On the Claims

Total Page:16

File Type:pdf, Size:1020Kb

On the Claims Prospecting Report on the Page 1 (Tag No.- 37992) and Page 3 (Tag No. 39716) claims Greenwood Mining Division N.T.S.: 82-E-7, 82-E-10 49O 31' N, 118' 59' W. Claims owned by Dean Carlson James Tough Prospecting carried out by John M. McMullin in the employ of Domego Resources Ltd. Report by J. McMullin Submitted May 30th, 1979. Contents: P 1. Introduction a) Location b) Access c) Property d) Summary of work done e 1 Topography f) Vegetation g) Land ownership 2. Prospecting a) Radioactivity P- 3 b) Geology P* 4 c) Conclusions P- 6 3. Recommendations 4. Itemised Cost Statement Po 7 ir 5.. Author's qualifications P* 8 In pocket: Map T c -1- 1. Introduction a) Location: The IrPagerl group of claims (Page 1-71 are located 58 air km SE of Kelowna, B.C. in the Beaverdell Range, part of the Okanagan Highland area of the Southern Interior of British Columbia. Elevation of the Page claims ranges from under 3500 feet to over 4500 feet. Beaverdell is at an elevation of just under 2600 feet. b) Access: Beaverdell, home of the Highland Bell Silver Mine of Tech Corporation, is the closest settlement and is located on Highway 33 (paved), at 80 km east and south from Kelowna and 50 km north of Rock Creek, which is on B.C. Highway No. 3 nhar the U.S. border. A small dirt airstrip is beside the highway just north of Beaverdell. The property is easily accessible during the summer and fall by a good, well-maintained dirt road which follows the Beaverdell Creek valley and joins Highway 33 at a point about 1.35 km north of the small Beaverdell Hotel. This road , maintained by the British Columbia Forest Service , bears the sign "Beaver Creek Rd" at its lower end. The c'lahs Page 1 and 3, which adjoin the Beaver Creek Road between Spout Creek and Sage Creek are to be found between mileposts 8 and 11, principally on the west side of this road. (See map). Driving the between the outskirts of Kelowna and the claims is l-l% hours. At milepost 15 the Beaver Creek Rd. joins the Cup Lake Road, which leads from the Kettle River valley NW and N through the Lassie Lake area and Blizzard property to join the Trapping Creek Road which branches off Highway 33 about 18 km north of Beaverdell. c) Property: This report is concerned primarily with the "Page 3" claim but comments regarding "Page 1" are included since some similar work was conducted on it also. These claims are part of the Page group (Page 1-71 staked by J. Tough and D. Carlson in May 1978. Page 3 (Tag record number 39716) was staked by Dean Carlson (F.M.L. 16711'8) of 1604, 1775 Bellevue Avenue, West Vancouver, B.C. on May 21St, 1978 and recorded on May 24th, 1978. It contains 6 units south and 3 units east from the legal corner post, which is coincident with the SW corner post of Page 1. Page 1, which contains 5 units south and 4 units east, adjoins Page 3 on its northern boundary and was staked by James Tough (FML 95189) on May 20th, 1978 and recorded under tag number 37992 on May 24th, 1978. -2- These claims cover ground previously staked in 1970 as the SPOUT and MOSH groups of claims. Current exploration is being carried out by Domego Resources Ltd. (F.M.L. 168437) of 208, 372 Bay Street, Toronto, Ontario. Interest in this area is now primarily for uranium deposits of the Fuki and Blizzard type which occur 5 km NE and 12 km N respectively. These deposits have been discovered in a specific geological environment, namely in very poorly consolidated f luvial or lacustrine carbonaceous sediments of Miocene age overlying Coryell or Valhalla granites. Late Miocene flood basalts covered and protected these sediments from erosion until such time as they them- selves were eroded. .Remnants of the basalts now are scattered as outliers in this general area and form the principal target for exploration. The object of the work carried out which forms the subject of this report was to evaluate the ground as to its potential for hosting a uranium deposit of the type described. So far, no encouragement has been gained from the results of this work. d) Summary of work done: Trips to the property wer'e made by J. McMullin (May 12-17, 1979) and M. Tindale (April 2-6 ,-1979). Tindale hetermined the location of the property, means of access, position of claim posts and lines and carried out an initial evaluation of the ground, but was unable to continue prospecting due to snow cover. McMullin followed up with prospecting traverses across the claims and along claim boundaries to determine the following: i) Amount and general type of outcrop, specifically to identify any granitic members present and to locate olivine basalt outliers ; ii) Radioactivity - a scintillometer was carried and continu- ously observed on most traverses to identify areas of possible uranium mineralisation or "hot" granites. Outcrops are unevenly distribut$$o%nd are generally restricted to the sides of steeper &, some ridge tops and occasionally in creek gulleys. A coarse sandy boulder overburden covers much of the area. No olivine basalt, Coryell or Valhalla granitic outcrops were discovered and no significantly anomalous radioactivity was encountered on these claims. This reconnaissance work was restricted to the Page 1 and Page 3 claims. e) Topography: Elevations on Page 1 and 3 range from about 3500 to over 4500 feet. The lowest ground is at the southeast corner of Page 3 adjacent to Beaverdell Creek and elevations rise to the west and north so that the north- E" west corner of Page 1 is the highest point on the property. -3- Ridges trending roughly north-south alternate with valleys occupied by such watercourses as Spout Creek, Mosher Creek and Sage Creek. The gradients of these streams are not severe. Mosher Creek is followed by an old road which would be passable to four wheel drive vehicles. This road heads "W from Beaver Creek Road across both Page 3 and Page 1 and provides the most convenient access to the more distant and highest part of Page 1 on high ground forming part of the St. John ridge. Gradients on this ridge and on Mosher Ridge which the western boundary of Page 1 follows are gentle. Gradients from the ridges down to the creeks, in particular from Mosher Ridge down to Mosher Creek, and the ridge along the west side of Beaver Creek Road where Page 1 and 3 join, down to Beaverdell Creek, are steep to locally precipitous. Topography elsewhere is variable between these extremes. f) Vegetation: The area is completely forested with fir, pine and other softwoods, with some hardwoods locally as scrub or as mature poplars in wet areas. The cover varies from dense thicket with spindly jackpine and abundant deadfalls to park-like, where large mature pines, firs and larches are well spaced and surrounded by grassy open ground. The latter condition occurs principally where old logging operations or fire have been responsible for clearing the area previously. Alder scrub is common in the northern and western parts of Page 1 which with fairly thick bush makes heavy going. Further obstacles to progress are provided by groups of thin trees which have been laid flat by, presumably, heavy snow accumulations. g) Land ownership: All land in the vicinity of these claims is Crown owned, as part of the Kettle River Provincial Forest. 2. Prospecting a) Radioactivity: A scintrex scintillometer (Model BGS-1s) was used to measure radioactivity in the area. Normal background readings in non-radioact ive areas are usually in the 20-40 cps.range. For comparison the highest reading detected at the Fuki showing with this instrument was 3000 cps. On the map accompanying this report, readings taken with this instrument, are shown as numbers along traverse lines, and represent counts per second. Overburden, much of'which is a sandy gravel till, typically gave values of 30-40 cps. Areas of overburden with surface or near surface granite boulders were generally slightly higher at 40-45 cps. Outcrops of pyroclastics, unidentif Ted volcanics and possible metasediments are not radioactive, giving read- ings of 20=25 cps. -4- r- The only fresh granite outcrops found, in the vicinity of where Mosher Creek crosses the Beaver Creek Road, gave values of 30-35 cps. only. Some granite float gave readings of up to 200 cps. but these were obviously trans- ported erratics. The hornblende diorite in the southwest part of Page 3 is also non-radioactive (25 cps.). b) Geology: Overall proportion of outcrop to total area on these claims is less than 1%. The poor exposure and reconnaissance nature of the prospecting precluded the establishment of any contacts on the map. The largest areas of outcrop appear to be on the ridge, and particularly its east facing scarp, between Mosher Creek and the Beaver Creek Road, while the ^next best exposed area is in the southwest corner of Page 3. Elsewhere ou~~~o~is randomly scattered with of course ridge tops and being the most favour- able locations. Stream and creek beds do not seem to be favourable locations for outcrop as they almost invariably seem to be underlain by overburden and boulders. The predominant rocktype is a series of acid to intermediate volcanics much of which are fragmental. ' Intrusives occur in the southeast as a distinctive white granite with abundant green amphiboles and in the southwest as a dark crystalline rock, porphyritic with respect to hornblende (hornblende diorite?) .
Recommended publications
  • Okanagan Range Ecoregion
    Selecting Plants for Pollinators A Guide for Gardeners, Farmers, and Land Managers In the Okanagan Range Ecoregion Keremeos and Hedley Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Okanagan range 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Farms 13 Public Lands 14 Home Landscapes 15 Plants That Attract Pollinators 16 Habitat hints 20 Habitat and Nesting requirements 21 S.H.A.R.E. 22 Checklist 22 This is one of several guides for different regions of North America. Resources and Feedback 23 We welcome your feedback to assist us in making the future guides useful. Please contact us at [email protected] 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Guide for Gardeners, Farmers, and Land Managers In the Okanagan Range Ecoregion Keremeos and Hedley A NAPPC and Pollinator Partnership Canada™ Publication Okanagan Range 3 Why support pollinators? IN THEIR 1996 BOOK, THE FORGOTTEN POLLINATORS, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “Flowering plants of 90% of fl owering plants and one third of human food crops. Each of us depends on these industrious pollinators in a practical way to provide us with the wide range of foods we eat. In addition, pollinators are part of the across wild, intricate web that supports the biological diversity in natural ecosystems that helps sustain our quality of life. farmed and even Abundant and healthy populations of pollinators can improve fruit set and quality, and increase fruit size. In farming situations this increases production per hectare. In the wild, biodiversity increases and wildlife urban landscapes food sources increase.
    [Show full text]
  • Minfile Nts 082Ese - Grand Forks
    MINFILE NTS 082ESE - GRAND FORKS Original release date: 1997 Researched and compiled by: B.N. Church and L.D. Jones The Grand Forks map area, located in south-central British Columbia, contains 261 documented mineral occurrences, including 108 past producers. The map area includes the historically important Greenwood mining camp, which continues to attract exploration interest and activity. Physiographic domains include the Okanagan Highland over most of the map area, and the Selkirk Mountains to the east of Lower Arrow Lake. The map area lies in the Omineca tectonic belt, which formed in Early to Middle Jurassic time as a result of the accretion of Paleozoic and Mesozoic oceanic and arc rocks of the Slide Mountain and Quesnel terranes. These terranes were delaminated from the oceanic lithosphere and stacked against the continental margin of the North America craton. The resulting calc-alkaline plutonism created a large number of Middle Jurassic intrusions of intermediate composition. These intrude the accreted terranes and the Proterozoic pericratonic Monashee Complex. Overprinting by Cretaceous Laramide and post-Laramide Tertiary transtensional structures has complicated the geology. Paleozoic age, unconformable bedded assemblages include the Knob Hill, Attwood and Anarchist groups. Knob Hill Group is Permo-Carboniferous, and possibly as old as Devonian, and consists of massive and banded MINFILE NTS 082ESE - Grand Forks metacherts and lesser amounts of quartz chlorite schist, amphibolitic schists and gneisses, and limestone bands. The rocks have been affected by deformation and metamorphism causing recrystallization and the development of foliation, quartz sweats parallel to foliation and much deformation of individual beds. The Attwood Group is Permian and consists of black argillite, sharpstone conglomerate, greywacke, limestone lenses and metavolcanic units.
    [Show full text]
  • Okanagan Ecoregional Assessment  Volume 1  Report
    VOLUME Okanagan 1 Ecoregional Assessment REPORT October 2006 OKANAGAN ECOREGIONAL ASSESSMENT VOLUME 1 REPORT Okanagan Ecoregional Assessment October 2006 Prepared by Nature Conservancy of Canada The Nature Conservancy of Washington and the Washington Department of Fish and Wildlife OKANAGAN ECOREGIONAL ASSESSMENT VOLUME 1 REPORT Okanagan Ecoregional Assessment Volume 1 – Report Citation: Pryce, B., P. Iachetti, G. Wilhere, K. Ciruna, J. Floberg, R. Crawford, R. Dye, M. Fairbarns, S. Farone, S. Ford, M. Goering, M. Heiner, G. Kittel, J. Lewis, D. Nicolson, and N. Warner. 2006. Okanagan Ecoregional Assessment, Volume 1 – Report. Prepared by Nature Conservancy of Canada, The Nature Conservancy of Washington, and the Washington Department of Fish and Wildlife with support from the British Columbia Conservation Data Centre, Washington Department of Natural Resources Natural Heritage Program, and NatureServe. Nature Conservancy of Canada, Victoria, British Columbia. Cover Design: Paul Mazzucca Copyright © 2006 Nature Conservancy of Canada Vancouver, British Columbia Issued by: The Nature Conservancy of Canada Cover Photo Credits: #300 – 1205 Broad Street Methow Valley, Robin Dye; Western screech owl, Victoria, British Columbia, Canada V8W 2A4 A.M. Bezener/One Wild Earth Photography; Great Email: [email protected] basin spadefoot toad, A.M. Bezener/One Wild Earth Photography; Seton Lake, Ian Routley; Canadian Cataloguing in Publication Data: Townsends big-eared bat, Harry van Oort; Mormon metalmark, Orville Dyer; East Chopaka, ISBN 1-897386-00-1 Barbara Pryce; Mountain bluebird, Ian Routley; 1. Biological inventory and assessment – Sockeye salmon, Kristy Ciruna; Badgers, Philippe Okanagan. Verkerk; Lynx, Grant Merrill; Mountain lady’s I. Nature Conservancy of Canada. slipper, George Thornton; Long-billed curlew, Ian II.
    [Show full text]
  • Great Basin Gophersnake,Pituophis Catenifer Deserticola
    COSEWIC Assessment and Status Report on the Great Basin Gophersnake Pituophis catenifer deserticola in Canada THREATENED 2013 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2013. COSEWIC assessment and status report on the Great Basin Gophersnake Pituophis catenifer deserticola in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 53 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC 2002. COSEWIC assessment and status report on the Gophersnake Pituophis catenifer in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 33 pp. Waye, H., and C. Shewchuk. 2002. COSEWIC status report on the Gophersnake Pituophis catenifer in Canada in COSEWIC assessment and status report on the Gophersnake Pituophis catenifer in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Lorraine Andrusiak and Mike Sarell for writing the update status report on Great Basin Gophersnake (Pituophis catenifer deserticola) in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Couleuvre à nez mince du Grand Bassi (Pituophis catenifer deserticola) au Canada.
    [Show full text]
  • Origins of Lake Okanagan
    ORIGINSORIGINS OFOF LAKELAKE OKANAGANOKANAGAN By Murray A. Roed, PhD, PEng Information provided is primarily from a book entitled “Okanagan Geology, British Columbia” published in 2004 by the Kelowna Geology Committee. 05/12/2005 1 INTRODUCTIONINTRODUCTION z Precambrian Time – Vast granitic Continental Crust, Pangaea z Paleozoic Time – Oceanic shelf environment, major mountain building z Mesozoic Time – Island Arc archipelago, plate tectonic structure, Continental Drift, obduction, Interior Mountain Building, Massive Stream Erosion z Cenozoic Time…the valley begins 05/12/2005 2 TheThe CenozoicCenozoic EraEra (Tertiary(Tertiary andand QuaternaryQuaternary Periods)Periods) z Initiation of the Okanagan Rift System z Eocene Volcanic activity, explosive type – Knox Mountain, Mount Boucherie z Development of White Lake River System z Erosion of Highlands, Deposition onto Alberta Plains z The rise of the Rocky Mountains z Folding and Faulting in the Okanagan z Mission Creek Fault z Peneplanation of the Interior of BC 05/12/2005 3 PlateauPlateau VulcanismVulcanism z Uplift, Rifting, and Erosion, regional near- surface magma chamber. z Widespread fluid basaltic flows erupt along fractures and inundate low relief valley system (200 to 300 metres local relief) including part of the Okanagan Valley (Wrinkly Faced Cliff, Oyama). z Continued Uplift, Cooling of the Earth, High 05/12/2005Precipitation, Erosion 4 PreglacialPreglacial ValleyValley SystemSystem z Massive deep erosion along fractured and fault- bounded rocky terrain in the Canadian Cordillera and Interior Plains. z Development of major valleys; topography highly rugged with sharp bold profiles. z Incision or dissection of the Thompson Plateau and Okanagan Highland 05/12/2005 5 THETHE ICEICE AGEAGE z Ice accumulation from massive snowfall z Development of Cordilleran Ice Sheets -beginning with valley glaciers and ending with ice so thick, it overtopped mountains.
    [Show full text]
  • 6.2 MULE DEER SPECIES ACCOUNT SPECIES NAME: Mule Deer (Odocoileus Hemionus)
    6.2 MULE DEER SPECIES ACCOUNT SPECIES NAME: Mule Deer (Odocoileus hemionus) SPECIES CODE: M-ODHE INTRODUCTION: This document provides the background information for rating mule deer habitat values of pre-defined ecosystem units in TFL 15, south-central British Columbia. Information on mule deer habitat requirements, life requisites, and habitat / landscape use patterns has been accumulated from a variety of sources, including literature reviews, species experts, and previous inventory and mapping efforts. STATUS: Status in Canada (COSEWIC 1998): No formal designation Status in British Columbia (CDC 1999): Provincial Management List: Yellow Global Rank: S5/S4 Provincial Rank: S5/S4 Identified Wildlife (Y/N): N DISTRIBUTION: Continental Range: In North America, mule deer range covers most of the western half of the continent extending from the western coast to central North Dakota, east-central south Dakota, Nebraska, west-central Kansas, and extreme northwestern Oklahoma and Texas (Mackie et al. 1982). The northern limit approximates the tree line while the southern boundary occurs near central Mexico and through the Baja peninsula. Provincial Range: Within British Columbia, three subspecies of mule deer are identified. Mule deer (Odocoileus hemionus hemionus) are distributed throughout much of the interior, east of the coastal mountain range to the Alberta border. They are most common in the southern interior and northeastern portions of the province while remaining absent or sparse in coastal forests and northwestern British Columbia. West of the coastal range, including Vancouver island, is occupied by 2 species of black-tailed deer (O. h. columbiana and O. h. sitkensis), which inhabit coastal forests north to Glacier Bay National Park of Alaska.
    [Show full text]
  • Eocene Paleo-Physiography and Drainage Directions, Southern Interior Plateau, British Columbia1
    215 Eocene paleo-physiography and drainage directions, southern Interior Plateau, British Columbia1 Selina Tribe Abstract: A map of reconstructed Eocene physiography and drainage directions is presented for the southern Interior Plateau region, British Columbia south of 53°N. Eocene landforms are inferred from the distribution and depositional paleoenvironment of Eocene rocks and from crosscutting relationships between regional-scale geomorphology and bedrock geology of known age. Eocene drainage directions are inferred from physiography, relief, and base level elevations of the sub-Eocene unconformity and the documented distribution, provenance, and paleocurrents of early Cenozoic fluvial sediments. The Eocene landscape of the southern Interior Plateau resembled its modern counterpart, with highlands, plains, and deeply incised drainages, except regional drainage was to the north. An anabranching valley system trending west and northwest from Quesnel and Shuswap Highlands, across the Cariboo Plateau to the Fraser River valley, contained north-flowing streams from Eocene to early Quaternary time. Other valleys dating back at least to Middle Eocene time include the North Thompson valley south of Clearwater, Thompson valley from Kamloops to Spences Bridge, the valley containing Nicola Lake, Bridge River valley, and Okanagan Lake valley. During the early Cenozoic, highlands existed where the Coast Mountains are today. Southward drainage along the modern Fraser, Chilcotin, and Thompson River valleys was established after the Late Miocene. Résumé : Cet article présente une carte reconstituée de la géographie physique et des directions de drainage, à l’Éocène, pour la région du plateau intérieur de la Colombie-Britannique, au sud du 53e parallèle Nord. Les formes de terrain à l’Éocène sont déduites de la distribution et du paléoenvironnement de déposition des roches de l’Éocène et à partir de relations de recoupement entre la géomorphologie à l’échelle régionale et la géologie du socle, d’âge connu.
    [Show full text]
  • 1 Christian Valley Geology
    358000m.E. 360000 362000 364000 366000 368000 370000 372000 374000 376000 378000 380000 382000 384000 386000 388000 390000m.E. Big White Mountain Pm CPa 5512000m.N. Pm GEOSCIENCE BC MAP 2017-10 5510000m.N. Jgd GEOLOGY of the 5410000 Goatskin Creek CHRISTIAN VALLEY MAP SHEET KTg 5408000 Eg Pk NTS 082E/10 Mount 5408000 Arthurs SCALE 1:50 000 Qal 0 1 2 3 4 5 5406000 Pk Copper Kettle Creek Ec KILOMETRES Geology and Compilation by Trygve Höy 5406000 GRANBY Pk Cartography by Wayne Jackaman PROVINCIAL Extent of mapping by HÖy and DeFields, 2017 5404000 R e n d e l l C r e e k PARK LEGEND CENOZOIC QUATERNARY ID: 12663 Epm K/Ar 56.3 Qal Alluvium, sand, gravel, till 5404000 Pw MIOCENE/PLIOCENE E R 5402000 Pk KALLIS FORMATION: plateau basalt; black to dark green, fine-grained; locally olivine phyric Pk1 Conglomerate, sandstone, shale Cochrane Creek Mount EOCENE Tanner Ec CORYELL: undifferentiated syenite and monzonite T EL R IV Eg T 5402000 mJg KTg PENTICTON GROUP (Ep): K E Epm MARRON FORMATION: alkali basalt, trachyte; locally amygdaloidal, vesicular or porphyritic; well-banded mafic tuff, blocky tephra; minor black or red shale or slate 5400000 Epm1 UPPER MARRON: basalt Epk KETTLE RIVER FORMATION: basal conglomerate, overlain by feldspathic grit, conglomerate, siltstone and rare shale or argillite; typically light coloured and well bedded 5400000 Trapping Creek Eg Porphyritic granite; coarse-grained with commonly large, pink euhedral K-feldspar crystals Mount Cochrane EOCENE/CRETACEOUS? Pk 5498000 KTg Granite, locally K-feldspar porphyritic; medium
    [Show full text]
  • A National Ecological Framework for Canada
    A NATIONAL ECOLOGICAL FRAMEWORK FOR CANADA Written and compiled by: Ecological Stratification Working Group Centre for Land and Biological State of the Environment Directorate Resources Research Environment Conservation Service Research Branch Environment Canada Agriculture and Agri-Food Canada ---- Copies of this report and maps available from: Canadian Soil Information System (CanSIS) Centre for Land and Biological Resources Research Research Branch, Agriculture and Agri-Food Canada Ottawa, ON KIA OC6 State of the Environment Directorate Environmental Conservation Service Environment Canada Hull, PQ KIA OH3 Printed and digital copies of the six regional ecodistrict and ecoregion maps at scale of 1:2 million (Atlantic Provinces #CASOlO; Quebec #CASOll; Ontario #CAS012; Manitoba, Saskatchewan, and Alberta #CAS013; British Columbia and Yukon Territory #CASOI4; and the Northwest Territories #CASOI5); and associated databases are available from Canadian Soil Information System (CanSIS), address as above. co Minister of Supply and Services Canada 1996 Cat. No. A42-65/1996E ISBN 0-662-24107-X Egalement disponible en fran91is sous Ie titre Cadrc ecologiqllc national po"r Ie Canada Bibliographic Citation: Ecological Stratification Working Group. 1995. A National Ecological Framework for Canada. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, Ottawa/Hull. Report and national map at 1:7500 000 scale. TABLE OF CONTENTS Preface iv Acknowledgemenl<; v 1. Ecolo~cal Re~onalization in Canada 1 2. Methodology. .. .. 2 Map COlnpilation . .. 2 Levels of Generalization. .. 2 Ecozones 2 Ecoregions . 4 Ecodistricts 4 Data Integration. .. 6 3. The Ecological Framework 8 4. Applications of the Framework 8 Reporting Applications.
    [Show full text]
  • Geology and Thermal History of an Area Near Okanagan Lake, Southern British Columbia
    GEOLOGY AND THERMAL HISTORY OF AN AREA NEAR OKANAGAN LAKE, SOUTHERN BRITISH COLUMBIA. by Gary Allan Medford B.Sc.(Hon.) McGill University 1968 M.Sc. McGill University 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Geological Sciences We accept thi.s thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA January, 1976 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Depa rtment The University of British Columbia Vancouver 8, Canada Date i ABSTRACT Five phases of deformation are recognized in Shuswap (Monashee Group) gneiss in an area east of Okanagan Lake, southern British Columbia.. The first is delineated by north trending mesoscopic structures. The second comprises a south closing megascopic synform with a horizontal ESE axial direction. This structure has in turn been coaxially refolded into a more open phase 3 synform. The second deformation was associated with extensive introduction of synkinematic quartz monzonite and granodiorite that comprises much of the area, and culminated with amphibolite grade metamorphism. Phase 3 deformation was followed by extensive local recrystal1ization and meta• somatism which destroyed earlier fabric elements of the gneisses.
    [Show full text]
  • Regional District of Kootenay Boundary Drought Management Plan: Kettle River Watershed
    REGIONAL DISTRICT OF KOOTENAY BOUNDARY DROUGHT MANAGEMENT PLAN: KETTLE RIVER WATERSHED September 2020 Acknowledgements Thank you to: Jessica Mace, Nicole McCallum and Michael Tollis of Collective Roots Consulting for their research and work preparing the draft 2019 Drought Management Plan; The Kettle River Watershed Authority Committee, now known as the Kettle River Watershed Advisory Council, for their invaluable input and continued support on our regional watershed and drought management; The Thompson Okanagan and Kootenay Boundary, BC Provincial staff from Forests, Lands, Natural Resource Operations and Rural Development for their continued support towards Boundary drought management; and Our funders, who, without their support this plan would not have been possible: City of Grand Forks; City of Greenwood; Federal Gas Tax Fund Electoral Areas C, D and E; Provincial Infrastructure Planning Grant; Village of Midway; West Boundary Community Forest; and members of the Water Suppliers Working Group: Sion Improvement District, Big White Utilities and Mount Baldy Utilities. Contact: Kristina Anderson, M.Sc., P.Ag. Watershed Planner Regional District of Kootenay Boundary Phone: 250-442-4111 Email: [email protected] Funding Contributors: Infrastructure Planning Grant Program Federal Gas Tax Fund: Electoral Areas C, D, E 1 Executive Summary Since the early 2000’s, Boundary area residents have become increasingly aware of low flows and declining fish stocks in the Kettle River Watershed. These concerns prompted the development of the Kettle River Watershed Management Plan (KRWMP). The KRWMP (Regional District of Kootenay Boundary, 2015) outlines actions towards an integrated and ecosystem-based watershed management approach, with a focus on drought management. Four out of the five years between 2015 and 2019 experienced either very dry (Provincial drought level 3) or extremely dry (Provincial drought level 4) conditions, prompting concerns for fish survival and causing adverse economic, ecological and health impacts.
    [Show full text]
  • Fraser Basin Ecoregion
    Selecting Plants for Pollinators A Guide for Gardeners, Farmers, and Land Managers In the Fraser Basin Ecoregion Prince George, Fort St. James, and Quesnel Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Fraser Basin 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Farms 13 Public Lands 14 Home Landscapes 15 Plants That Attract Pollinators 16 Notes 19 Habitat hints 20 Habitat and Nesting requirements 21 This is one of several guides for S.H.A.R.E. 22 different regions of North America. We welcome your feedback to assist us in making the future guides Checklist 22 useful. Please contact us at [email protected] Resources and Feedback 23 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Guide for Gardeners, Farmers, and Land Managers In the Fraser Basin Ecoregion Prince George, Fort St. James, and Quesnel A NAPPC and Pollinator Partnership Canada™ Publication Fraser Basin 3 Why support pollinators? IN THEIR 1996 BOOK, THE FORGOTTEN POLLINATORS, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction of 90% “Flowering plants of fl owering plants and one third of human food crops. Each of us depends on these industrious pollinators in a practical way to provide us with the wide range of foods we eat. In addition, pollinators are part of the intricate across wild, web that supports the biological diversity in natural ecosystems that helps sustain our quality of life. farmed and even Abundant and healthy populations of pollinators can improve fruit set and quality, and increase fruit size. In farming situations this increases production per hectare.
    [Show full text]