochdurchsatz Sequenzierung – Prozessieren der Rohdaten ............................................................................................ 79 3.6.1 Prozessieren der Rohdaten und Annotation der Sequenzen – Kartierung gegen das Rindergenom........................................................................ 81 3.6.2 Prozessieren der Rohdaten und Annotation der Sequenzen – BLASTn Abgleich mit der UG-Datenbank des Rindes ......................................................... 82 3.6.3 Prozessieren der Rohdaten, Assemblierung und Annotation der Konsenussequenzen – BLASTn Abgleich mit der refseq-RNA Datenbank ....... 83 3.6.4 Globaler Vergleich der Experssionsprofile aller Zelllinien ................... 84 3.7 Read-Count basierte Analyse der Genexpression mittels RNA-Seq ........... 86 3.7.1 Expression von zelllinientypisch exprimierten Markergenen .............. 87 3.7.2 Funktionelle Annotation stark exprimierter Gene – Junge MSC ......... 90 3.7.3 Funktionelle Annotation stark exprimierter Gene – Adipogenese ...... 92 3.7.4 Funktionelle Annotation stark exprimierter Gene – Osteogenese ....... 94 3.7.5 Funktionelle Annotation stark exprimierter Gene – alte MSC ............. 97 3.7.6 Funktionelle Annotation stark exprimierter Gene – Chondrogenese . 99 3.8 Analyse differenziell exprimierter Gene mittels RNA-Seq ......................... 100 3.8.1 Differenzielle erhöhte Genexpression in jungen MSC ......................... 103 3.8.2 Differenziell erhöhte Genexpression in Adipozyten ........................... 105 3.8.3 Differenziell erhöhte Genexpression in Osteoblasten und alten MSC 107 3.8.4 Differenziell erhöhte Genexpression in Chondrozyten ....................... 110 V INHALTSVERZEICHNIS 3.9 Charakterisierung unbekannter Transkripte ................................................ 110 4 Diskussion ................................................................................................................. 116 4.1 Primärkultur undifferenzierter MSC ............................................................. 117 4.2 In vitro Differenzierung von MSC und Genexpressions-analyse differenzierungsspezifischer Markergene ................................................................. 120 4.2.1 Adipogene Differenzierung von MSC ................................................... 121 4.2.2 Osteogene Differenzierung von MSC .................................................... 122 4.2.3 Chondrogene Differenzierung von MSC ..............................................
Recommended publications
  • Genome-Wide Analysis of 5-Hmc in the Peripheral Blood of Systemic Lupus Erythematosus Patients Using an Hmedip-Chip
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1467-1479, 2015 Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip WEIGUO SUI1*, QIUPEI TAN1*, MING YANG1, QIANG YAN1, HUA LIN1, MINGLIN OU1, WEN XUE1, JIEJING CHEN1, TONGXIANG ZOU1, HUANYUN JING1, LI GUO1, CUIHUI CAO1, YUFENG SUN1, ZHENZHEN CUI1 and YONG DAI2 1Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002; 2Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China Received July 9, 2014; Accepted February 27, 2015 DOI: 10.3892/ijmm.2015.2149 Abstract. Systemic lupus erythematosus (SLE) is a chronic, Introduction potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range Systemic lupus erythematosus (SLE) is a typical systemic auto- of self-antigens. To investigate the role of the 5-hmC DNA immune disease, involving diffuse connective tissues (1) and modification with regard to the onset of SLE, we compared is characterized by immune inflammation. SLE has a complex the levels 5-hmC between SLE patients and normal controls. pathogenesis (2), involving genetic, immunologic and envi- Whole blood was obtained from patients, and genomic DNA ronmental factors. Thus, it may result in damage to multiple was extracted. Using the hMeDIP-chip analysis and valida- tissues and organs, especially the kidneys (3). SLE arises from tion by quantitative RT-PCR (RT-qPCR), we identified the a combination of heritable and environmental influences. differentially hydroxymethylated regions that are associated Epigenetics, the study of changes in gene expression with SLE.
    [Show full text]
  • ORAI1 and ORAI2 Modulate Murine Neutrophil Calcium Signaling, Cellular Activation, and Host Defense
    ORAI1 and ORAI2 modulate murine neutrophil calcium signaling, cellular activation, and host defense Derayvia Grimesa,1, Ryan Johnsona,1, Madeline Pashosa, Celeste Cummingsa, Chen Kangb, Georgia R. Sampedroa, Eric Tycksenc, Helen J. McBrided, Rajan Sahb, Clifford A. Lowelle, and Regina A. Clemensa,2 aDepartment of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110; bDepartment of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110; cMcDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110; dInflammation Research, Amgen, Thousand Oaks, CA 91320; and eDepartment of Laboratory Medicine, University of California, San Francisco, CA 94143 Edited by Michael D. Cahalan, University of California, Irvine, CA, and approved August 11, 2020 (received for review May 5, 2020) Calcium signals are initiated in immune cells by the process of in isoform features, such as activation or inactivation kinetics and store-operated calcium entry (SOCE), where receptor activation sensitivity to modulatory factors, also influence CRAC-channel triggers transient calcium release from the endoplasmic reticulum, function (2–10). ORAI1 and ORAI2 are broadly expressed in im- followed by opening of plasma-membrane calcium-release acti- mune cells, and humans with ORAI1 mutations develop a severe vated calcium (CRAC) channels. ORAI1, ORAI2, and ORAI3 are known combined immunodeficiency-like immunodeficiency, highlighting to comprise the CRAC channel; however, the contributions of indi- the importance of this isoform in immune function (11, 12). In mice, vidual isoforms to neutrophil function are not well understood. ORAI1 also appears to be the dominant functional isoform in im- Here, we show that loss of ORAI1 partially decreases calcium influx, mune cells, with substantial deficits in ORAI1-deficient T cells, while loss of both ORAI1 and ORAI2 completely abolishes SOCE.
    [Show full text]
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • PLZF Targets Developmental Enhancers for Activation During Osteogenic Differentiation of Human Mesenchymal Stem Cells
    RESEARCH ARTICLE PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells Shuchi Agrawal Singh1,2,3*, Mads Lerdrup1,3, Ana-Luisa R Gomes1,3, Harmen JG van de Werken4,5,6, Jens Vilstrup Johansen1,3,7, Robin Andersson1,3,7, Albin Sandelin1,3,7, Kristian Helin8,9,10, Klaus Hansen1,3* 1Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 2Department of Hematology, Cambridge Institute for Medical Research and Welcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; 3Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 4Department of Cell Biology, University Medical Center, Rotterdam, Netherlands; 5Cancer Computational Biology Center, University Medical Center, Rotterdam, Netherlands; 6Department of Urology, University Medical Center, Rotterdam, Netherlands; 7Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark; 8The Novo Nordisk Center for Stem Cell Biology, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark; 9Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States; 10Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, United States *For correspondence: [email protected]; Abstract The PLZF transcription factor is essential for osteogenic differentiation of hMSCs; [email protected] (SAS); however, its regulation and molecular function during this process is not fully understood. Here, we [email protected] (KHA) revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in Competing interests: The naive hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and authors declare that no H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF.
    [Show full text]
  • Universidad Nacional Autónoma De México Plan De Estudios Combinados En Medicina Instituto Nacional De Medicina Genómica
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PLAN DE ESTUDIOS COMBINADOS EN MEDICINA INSTITUTO NACIONAL DE MEDICINA GENÓMICA ESTUDIO POST-MORTEM DE LAS ALTERACIONES EN LA EXPRESIÓN DE RNA EN EL CEREBRO DE PACIENTES SUICIDAS TESIS QUE PARA OPTAR POR EL GRADO DE DOCTORA EN MEDICINA PRESENTA: BRENDA CABRERA MENDOZA DIRECTOR DE TESIS: DR. JOSÉ HUMBERTO NICOLINI SÁNCHEZ INSTITUTO NACIONAL DE MEDICINA GENÓMICA COMITÉ TUTOR: DRA. MARTHA PATRICIA OSTROSKY-SHEJET INSTITUTO DE INVESTIGACIONES BIOMÉDICAS DR. DAVID COLIN GLAHN ESCUELA DE MEDICINA DE HARVARD Ciudad Universitaria, CD. MX., diciembre de 2020 TABLA DE CONTENIDOS Resumen ........................................................................................................................................................................ 1 Abstract .......................................................................................................................................................................... 2 Definición y epidemiología del suicidio ............................................................................................................ 3 Epidemiología global del suicidio ..................................................................................................................... 5 Epidemiología del suicidio en América ........................................................................................................... 8 Epidemiología del suicidio en México ............................................................................................................10
    [Show full text]
  • V10a91-Tasheva Pgmkr
    Molecular Vision 2004; 10:758-772 <http://www.molvis.org/molvis/v10/a91> ©2004 Molecular Vision Received 12 August 2004 | Accepted 7 October 2004 | Published 7 October 2004 Analysis of transcriptional regulation of the small leucine rich proteoglycans Elena S. Tasheva,1 Bernward Klocke,2 Gary W. Conrad1 1Kansas State University, Division of Biology, Manhattan, KS; 2Genomatix Software GmbH, München, Germany Purpose: Small leucine rich proteoglycans (SLRPs) constitute a family of secreted proteoglycans that are important for collagen fibrillogenesis, cellular growth, differentiation, and migration. Ten of the 13 known members of the SLRP gene family are arranged in tandem clusters on human chromosomes 1, 9, and 12. Their syntenic equivalents are on mouse chromosomes 1, 13, and 10, and rat chromosomes 13, 17, and 7. The purpose of this study was to determine whether there is evidence for control elements, which could regulate the expression of these clusters coordinately. Methods: Promoters were identified using a comparative genomics approach and Genomatix software tools. For each gene a set of human, mouse, and rat orthologous promoters was extracted from genomic sequences. Transcription factor (TF) binding site analysis combined with a literature search was performed using MatInspector and Genomatix’ BiblioSphere. Inspection for the presence of interspecies conserved scaffold/matrix attachment regions (S/MARs) was performed using ElDorado annotation lists. DNAseI hypersensitivity assay, chromatin immunoprecipitation (ChIP), and transient transfection experiments were used to validate the results from bioinformatics analysis. Results: Transcription factor binding site analysis combined with a literature search revealed co-citations between several SLRPs and TFs Runx2 and IRF1, indicating that these TFs have potential roles in transcriptional regulation of the SLRP family members.
    [Show full text]
  • A 31-Bp Indel in the 5' UTR Region of the GNB1L Gene Is Signi Cantly
    A 31-bp Indel in the 5' UTR region of the GNB1L gene is signicantly associated with chicken body weight and carcass traits Tuanhui Ren South China Agricultural University Ying Yang South China Agricultural University Wujian Lin South China Agricultural University Wangyu Li South China Agricultral University Mingjian Xian South China Agricultural University Rong Fu South China Agricultural University Zihao Zhang South China Agricultural University Guodong Mo South China Agricultral University Wen Luo South China Agricultural University Xiquan Zhang ( [email protected] ) https://orcid.org/0000-0002-7940-1303 Research article Keywords: chicken, GNB1L gene, Indel, growth traits, carcass traits Posted Date: June 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-26694/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Version of Record: A version of this preprint was published on August 26th, 2020. See the published version at https://doi.org/10.1186/s12863-020-00900-z. Page 2/17 Abstract Background: G-protein subunit beta 1 like (GNB1L) can encode a G-protein beta-subunit-like polypeptide, the chicken GNB1L gene is up-regulated in the breast muscle of high-feed eciency chickens, and its expression is 1.52-fold that of low-feed eciency chickens. However, there are no reports describing the effects of GNB1L gene Indel on the chicken carcass and growth traits. Results: This study identied a 31-bp Indel in 5' UTR of the GNB1L gene and elucidated the effect of this gene mutation on the carcass and growth traits in chickens.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Characterization of Glyceollins As Novel Aryl Hydrocarbon Receptor Ligands and Their Role in Cell Migration
    International Journal of Molecular Sciences Article Characterization of Glyceollins as Novel Aryl Hydrocarbon Receptor Ligands and Their Role in Cell Migration Thu Ha Pham 1, Sylvain Lecomte 1, Remy Le Guevel 2, Aurélie Lardenois 1, Bertrand Evrard 1, Frédéric Chalmel 1, François Ferriere 1, Patrick Balaguer 3 , Theo Efstathiou 4 and Farzad Pakdel 1,* 1 Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; [email protected] (T.H.P.); [email protected] (S.L.); [email protected] (A.L.); [email protected] (B.E.); [email protected] (F.C.); [email protected] (F.F.) 2 ImPACcell platform (SFR Biosit), Univ Rennes, 35000 Rennes, France; [email protected] 3 Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090 Montpellier, France; [email protected] 4 Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 Rue Jules Maillard de la Gournerie, 35012 Rennes CEDEX, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)22-323-5132 Received: 12 December 2019; Accepted: 14 February 2020; Published: 18 February 2020 Abstract: Recent studies strongly support the use of the aryl hydrocarbon receptor (AhR) as a therapeutic target in breast cancer. Glyceollins, a group of soybean phytoalexins, are known to exert therapeutic effects in chronic human diseases and also in cancer. To investigate the interaction between glyceollin I (GI), glyceollin II (GII) and AhR, a computational docking analysis, luciferase assays, immunofluorescence and transcriptome analyses were performed with different cancer cell lines.
    [Show full text]
  • Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer
    Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer Shuying Sun ( [email protected] ) Texas State University San Marcos https://orcid.org/0000-0003-3974-6996 Austin Zane Texas A&M University College Station Carolyn Fulton Schreiner University Jasmine Philipoom Case Western Reserve University Research article Keywords: Methylation, Hemimethylation, Lung Cancer, Bioinformatics, Epigenetics Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17794/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 12th, 2021. See the published version at https://doi.org/10.1186/s12885-021-07990-7. Page 1/29 Abstract Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non- small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its signicant impact. Therefore, it is important to identify cancer hemimethylation patterns. Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites.
    [Show full text]