Educational and Training Opportunities in Sustainable Agriculture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Organic Horticulture in India
horticulturae Communication Organic Horticulture in India Sisir Mitra 1,* and Hidangmayum Devi 2 1 Section Tropical and Subtropical Fruits, International Society for Horticultural Science, Faculty of Horticulture, Bidhan Chandra Krishi ViswaVidyalaya, Mohanpur, B-12/48, Kalyani, Nadia, West Bengal 741252, India 2 Indian Council of Agriculture Research complex for NEH Region, Tripura Centre, Lembucherra, West Tripura 799210, India; [email protected] * Correspondence: [email protected]; Tel.: +91-943-217-4249 Academic Editor: Douglas D. Archbold Received: 1 December 2015; Accepted: 27 September 2016; Published: 26 October 2016 Abstract: During the previous three decades, organic produce has attracted the attention of a growing health-conscious population across the globe. Both international and domestic communities are becoming aware of issues like agrochemical residues, produce quality, and food safety. Worldwide, over 37.5 million ha of land (0.87% of total agricultural land) is being managed organically by 1.9 million producers in 164 countries. In addition, there is another 31 million ha certified for wild harvest collection. Global sales of organic products have reached U.S. $75 billion, with the U.S. and Europe as the largest consumers. The concept of organic farming is not new to the Indian farming community. Several forms of organic farming are successfully practiced in diverse climates, particularly in rain-fed, tribal mountains, and hilly areas of the country. Many of the forest products of economic importance, such as herbs and medicinal plants are in this category by default. The report of the Task Force on Organic Farming appointed by the Government of India noted the vast areas of the country where limited amounts of synthetic chemicals are used, although they have low productivity, but also which could have unexploited potential for organic agriculture. -
Urban Agriculture
GSDR 2015 Brief Urban Agriculture By Ibrahim Game and Richaela Primus, State University of New York College of Forestry and Environmental Science Related Sustainable Development Goals Goal 01 End poverty in all its forms everywhere (1.1, 1.4, 1.5 ) Goal 02 End hunger, achieve food security and improved nutrition and promote sustainable agriculture (2.1, 2.3, 2.4, 2.c) Goal 12 Ensure sustainable consumption and production patterns (12.1, 12.2, 12.3, 12.4,12.5, 12.7, 12.8) Goal 15 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss (15.9 ) *The views and opinions expressed are the authors’ and do not represent those of the Secretariat of the United Nations. Online publication or dissemination does not imply endorsement by the United Nations. Authors can be reached at [email protected] and [email protected]. Introduction Examples of UEA include community gardens, vegetable gardens and rooftop farms, which exist Urban Agriculture (UA) and peri-urban agriculture can worldwide and are playing important roles in the urban be defined as the growing, processing, and distribution food systems. 17 CEA includes any form of agriculture of food and other products through plant cultivation where environmental conditions (such as, light, and seldom raising livestock in and around cities for temperature, humidity, radiation and nutrient cycling) 1 2 feeding local populations. Over the last few years, are controlled in conjunction with urban architecture UA has increased in popularity due to concerns about or green infrastructure. -
Aquaponics As an Emerging Production System for Sustainable Production
Horticulture International Journal Mini review Open Access Aquaponics as an emerging production system for sustainable production Abstract Volume 4 Issue 5 - 2020 With the increase in the consumption of vegetables due to the increase in the population Thaís da Silva Oliveira,1 Letícia Fernanda and the tendency to change the consumer’s eating habits, the demand for water in the 2 1 production process of these foods also grows, requiring the production systems more Baptiston, Jéssica Pacheco de Lima 1Aquaculture Center of University of São Paulo (CAUNESP), efficient in terms of space utilization and natural resources. Aquaponics has gained University of State of São Paulo, Brazil attention for being considered a sustainable system that uses the residues of the creation of 2College of zootechnics and food engineering (USP-FZEA), aquatic organisms for the cultivation of plants, thus having a water and nutrients recycling, University of São Paulo (USP), Brazil in addition to the possibility of having a vertical distribution, optimizing the space. This production system is very interesting due to the possibility of being implemented in homes, Correspondence: Thaís da Silva Oliveira, Aquaculture Center serving as a complement to a family’s diet, and the surplus can be sold in nearby markets, of University of São Paulo (Caunesp), Access Road Prof. Paulo contributing to the local microeconomics, in addition to issues involving human health and Donato Castellane, Jaboticabal, São Paulo, Brazil, nutrition, valuing local culture and environmental education. Following the Sustainable Tel (16)3209-7477, Email Development Goals (SDGs) established by the UN, this food production technique fits into the “Zero Hunger and Sustainable Agriculture” objective, as it provides quality food, Received: August 27, 2020 | Published: September 28, 2020 closer to the consumer and produced with low inclusion of industrial fertilizers, in addition to recognized by FAO as a potential alternative to Smart Agriculture for the climate (Climate-smart agriculture-CSA). -
On Permaculture Design: More Thoughts
On Permaculture Design: More Thoughts ON PERMACULTURE DESIGN: MORE THOUGHTS, IDEAS, METHODOLOGIES, PRINCIPLES, TEMPLATES, STEPS, WANDERINGS, EFFICIENCIES, DEFICIENCIES, CONUNDRUMS AND WHATEVER STRIKES THE FANCY ... PERMACULTURE AND SUSTAINABLE SITE DESIGN Today professionals and students in business, government, education, healthcare, building, economics, technology, and ntal environme sciences are being called upon to ‘design’ sustainable programs and activities. Through systems science we have learned that actions taken today can affect the viability of living systems to support human activity and evolution for many generations to come. Sustainability is a concept introduced to communicate the imperative for humanity to develop in nment our built enviro those conditions that will sustain the structures, functions, and processes inextricably linked with capacities for life. The challenge we face in this new era of sustainability is a realization that the goals and needs for developing sustainable conditions in our social environment are complex, diverse, and at times counter to the dynamics of ecological systems. In recent years ecology has been called upon to include the studies of how humans interrelate with ecological processes, within ecosystems. Although humans are part of the natural ecosystem when we speak of human ecology, the relationships between humanity and the t environment, i is helpful to think of the ‘environment’ as the social system. What are the relationships and interactions within this ecosystem? What are the relationships and interactions between the social system and ecological environment (this includes air, soil, water, physical living and nonliving structures)? How do the interactions systems, between affect the global ecosystem? The most fundamental means we have as a society in transforming human ecology is through modeling and designing in our social environment those conditions that will influence sustainable interactions and relationships within the global ecological system. -
A Case Study Analysis of the Principles of Sustainable Agriculture for Diverse Farms
Journal of Agriculture, Food Systems, and Community Development ISSN: 2152-0801 online www.AgDevJournal.com Principles guiding practice: A case study analysis of the principles of sustainable agriculture for diverse farms Kelly N. Moore a * and Marilyn E. Swisher b Christine Kelly-Begazo g University of Florida Indian River County Extension Services, University of Florida Juan Carlos Rodriguez c Roca Consulting Group, LLC Stephen Komar h Cooperative Extension of Sussex County, Mark Blevins d Rutgers New Jersey Agricultural Brunswick County Extension Services, Experiment Station North Carolina State University Suzanne Mills-Wasniak i Michael Hogan e Montgomery County Extension Services, The The Ohio State University Ohio State University Lauren Hunter f David Redhage j Blain County Extension Services, University Kerr Center for Sustainable Agriculture of Idaho Submitted August 6, 2015 / Revised November 6 and December 4, 2015, and February 3, 2016 / Accepted February 3, 2016 / Published online June 20, 2016 Citation: Moore, K. N., Swisher, M. E., Rodriguez, J. C., Blevins, M., Hogan, M., Hunter, L., Kelly-Begazo, C., Komar, S., Mills-Wasniak, S., & Redhage, D. (2016). Principles guiding practice: A case study analysis of the principles of sustainable agriculture for diverse farms. Journal of Agriculture, Food Systems, and Community Development, 6(3), 61–89. http://dx.doi.org/10.5304/jafscd.2016.063.008 Copyright © 2016 by New Leaf Associates, Inc. Abstract agriculture. This controversy has re-emerged Early proponents of sustainable agriculture faced recently in the discussion of agro-ecology versus considerable resistance and initiated a long-lasting sustainable intensification. Fourteen agricultural discussion over strategies for sustainable professionals participated in a guided discovery a * Corresponding author: Kelly N. -
Comprehensive Assessment of Organic Apple Production in Vermont: Experience from Two Orchard Systems, 2006-2013 Terence L
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 Comprehensive Assessment of Organic Apple Production in Vermont: Experience from Two Orchard Systems, 2006-2013 Terence L. Bradshaw University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Agricultural Economics Commons, and the Horticulture Commons Recommended Citation Bradshaw, Terence L., "Comprehensive Assessment of Organic Apple Production in Vermont: Experience from Two Orchard Systems, 2006-2013" (2015). Graduate College Dissertations and Theses. 327. https://scholarworks.uvm.edu/graddis/327 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. COMPREHENSIVE ASSESSMENT OF ORGANIC APPLE PRODUCTION IN VERMONT: EXPERIENCE FROM TWO ORCHARD SYSTEMS, 2006-2013 A Dissertation Presented by Terence L. Bradshaw to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Plant and Soil Science May, 2015 Defense Date: March 25, 2014 Dissertation Examination Committee: Josef H. Gorres, Ph. D., Advisor Robert L. Parsons, Ph.D., Chairperson Lorraine P. Berkett, Ph.D. Sidney C. Bosworth, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Despite substantial consumer demand and willingness to pay premium prices for organically grown fruit, apple growers in Vermont and other New England states have been slow to adopt certified organic practices. -
Perennial Polyculture Farming: Seeds of Another Agricultural Revolution?
THE ARTS This PDF document was made available from www.rand.org as a public CHILD POLICY service of the RAND Corporation. CIVIL JUSTICE EDUCATION Jump down to document ENERGY AND ENVIRONMENT 6 HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS The RAND Corporation is a nonprofit research NATIONAL SECURITY POPULATION AND AGING organization providing objective analysis and effective PUBLIC SAFETY solutions that address the challenges facing the public SCIENCE AND TECHNOLOGY and private sectors around the world. SUBSTANCE ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE Support RAND WORKFORCE AND WORKPLACE Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Pardee Center View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. This product is part of the RAND Corporation occasional paper series. RAND occasional papers may include an informed perspective on a timely policy issue, a discussion of new research methodologies, essays, a paper presented at a conference, a conference summary, or a summary of work in progress. All RAND occasional papers undergo rigorous peer review to ensure that they meet high standards for research quality and objectivity. Perennial Polyculture Farming Seeds of Another Agricultural Revolution? James A. Dewar This research was undertaken as a piece of speculation in the RAND Frederick S. -
Maximum Sustainable Yield from Interacting Fish Stocks in an Uncertain World: Two Policy Choices and Underlying Trade-Offs Arxiv
Maximum sustainable yield from interacting fish stocks in an uncertain world: two policy choices and underlying trade-offs Adrian Farcas Centre for Environment, Fisheries & Aquaculture Science Pakefield Road, Lowestoft NR33 0HT, United Kingdom [email protected] Axel G. Rossberg∗ Queen Mary University of London, School of Biological and Chemical Sciences, 327 Mile End Rd, London E1, United Kingdom and Centre for Environment, Fisheries & Aquaculture Science Pakefield Road, Lowestoft NR33 0HT, United Kingdom [email protected] 26 May 2016 c Crown copyright Abstract The case of fisheries management illustrates how the inherent structural instability of ecosystems can have deep-running policy implications. We contrast ten types of management plans to achieve maximum sustainable yields (MSY) from multiple stocks and compare their effectiveness based on a management strategy evalua- tion (MSE) that uses complex food webs in its operating model. Plans that target specific stock sizes (BMSY) consistently led to higher yields than plans targeting spe- cific fishing pressures (FMSY). A new self-optimising control rule, introduced here arXiv:1412.0199v6 [q-bio.PE] 31 May 2016 for its robustness to structural instability, led to intermediate yields. Most plans outperformed single-species management plans with pressure targets set without considering multispecies interactions. However, more refined plans to \maximise the yield from each stock separately", in the sense of a Nash equilibrium, produced total yields comparable to plans aiming to maximise total harvested biomass, and were more robust to structural instability. Our analyses highlight trade-offs between yields, amenability to negotiations, pressures on biodiversity, and continuity with current approaches in the European context. -
Sustainable Community Gardens Require Social Engagement and Training: a Users’ Needs Analysis in Europe
sustainability Article Sustainable Community Gardens Require Social Engagement and Training: A Users’ Needs Analysis in Europe 1, 2, 3,4, 1 Jesus Ochoa y, Esther Sanyé-Mengual y , Kathrin Specht y, Juan A. Fernández , Sebastián Bañón 1, Francesco Orsini 2,* , Francesca Magrefi 2, Giovanni Bazzocchi 2, Severin Halder 5, Doerte Martens 6, Noemi Kappel 7 and Giorgio Gianquinto 2 1 Department of Vegetable Production (ETSIA), Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain 2 Research Centre in Urban Environment for Agriculture and Biodiversity (ResCUE-AB), Department of Agricultural and Food Sciences (Distal), Alma Mater Studiorium-University of Bologna, Viale Fanin 44, 40127 Bologna, Italy 3 Department of Agricultural Economics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany 4 ILS—Research Institute for Regional and Urban Development, Brüderweg 22-24, 44135 Dortmund, Germany 5 Centre for Rural Development, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany 6 Department of Environmental Education and Education for Sustainable Development, Eberswalde University for Sustainable Development, Schicklerstraße 5, 16225 Eberswalde, Germany 7 Department of Vegetable and Mushroom Growing, Corvinus University of Budapest, F˝ovám tér 8, 1093 Budapest, Hungary * Correspondence: [email protected] These three authors equally contributed to the manuscript. y Received: 13 June 2019; Accepted: 19 July 2019; Published: 23 July 2019 Abstract: Urban gardens are spreading in many cities across Europe, with community gardening being a fundamental form of urban agriculture. While the literature reveals the essential role that community gardens can play in terms of learning and education, no studies have investigated the training needs for participants in community gardens to ensure their successful development. -
Effect of Different Organic Wastes on Soil Pro- Perties and Plant Growth and Yield: a Review
ENVIRONMENTAL SCIENCES EFFECT OF DIFFERENT ORGANIC WASTES ON SOIL PRO- pertieS AND PLANT GROWTH AND YIELD: A REVIEW M.Z. Hossain1, P. von Fragstein und Niemsdorff2, J. Heß2 1Khulna University, Agrotechnology Discipline, Khulna, Bangladesh 2University of Kassel, Faculty of Organic Agricultural Sciences, Department of Organic Farming and Cropping System, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany The use of organic wastes in agriculture plays a great role in recycling essential plant nutrients, sustaining soil security as well as protecting the environment from unwanted hazards. This review article deals with the effect of different kinds of organic wastes on soil properties and plant growth and yield. Municipal solid waste is mainly used as a source of nitrogen and organic matter, improving soil properties and microbial activity that are closely related to soil fertility. Biowaste and food waste in- crease pH, nitrogen content, cation exchange capacity, water holding capacity, and microbial biomass in soil. Sewage sludge contains various amounts of organic matter and huge amounts of plant nutrients. Manure is a common waste which improves soil properties by adding nutrients and increases microbial and enzyme activity in soil. It also reduces toxicity of some heavy metals. These organic wastes have a great positive impact on soil physical, chemical, and biological properties as well as stimulate plant growth and thus increase the yield of crops. municipal solid waste, soil nutrients, sewage sludge, food waste, manure doi: 10.1515/sab-2017-0030 Received for publication on October 14, 2016 Accepted for publication on April 22, 2017 INTRODUCTION puropse to improve soil properties and increase crop yield is a good solution for minimizing these problems. -
Garden Organic (Formerly Known As HDRA - the Henry Doubleday Research Association) Is the UK’S Leading Organic Growing Charity
Composting for Gardeners Image credit: iStock/Allkindza Composting for Gardeners Garden Organic (formerly known as HDRA - the Henry Doubleday Research Association) is the UK’s leading organic growing charity. We have been at the forefront of the organic horticulture movement since 1958, with over 20,000 members across the UK and overseas. Dedicated to promoting organic gardening in homes, communities and schools, the charity encourages people to grow in the most sustainable way, and demonstrates the lasting benefi ts of organic growing to the health and wellbeing of individuals and the environment. For more information please visit www.gardenorganic.org.uk. Garden Organic is a registered charity in England and Wales (298104) and Scotland (SC046767). VAT no. 258 0869 69 Why make compost? Compost is nature’s black gold. It will help you grow healthy plants. And making it yourself reduces pollution, supports the natural environment, saves money and protects endangered natural habitats. How? By recycling your garden debris and kitchen scraps. It’s as simple as that. This book will tell you what to compost, how to make it, and how to use it. Compost makes your garden grow Compost, a rich soil-like material, works wonders in the growing area. It • lightens and breaks up heavy soils • bulks up light sandy soils and helps them hold more water • feeds plants and other vital soil organisms • helps control diseases Compost saves you money Home-made compost helps cut down on buying garden products. It acts as a • soil improver • fertiliser • mulch Compost helps reduce pollution Making compost contributes towards a cleaner environment. -
Best Practices in Urban Agriculture
BEST PRACTICES IN URBAN AGRICULTURE A Background Report prepared for the City of Kamloops to support development of a Urban Agricultural Strategy February 2007 ISBN 978-1-895984-23-1 Library and Archives Canada Cataloguing in Publication Best practices in urban agriculture : a background report for the City of Kamloops to support development of a urban agricultural strategy / True Consulting Group. Includes bibliographical references. ISBN 978-1-895984-23-1 1. Urban agriculture--British Columbia--Kamloops. 2. Urban agriculture. 3. Urban agriculture--Government policy--British Columbia-- Kamloops. 4. Urban agriculture--Government policy. I. Kamloops (B.C.) II. Kamloops Food Policy Council III. True Consulting Group S451.5.B7B48 2007 630.9711'72 C2007-901671-5 TABLE OF CONTENTS Section 1.0 Introduction...........................................................1 1.1 Context ...........................................................1 1.2 Definitions......................................................2 1.3 Benefits of Urban Agriculture........................3 1.4 Report Structure .............................................6 Section 2.0 Canadian Best Practices........................................7 2.1 Examples from Vancouver.............................7 2.2 Other Communities in BC............................10 2.3 Other Areas within Canada ..........................12 2.3.1 Montreal............................................12 2.3.2 Ottawa...............................................12 2.3.3 Toronto..............................................13