Fsc 510 Organic Horticulture 2(1+1)

Total Page:16

File Type:pdf, Size:1020Kb

Fsc 510 Organic Horticulture 2(1+1) MSc. (Hort) Fruit Science 1st Year IInd Semester FSC 510 ORGANIC HORTICULTURE 2(1+1) Objective To develop understanding of organic horticulture production system including GAP. Theory UNIT I Organic horticulture – definition, synonyms and misnomers, principles, methods, merits and demerits. UNIT II Organic farming systems, components of organic horticultural systems, different organic inputs, their role in organic horticulture, role of biofertilizers, biodynamics and the recent developments. UNIT III EM technology and its impact in organic horticulture, indigenous practices of organic farming, sustainable soil fertility management, weed management practices in organic farming, biological/natural control of pests and diseases, organic horticulture in quality improvement. UNIT IV GAP - Principles and management, HACCP exercise, certification of organic products and systems, agencies involved at national and international levels, standards evolved by different agencies. UNIT V Constraints in certification, organic horticulture and export, IFOAM and global scenario of organic movement, post-harvest management of organic produce. Practical Features of organic orchards, working out conversion plan, Input analysis manures, nutrient status assessment of manures, biocomposting, biofertilizers and their application, panchagavya preparation and other 20 organic nutrients application, methods of preparation of compost, vermicompost, green manuring, preparation of neem products and application, BD preparations and their role, EM technology and products, biological/natural control of pests and diseases, soil solarization, frame work for GAP, case studies, HACCP analysis, residue analysis in organic products, documentation for certification, visit to fields cultivated under organic practices Dr. Akhilesh Tiwari, Sr. Scientist (Hort), CoA, JNKVV, JabalpurPage 1 UNIT 1 - Organic Horticulture Organic horticulture is the science and art of growing fruits, vegetables, flowers, or ornamental plants by following the essential principles of organic agriculture in soil building and conservation, pest management, and heirloom variety preservation. In today's terminology it is a method of farming system which primarily aims at cultivating the land and raising crops in such a way, as to keep the soil alive and in good health by use of organic wastes (crop, animal and farm wastes, aquatic wastes) and other biological materials along with beneficial microbes (biofertilizers) to release nutrients to crops for increased sustainable production in an eco-friendly pollution free environment. As Per IFOAM - Organics International Definition "Organic Agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic Agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved." FAO suggested that “Organic agriculture is a unique production management system which promotes and enhances agro-ecosystem health, including biodiversity, biological cycles and soil biological activity, and this is accomplished by using on-farm agronomic, biological and mechanical methods in exclusion of all synthetic off-farm inputs”. Organic Agriculture in India Organic Farming: Organic Farming is a system which avoids or largely excludes the use of synthetic inputs (such as fertilizers, pesticides, hormones, feed additives etc.) and to the maximum extent feasible rely upon crop rotations, crop residues, animal manures, off-farm organic waste, mineral grade rock additives and biological system of nutrient mobilization and plant protection. Role of Organic Farming in agriculture: Organic methods of farming are beneficial for maintaining soil health. Soil health refers to the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality and promote plant and animal health. In the context of agriculture, it may refer to its ability to sustain plant and animal productivity and diversity. A healthy soil would ensure proper retention and release of water and nutrients, promote and sustain root growth, maintain or enhance water and air quality, maintain soil biotic habitat, respond to management and resist degradation. Categorization of Organic Farming Cultivable Area vs Wild Harvest Area Collection: Under organic certification system, both the cultivable as well as wild harvest collection area can be certified. A wild harvest collection is “any plant or portion of a plant that is collected or harvested from a site Dr. Akhilesh Tiwari, Sr. Scientist (Hort), CoA, JNKVV, JabalpurPage 2 which is not maintained under cultivation or other agriculture management”. The act of collection of Wild Harvest should positively contribute to the maintenance of natural areas. A Wild Crop that is intended to be sold, labeled or represented as ‘Organic’ must be harvested from a designated area that had no application of prohibited substances. A Wild Crop must be harvested in a manner that ensures that such harvesting or gathering will not be destructive to the environment and will sustain the growth and production of Wild Crop. Organic Produce and Certified Organic Produce: As it is clear that organic farming is taking place on commercial line, by default or by tradition and also as wild harvest. In prevailing conditions it is very difficult to collect data on all types of organic production, especially that of by default or by tradition. Since marketing of organic produce requires certification so as to give confidence to consumers. Thus only data which is available is about certified organic produce. This data is being collected by APEDA under NPOP. Emergence The growth of organic agriculture in India has three dimensions and is being adopted by farmers for different reasons. First category of organic farmers are those which are situated in no-input or low-input use zones, for them organic is a way of life and they are doing it as a tradition (may be under compulsion in the absence of resources needed for conventional high input intensive agriculture). Second category of farmers are those which have recently adopted the organic in the wake of ill effects of conventional agriculture, may be in the form of reduced soil fertility, food toxicity or increasing cost and diminishing returns. The third category comprised of farmers and enterprises which have systematically adopted the commercial organic agriculture to capture emerging market opportunities and premium prices. While majority of farmers in first category are traditional (or by default) organic they are not certified, second category farmers comprised of both certified and un-certified but majority of third category farmers are certified. These are the third category commercial farmers which are attracting most attention. The entire data available on organic agriculture today, relates to these commercial organic farmers. Regulatory mechanism For quality assurance the country has internationally acclaimed certification process in place for export, import and domestic markets. National Programme on Organic Production (NPOP) defines the regulatory mechanism and is regulated under two different acts for export and domestic markets. NPOP notified under Foreign Trade Development and Regulation Act (FTDR) looks after the export requirement. The NPOP notified under this act has already been granted equivalence by European Union and Sweden. USDA has also accepted the conformity assessment system of NPOP. Due to this, the product certified by any Indian accredited certification agency under NPOP can be exported to Europe, Sweden and USA without the requirement of re-certification. To look after the requirement of import and domestic market the same NPOP has been notified under Agriculture Produce Grading, Marking and Certification Act (APGMC). Regulatory body of NPOP under FTDR act is Agricultural and Processed Foods Export Development Authority (APEDA) under Ministry of Commerce and of Dr. Akhilesh Tiwari, Sr. Scientist (Hort), CoA, JNKVV, JabalpurPage 3 NPOP under APGMC act is Agricultural Marketing Advisor (AMA) under Ministry of Agriculture. Accreditation of Certification and Inspection Agencies is being granted by a common National Accreditation Body (NAB). 24 accredited certification agencies are looking after the requirement of certification process. Under the APGMC 10 Certification Agencies to whom Certificate of Authorization granted for Grading and Marking of Organic Agriculture Produce under Agmark. Government Interventions to Promote Organic Farming National Project on Organic Farming (NPOF): Under NPOF, financial assistance is provided as credit linked back ended subsidy through NABARD for setting up of fruit/vegetable waste/agro-waste compost unit @ 33% of the total cost of project upto Rs. 60.00 lakh per unit and @ 25% of the total cost of project upto Rs. 40.00 lakh per unit of bio-fertilizer/bio-pesticides production units. NPOF is being implemented through the National Centre of Organic Farming (NCOF) at Ghaziabad and six Regional Centers of Organic Farming (RCOFs) at Bangalore, Bhubaneswar, Hisar, Jabalpur, Imphal and Nagpur. National Project on Management of Soil Health and Fertility (NPMSHF): Under this scheme, assistance @ Rs.500 per ha for promoting use of Integrated Nutrient Management-Organic Manures
Recommended publications
  • Organic Horticulture in India
    horticulturae Communication Organic Horticulture in India Sisir Mitra 1,* and Hidangmayum Devi 2 1 Section Tropical and Subtropical Fruits, International Society for Horticultural Science, Faculty of Horticulture, Bidhan Chandra Krishi ViswaVidyalaya, Mohanpur, B-12/48, Kalyani, Nadia, West Bengal 741252, India 2 Indian Council of Agriculture Research complex for NEH Region, Tripura Centre, Lembucherra, West Tripura 799210, India; [email protected] * Correspondence: [email protected]; Tel.: +91-943-217-4249 Academic Editor: Douglas D. Archbold Received: 1 December 2015; Accepted: 27 September 2016; Published: 26 October 2016 Abstract: During the previous three decades, organic produce has attracted the attention of a growing health-conscious population across the globe. Both international and domestic communities are becoming aware of issues like agrochemical residues, produce quality, and food safety. Worldwide, over 37.5 million ha of land (0.87% of total agricultural land) is being managed organically by 1.9 million producers in 164 countries. In addition, there is another 31 million ha certified for wild harvest collection. Global sales of organic products have reached U.S. $75 billion, with the U.S. and Europe as the largest consumers. The concept of organic farming is not new to the Indian farming community. Several forms of organic farming are successfully practiced in diverse climates, particularly in rain-fed, tribal mountains, and hilly areas of the country. Many of the forest products of economic importance, such as herbs and medicinal plants are in this category by default. The report of the Task Force on Organic Farming appointed by the Government of India noted the vast areas of the country where limited amounts of synthetic chemicals are used, although they have low productivity, but also which could have unexploited potential for organic agriculture.
    [Show full text]
  • Comprehensive Assessment of Organic Apple Production in Vermont: Experience from Two Orchard Systems, 2006-2013 Terence L
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 Comprehensive Assessment of Organic Apple Production in Vermont: Experience from Two Orchard Systems, 2006-2013 Terence L. Bradshaw University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Agricultural Economics Commons, and the Horticulture Commons Recommended Citation Bradshaw, Terence L., "Comprehensive Assessment of Organic Apple Production in Vermont: Experience from Two Orchard Systems, 2006-2013" (2015). Graduate College Dissertations and Theses. 327. https://scholarworks.uvm.edu/graddis/327 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. COMPREHENSIVE ASSESSMENT OF ORGANIC APPLE PRODUCTION IN VERMONT: EXPERIENCE FROM TWO ORCHARD SYSTEMS, 2006-2013 A Dissertation Presented by Terence L. Bradshaw to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Plant and Soil Science May, 2015 Defense Date: March 25, 2014 Dissertation Examination Committee: Josef H. Gorres, Ph. D., Advisor Robert L. Parsons, Ph.D., Chairperson Lorraine P. Berkett, Ph.D. Sidney C. Bosworth, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Despite substantial consumer demand and willingness to pay premium prices for organically grown fruit, apple growers in Vermont and other New England states have been slow to adopt certified organic practices.
    [Show full text]
  • Effect of Different Organic Wastes on Soil Pro- Perties and Plant Growth and Yield: a Review
    ENVIRONMENTAL SCIENCES EFFECT OF DIFFERENT ORGANIC WASTES ON SOIL PRO- pertieS AND PLANT GROWTH AND YIELD: A REVIEW M.Z. Hossain1, P. von Fragstein und Niemsdorff2, J. Heß2 1Khulna University, Agrotechnology Discipline, Khulna, Bangladesh 2University of Kassel, Faculty of Organic Agricultural Sciences, Department of Organic Farming and Cropping System, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany The use of organic wastes in agriculture plays a great role in recycling essential plant nutrients, sustaining soil security as well as protecting the environment from unwanted hazards. This review article deals with the effect of different kinds of organic wastes on soil properties and plant growth and yield. Municipal solid waste is mainly used as a source of nitrogen and organic matter, improving soil properties and microbial activity that are closely related to soil fertility. Biowaste and food waste in- crease pH, nitrogen content, cation exchange capacity, water holding capacity, and microbial biomass in soil. Sewage sludge contains various amounts of organic matter and huge amounts of plant nutrients. Manure is a common waste which improves soil properties by adding nutrients and increases microbial and enzyme activity in soil. It also reduces toxicity of some heavy metals. These organic wastes have a great positive impact on soil physical, chemical, and biological properties as well as stimulate plant growth and thus increase the yield of crops. municipal solid waste, soil nutrients, sewage sludge, food waste, manure doi: 10.1515/sab-2017-0030 Received for publication on October 14, 2016 Accepted for publication on April 22, 2017 INTRODUCTION puropse to improve soil properties and increase crop yield is a good solution for minimizing these problems.
    [Show full text]
  • Garden Organic (Formerly Known As HDRA - the Henry Doubleday Research Association) Is the UK’S Leading Organic Growing Charity
    Composting for Gardeners Image credit: iStock/Allkindza Composting for Gardeners Garden Organic (formerly known as HDRA - the Henry Doubleday Research Association) is the UK’s leading organic growing charity. We have been at the forefront of the organic horticulture movement since 1958, with over 20,000 members across the UK and overseas. Dedicated to promoting organic gardening in homes, communities and schools, the charity encourages people to grow in the most sustainable way, and demonstrates the lasting benefi ts of organic growing to the health and wellbeing of individuals and the environment. For more information please visit www.gardenorganic.org.uk. Garden Organic is a registered charity in England and Wales (298104) and Scotland (SC046767). VAT no. 258 0869 69 Why make compost? Compost is nature’s black gold. It will help you grow healthy plants. And making it yourself reduces pollution, supports the natural environment, saves money and protects endangered natural habitats. How? By recycling your garden debris and kitchen scraps. It’s as simple as that. This book will tell you what to compost, how to make it, and how to use it. Compost makes your garden grow Compost, a rich soil-like material, works wonders in the growing area. It • lightens and breaks up heavy soils • bulks up light sandy soils and helps them hold more water • feeds plants and other vital soil organisms • helps control diseases Compost saves you money Home-made compost helps cut down on buying garden products. It acts as a • soil improver • fertiliser • mulch Compost helps reduce pollution Making compost contributes towards a cleaner environment.
    [Show full text]
  • Innovative Strategies and Machines for Physical Weed Control in Organic and Integrated Vegetable Crops
    211 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 44, 2015 of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Riccardo Guidetti, Luigi Bodria, Stanley Best Copyright © 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-35-8; ISSN 2283-9216 DOI: 10.3303/CET1544036 Innovative Strategies and Machines for Physical Weed Control in Organic and Integrated Vegetable Crops Marco Fontanelli*a, Christian Frasconia, Luisa Martellonib, Michel Pirchiob, Michele a a Raffaelli , Andrea Peruzzi aDepartment of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy b Centro di Ricerche Agro-Ambientali “Enrico Avanzi”, Università di Pisa, Via vecchia di Marina 6, 56122, San PIero a Grado, Pisa, Italy [email protected] Weed control is one of the most serious problems in vegetable crops, limiting cultivated plants correct development, yields, product quality and farmers income. Therefore, the aim of this work was to set up and improve innovative strategies and machines for physical (mechanical and thermal) weed control in organic or “integrated” vegetables production in many important areas of Northern, Central and Southern Italy. Therefore, on-farm experiments were carried out since 1999 on fresh marketable spinach, processing and fresh market tomato, cauliflower, savoy cabbage, greenhouse cultivated leaf beet, garlic, chicory, fennel and carrot. These research activities started are still ongoing. The traditional farm weed management system was always compared to one or more innovative strategies that were defined according to the characteristics of the environment (i.e. soil type and conditions, water availability, etc.), typology of cultivation, crop rotation, expected technical and economical results.
    [Show full text]
  • A Comparison of Financial Returns During Early Transition from Conventional to Organic Vegetable Production
    78.713 D46 4P-94-12 Working Papers Series Working Paper WP94/12 October 1994 WAITE MEMORIAL SOUK COLLECTION DEPT'. OF AG. AND APPUED ECONOMICS 1994 BUFORD AVE. -232 COB UNIVERSITY OF MINNESOTA ST. PAUL, MN 55108 U.S.A. A COMPARISON OF FINANCIAL RETURNS DURING EARLY TRANSITION FROM CONVENTIONAL TO ORGANIC VEGETABLE PRODUCTION by Daniel Sellen Jeff H. Tolman D. Glenn R. McLeod Alfons Weersink Emmanuel K. Yiridoe UNIVERSITY piGUELPH Department ofAgricultural Economics and Business University of Guelph Guelph, Ontario Canada N1G 2W1 . 37S.7/3 646 to /649-/ A COMPARISON OF FINANCIAL RETURNS DURING EARLY TRANSITION FROM CONVENTIONAL TO ORGANIC VEGETABLE PRODUCTION by Daniel Sellenl Jeff H. Tolman2 D. Glenn R. McLeod2 Alfons Weersinkl Emmanuel K. Yiridoel WAITE MEMORIAL BOOK COLLECTION DEPT. OF AG. AND APPLIED ECONOMICS 1994 BUFORD AVE. - 232 COB UNIVERSITY OF MINNESOTA ST. PAUL, MN 55108 U.S.A. 1Department of Agricultural Economics and Business, University of Guelph, Guelph, Ontario, N1G 2W1; 2Research Centre, Research Branch, Agriculture and Agri-Food Canada, 1391 Sandford St., London, Ontario, N5V 4T3. WORKING PAPERS ARE PUBLISHED WITHOUT FORMAL REVIEW WITHIN THE DEPARTMENT OF AGRICULTURAL ECONOMICS AND BUSINESS c, A COMPARISON OF FINANCIAL RETURNS DURING EARLY TRANSITION FROM CONVENTIONAL TO ORGANIC VEGETABLE PRODUCTION ABSTRACT Relative profitability was compared for five vegetables (sweet corn, green bean, cabbage, tomato, Spanish onion) during the second and third years of transition from conventional to organic production practice. Input and output data developed in field experiments in 1991 and 1992 revealed average organic yields were significantly lower than those from conventional production systems. jDecreases ranged from 8 percent for green bearho 45 percent for tomato Input costs were generally higher for organically grown crops than for those produced conventionally.
    [Show full text]
  • Weed Biology and Weed Management in Organic Farming
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 134,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 10 Weed Biology and Weed Management in Organic Farming Anneli Lundkvist and Theo Verwijst Swedish University of Agricultural Sciences (SLU) Sweden 1. Introduction Weed biology, including the ecology, physiology and population dynamics of weed species, does not differ from plant biology apart from the notion that the plants under investigation are considered to be “unwanted”. Weeds are unwanted and undesirable plants which interfere with the utilization of land and water resources and thus adversely affect human welfare (Rao, 1999). Weed biology research consequently aims to generate knowledge that is expected to be applied in the practical control of weeds, and should include integrated research, from basic to applied, with all elements contributing to real improvements in weed management (Moss, 2008). Management of weeds is performed for the benefit of different interests, ranging from clean and non slippery pavements, to minimizing yield losses in agriculture. The occurrence of weeds in agricultural crops leads to substantial yield reductions causing economic losses all over the world. Crop damage from weeds generally is larger than from other pests (Oerke, 2006).
    [Show full text]
  • Therapeutic and Inclusive Organic Horticulture: an University- Society Collaborative Learning Experience
    EGU2020-8063 https://doi.org/10.5194/egusphere-egu2020-8063 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Therapeutic and inclusive organic horticulture: an University- society collaborative learning experience Juana Labrador1, Aída Pérez2, Marta M. Moreno3, and Francisco Pérez-Vera2 1University of Extremadura, Badajoz. Spain 2Fundación Sorapán de Rieros, Badajoz . Spain 3University of Castilla-La Mancha, School of Agricultural Engineering / Escuela de Ingenieros Agrónomos, Vegetal Production and Agriculture Technology, Ciudad Real, Spain Therapeutic horticulture is a discipline which belongs to both society and health sciences that has its own identity, which differentiates it from others. It arises as a result of the complementary fusion of two disciplines: horticulture and therapy or rehabilitation. In the therapeutic field, it incorporates some knowledges about physical, cognitive and sensory disabilities, different pathologies, psychosocial problems and special needs. Around horticulture, it allows us to develop knowledge about agriculture, gardening, landscaping, environment and others. It has been used, for educational and socialization purposes, for more than half a century, since then with great implantation and recognition in many countries. The implementation of an organic garden with pedagogical purposes for students of Agroecology in the School of Agricultural Engineering of the University of Extremadura (Spain), has been the scene for the realization of a collaborative project of integrative - teaching - learning strategy between the University and the “Sorapán de Rieros” Foundation. This project has allowed the use of the ecological orchard created for pedagogical purposes based on the needs of students with mental disorders of different nature with whom the Foundation works, connecting then different points of view.
    [Show full text]
  • Bioherbicides in Organic Horticulture
    horticulturae Review Bioherbicides in Organic Horticulture Xiaoya Cai and Mengmeng Gu * Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, College Station, TX 77843, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-979-845-8657; Fax: +1-979-845-8906 Academic Editor: Douglas D. Archbold Received: 8 October 2015; Accepted: 4 January 2016; Published: 29 March 2016 Abstract: Organic horticulture producers rank weeds as one of their most troublesome, time-consuming, and costly production problems. With the increasing significance of organic horticulture, the need for new bioherbicides to control weeds has grown. Potential bioherbicides may be developed from pathogens, natural products, and extracts of natural materials. Fungal and bacteria pathogens are two important types of microbial agents that have potential to be used as bioherbicides. The byproducts of natural sources such as dried distillers grains with solubles (DDGS), corn gluten meal (CGM), and mustard seed meals (MSMs) have shown herbicidal activities in controlling many weed species. Some essential oil extracts have shown bioherbicide potential as well. The efficacy of a bioherbicide is the main limiting factor for its application, and it may be affected by environmental factors such as humidity and moisture, the application method, the spectrum of the bioherbicide, and the type of formulation. In addition to efficacy, costs and concerns about potential human health threats are also limitations to bioherbicide use. As the integration of bioherbicide technology into current weed management systems may help manage herbicide resistance, reduce production costs, and increase crop yields, future research should involve the development of more cost-effective and efficient bioherbicides for control of weeds, as well as the optimization of production methods and cultural practices with use of candidate bioherbicides.
    [Show full text]
  • IFOAM Organics International: Vision, Activities and R&D/I Agenda Setting for Organic Horticulture
    IFOAM Organics International: Vision, Activities and R&D/I Agenda Setting for Organic Horticulture Uygun Aksoy, IFOAM Organics International Markus Arbenz, IFOAM International Executive Director 11 April, 2016 Aksoy & Arbenz; IFOAM Organics International; 3rd ISHS OGH İzmir-Turkey Outline 1. Description of IFOAM Organics International 2. Organic Policy 2.1. Standards and role of IFOAM Organics International 2.2. Organic 3.0 3. Major Activities 3.1. Projects 3.2. World Congress and other activities 4. Sector Platforms 4.1. Seeds 4.2. TIPI 4.3. INOFO 5. Conclusion 2 IFOAM Organics International Historical Background • The International Federation of Organic Agriculture Movements (IFOAM) is the worldwide umbrella organization for the organic movement, which represents close to 800 affiliates in 100 countries , • Founded in Versailles, France, on November 5, 1972, during an international congress on organic agriculture, • Five founding members representing different organizations: Lady Eve Balfour representing the Soil Association of Great Britain, Kjell Arman representing the Swedish Biodynamic Association , Pauline Raphaely representing the Soil Association of South Africa , Jerome Goldstein representing Rodale Press of the United States, and Roland Chevriot representing Nature et Progrès of France decided to have a unified and organized voice. 3 World Board 4 General Assembly GA: Every three years during the World Congress 18th Organic World Congress (13-15 october 2014) held in Istanbul/TURKEY 5 Organic Agriculture offers the world an alternative to address global challenges Food security • Climate change mitigation/adaptation Biodiversity conservation Sustainable natural resources (water, soil) 6 • Principles of OA • Definition of OA • Scope of OA • Family of Standards • IFOAM positions • IFOAM policy briefs • IFOAM Best Practice Guidelines 7 Other terms used are: Bio, Biological, Eco, Ecological, Ecological Organic Agriculture, Agro-ecological Farming, Low Input Agriculture, Sustainable Agriculture, Natural Farming, Biodynamic, Permaculture etc.
    [Show full text]
  • Organic Education in California + CCOF Producers Offer Feed During Drought “Farming the Urban Edge” Summary Future Organic Farmer Grant Fund
    INSIDE LOOK Organic Education in California + CCOF Producers Offer Feed During Drought “Farming the Urban Edge” Summary Future Organic Farmer Grant Fund www.ccof.org Spring 2014 CCOF Inc. Board of Directors CERTIFIED Phil LaRocca, Chair, LaRocca Vineyards; Malcolm Ricci, Vice Chair, Bolthouse Farms; Vernon Peterson, Treasurer, Abundant Harvest Organics; Jenny Lester Moffitt, Secretary, Dixon Ridge Farms; Stephanie Alexandre, Alexandre Ecodairy Farms; Grant Brians, Heirloom Organic Organic Gardens; Allen Harthorn, Harpos Organics; Neal MacDougall, California Polytechnic State University; Randy Hansen, Stoney Point-Pine Ridge Orchards; Karen Archipley, Archi’s Acres; Brad Samuelson, Fagundes Bros. Dairy; Renee Thresher, Lundberg Family Farms CCOF Certification Services, LLC Management Committee Neal MacDougall, Chair, California Polytechnic State University; Tom Chapman, Clif Bar & Co; Jenneke de Jong, Bonanza View Dairy; Karen Klonsky, Ph.D., UC Davis Department of Agriculture & Resource Economics; Scott McGilvray, retired CCOF Foundation Trustees Allen Harthorn, Harpo’s Organics; Karen Archipley, Archi’s Acres; Lee Altier, Ph.D., CSU Chico College of Agriculture; Phil LaRocca, LaRocca Vineyards; Malcom Ricci, Bolthouse Farms Magazine Production EDITOR-IN-CHIEF Laura McKissack SENIOR EDITOR/WRITER Elizabeth Barba ART DIRECTION/DESIGN Sarah Watters Certified Organic magazine is published quarterly by CCOF and serves CCOF’s diverse membership base and others in the organic community including consumers and affiliated businesses. Letters to the publisher 24 should be sent to [email protected]. CCOF reserves the right to edit Getting the Degree or omit submissions and letters received. For more information contact CCOF, Inc. at [email protected]. “Ten years ago, there weren’t many choices for a student who wanted to go to college and study organic farming.
    [Show full text]
  • Organic Agriculture 3.0 Is Innovation with Research
    Org. Agr. (2017) 7:169–197 DOI 10.1007/s13165-016-0171-5 Organic Agriculture 3.0 is innovation with research Gerold Rahmann & M. Reza Ardakani & Paolo Bàrberi & Herwart Boehm & Stefano Canali & Mahesh Chander & Wahyudi David & Lucas Dengel & Jan Willem Erisman & Ana C. Galvis-Martinez & Ulrich Hamm & Johannes Kahl & Ulrich Köpke & Stefan Kühne & S. B. Lee & Anne-Kristin Løes & Jann Hendrik Moos & Daniel Neuhof & Jaakko Tapani Nuutila & Victor Olowe & Rainer Oppermann & Ewa Rembiałkowska & Jim Riddle & Ilse A. Rasmussen & Jessica Shade & Sang Mok Sohn & Mekuria Tadesse & Sonam Tashi & Alan Thatcher & Nazim Uddin & Peter von Fragstein und Niemsdorff & Atle Wibe & Maria Wivstad & Wu Wenliang & Raffaele Zanoli Received: 19 May 2016 /Accepted: 17 November 2016 /Published online: 3 December 2016 # Springer Science+Business Media Dordrecht 2016 Abstract Organic agriculture can and should play an knowledge on sustainablity minimizes environmental important role in solving future challenges in producing contamination and can help to produce more food for food. The low level of external inputs combined with more people without negatively impacting our G. Rahmann (*) W. David International Society of Organic Farming Research, c/o Program Studi Ilmu Dan Teknologi Pangan, Universitas Bakrie, Thünen-Institute of Organic Farming, German Federal Research Gelanggang Mahasiswa Soemantri Brodjonegoro, Suite GF-22, Centre for Rural Areas, Forestry and Fishery, Trenthorst 32, Jl.H.R.Rasuna Said Kav. C-22 Kuningan, Jakarta 12920, 23847 Westerau, Germany Indonesia e-mail: [email protected] L. Dengel M. Reza Ardakani EcoPro, Aurosarjan Complex, Auroshilpam, IND-605101, Department of Agronomy and Plant Breeding, Faculty of Auroville, Tamil Nadu 605101, India Agriculture and Natural Resources, Islamic Azad University, Karaj, Iran J.
    [Show full text]