Standardizing Names Applied to Pollen and Spores in New Zealand Quaternary Palynology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Newsletter Number 29 September 1992 New Zealand Botanical Society Newsletter Number 29 September 1992
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 29 SEPTEMBER 1992 NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 29 SEPTEMBER 1992 CONTENTS News NZ Bot Soc News Call for nominations 2 New Zealand Threatened Indigenous Vascular Plant List .2 Regional Bot Soc News Auckland 5 Canterbury 6 Nelson 6 Rotorua 7 Waikato 7 Wellington 8 Obituary Margot Forde 8 Other News Distinguished New Zealand Scientist turns 100 9 Government Science structures reorganised 10 New Department consolidates Marine Science strengths 10 Notes and Reports Plant records Conservation status of titirangi (Hebe speciosa) 11 Senecio sterquilinus Ornduff in the Wellington Ecological District ....... 16 Trip reports Ecological Forum Excursion to South Patagonia and Tierra del Fuego (2) .... 17 Tangihua Fungal Foray, 20-24 May 1992 19 Biography/Bibliography Biographical Notes (6) Peter Goyen, an addition 20 Biographical Notes (7) Joshua Rutland 20 New Zealand Botanists and Fellowships of the Royal Society 22 Forthcoming Meetings/Conferences Lichen Techniques Workshop 22 Forthcoming Trips/Tours Seventh New Zealand Fungal Foray 22 Publications Checklist of New Zealand lichens 23 The mosses of New Zealand, special offer 24 Book review An illustrated guide to fungi on wood in New Zealand 25 Letters to the Editor New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright Committee: Sarah Beadel, Ewen Cameron, Colin Webb, Carol West Address: New Zealand Botanical Society C/- Auckland Institute & Museum Private Bag 92018 AUCKLAND Subscriptions The 1992 ordinary and institutional subs are $14 (reduced to $10 if paid by the due date on the subscription invoice). The 1992 student sub, available to full-time students, is $7 (reduced to $5 if paid by the due date on the subscription invoice). -
Ecology of the Olearia Colensoi Dominated Sub-Alpine Scrub in the Southern Ruahine Range, New Zealand
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. 581 .509 9355 Ess ECOLOGY OF THE OLEARIA COLENSOI DOMINATED SUB-ALPINE SCRUB IN THE SOUTHERN RUAHINE RANGE, NEW ZEALAND. A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Botany at Massey University New Zealand Peter Ronald van Essen 1992 Olearia colensoi in flower. Reproduced from a lithograph by Walter Fitch in Flora Novae-Zelandiae (J.D. Hooker 1852). Source: Alexander Turnbull Library in New Zealand Heritage, Paul Hamlyn Ltd ABSTRACT The Olearia colensoi (leatherwood or tupari) dominated southern Ruahine sub-alpine scrub is the largest continuous area of sub-alpine asteraceous scrub in New Zealand - the result of a lowered treeline due to climatic conditions characterised by high cloud cover, high rainfall, and high winds and the absence of high altitude Nothofagus species. Meteorological investigation of seven sites in the southern Ruahine found that altitude alone was the main environmental detenninant of climatic variation, particularly temperature regime. Temperatures varied between sites at a lapse rate of 0.61°C lOOm-1 while daily fluctuation patterns were uniform for all sites. Rainfall increased with altitude over the Range-at a rate of 3.8mm m-1. Cloud interception, unrecorded by standard rain gauges, adds significantly to total 'rainfall'. Vegetative phenology of Olearia colensoi is highly seasonal and regular with an annual growth flush from mid November to January. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours ............................................................................................................. -
Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene Ndhf Thomas J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 4 2006 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Thomas J. Givnish University of Wisconsin-Madison J. Chris Pires University of Wisconsin-Madison; University of Missouri Sean W. Graham University of British Columbia Marc A. McPherson University of Alberta; Duke University Linda M. Prince Rancho Santa Ana Botanic Gardens See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Givnish, Thomas J.; Pires, J. Chris; Graham, Sean W.; McPherson, Marc A.; Prince, Linda M.; Patterson, Thomas B.; Rai, Hardeep S.; Roalson, Eric H.; Evans, Timothy M.; Hahn, William J.; Millam, Kendra C.; Meerow, Alan W.; Molvray, Mia; Kores, Paul J.; O'Brien, Heath W.; Hall, Jocelyn C.; Kress, W. John; and Sytsma, Kenneth J. (2006) "Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/4 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Authors Thomas J. Givnish, J. Chris Pires, Sean W. Graham, Marc A. McPherson, Linda M. Prince, Thomas B. Patterson, Hardeep S. Rai, Eric H. Roalson, Timothy M. Evans, William J. Hahn, Kendra C. Millam, Alan W. Meerow, Mia Molvray, Paul J. Kores, Heath W. O'Brien, Jocelyn C. Hall, W. John Kress, and Kenneth J. Sytsma This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 4 Aliso 22, pp. -
Xeronema Callistemon F. Callistemon
Xeronema callistemon f. callistemon COMMON NAME Poor Knights Lily, Raupo-Taranga SYNONYMS Xeronema callistemon W.R.B.Oliv., Xeronema callistemon W.R.B.Oliv. var. callistemon FAMILY Xeronemataceae AUTHORITY Xeronema callistemon f. callistemon W.R.B.Oliv. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Herbs - Monocots CHROMOSOME NUMBER Tatua Peak, Aorangi Island. Photographer: 2n = 34, 36 Peter de Lange CURRENT CONSERVATION STATUS 2012 | At Risk – Naturally Uncommon | Qualifiers: CD, IE, RR PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon | Qualifiers: IE 2004 | Range Restricted DISTRIBUTION Endemic. Only known from the Poor Knights Islands near Tutukaka, and from Hen (Taranga) Island,near Whangarei. Xeronema belongs to a newly established family of one genus with two species, the Xeronemataceae. HABITAT Rhyolite sea cliffs and rock outcrops. Occasionally in forest on rubble or as an epiphyte on pohtukawa (Metrosideros excelsa). These latter occurrences probably stem from fallen plants captured in trees or resprouting on the forest floor. Western Cliffs. Photographer: Peter de Lange FEATURES Forming huge colonies 1-4 m across. Leaves green to yellow-green, arising from thick rhizomes, and forming flattened fans, 60-150 x 3-5 cm, Dead leaves long persistent, ultimately detached from the frayed base to form a fibrous mass. Inflorescences on green, thick, leafy stems (peduncle) up to 1 m. Racemes 10-60 cm long, aligned vertically on upper side of peduncle. Flowers crowded, numerous. Flower stalks (pedicels) 1-15 mm long, subtended by an pale green translucent leafy bract, which is obviously shorter than the buds. Flowers red, tepals 10-15 mm, outer 3 mm wide, inner 1.5 mm. -
Xeronema Callistemon F. Bracteosa
Xeronema callistemon f. bracteosa COMMON NAME Poor Knights Lily, Raupo-Taranga SYNONYMS Xeronema callistemon var. bracteosa L.B.Moore FAMILY Xeronemataceae AUTHORITY Xeronema callistemon f. bracteosa (L.B.Moore) de Lange et E.K.Cameron FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Ex. Cult. Photographer: Gillian Crowcroft No ENDEMIC FAMILY No STRUCTURAL CLASS Herbs - Monocots CHROMOSOME NUMBER 2n = 34, 36 CURRENT CONSERVATION STATUS 2012 | At Risk – Naturally Uncommon | Qualifiers: CD, IE, OL, Sp PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon | Qualifiers: OL, IE 2004 | Range Restricted DISTRIBUTION Endemic. Only known with certainity from the Poor Knights Islands, near Tutukaka, Northland. Xeronema belongs to a newly established family of one genus with two species, the Xeronemataceae. HABITAT Ex. Aorangi Island,. Photographer: Gillian Rhyolite sea cliffs and rock outcrops. Occasionally in forest on rubble or Crowcroft as an epiphyte on pohtukawa (Metrosideros excelsa). These latter occurrences probably stem from fallen plants captured in trees or resprouting on the forest floor. FEATURES Forming huge colonies 1-4 m across. Leaves green to yellow-green, arising from thick rhizomes, and forming flattened fans, 60-150 x 3-5 cm, Dead leaves long persistent, ultimately detached from the frayed base to form a fibrous mass. Inflorescences on green, thick, leafy stems (peduncle) up to 1 m. Racemes 10-60 cm long, aligned vertically on upper side of peduncle. Flowers crowded, numerous. Flower stalks (pedicels) 1-15 mm long, subtended by an initially green translucent leafy bract overtopping the buds until flowering burst. Flowers red, tepals 10-15 mm, outer 3 mm wide, inner 1.5 mm. -
Castilleja in Utah, by David E
ROCK GARDEN VOLUME 53 NUMBER 4 FALL 1995 COVER: Juniperus osteosperma by Dick Van Reyper of Park City, Utah All Material Copyright © 1995 North American Rock Garden Society ROCK GARDEN QUARTERLY BULLETIN OF THE NORTH AMERICAN ROCK GARDEN SOCIETY formerly Bulletin of the American Rock Garden Society VOLUME 53 NUMBER 4 FALL 1995 FEATURES The Genus Castilleja in Utah, by David E. Joyner 251 Red Canyon, Utah: Geology and Plants, by Alyce M. Hreha 259 Limber Pine Odyssey, by Richard Hildreth 269 Garden Passion the Englishes' Way, by Marv Poulson 275 A Garden in Park City, by Dick Van Reyper 285 Rock Garden Cacti Native to Utah, by Marv Poulson 289 New Zealand Gardens, by Ruby Weinberg 293 Day Hikes to Alpine Areas in Utah and Vicinity, by William H. King 307 DEPARTMENTS Awards 329 Book Reviews 334 Castilleja scabrida 250 ROCK GARDEN QUARTERLY VOL. 53(4) THE GENUS CASTILLEJA IN UTAH by David E. Joyner In The Legend of the Indian There on the ground you will find Paintbrush as retold by Tomie dePaola, what you need." The next evening a small Indian boy, called Little Little Gopher raced to the top of a Gopher, who was unable to physically nearby hill where, as the voice had compete with the larger and stronger predicted, he found small brushes boys in his clan, was encouraged by filled with paint. Little Gopher began the tribe's shaman to define his own to paint quickly and surely, using one destiny by employing his artistic tal• brush, then another. He had found the ents. -
Generic Review of New Zealand Chrysomelinae (Coleoptera: Chrysomelidae)
Zootaxa 4740 (1): 001–066 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4740.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0941B63B-331E-44B1-8D6B-2362DB24057F ZOOTAXA 4740 Generic Review of New Zealand Chrysomelinae (Coleoptera: Chrysomelidae) RICHARD A.B. LESCHEN1, CHRIS A. M. REID2 & KONSTANTIN S. NADEIN3 1 Manaaki Whenua Landcare Research, New Zealand Arthropod Collection, Private Bag 92170, Auckland, New Zealand E-mail: [email protected] 2Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales 2010, Australia E-mail: [email protected] 3Functional Morphology and Biomechanics, Institute of Zoology, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Schoeller: 17 Oct. 2019; published: 18 Feb. 2020 RICHARD A.B. LESCHEN, CHRIS A. M. REID & KONSTANTIN S. NADEIN Generic Review of New Zealand Chrysomelinae (Coleoptera: Chrysomelidae) (Zootaxa 4740) 66 pp.; 30 cm. 18 Feb. 2020 ISBN 978-1-77670-885-7 (paperback) ISBN 978-1-77670-886-4 (Online edition) FIRST PUBLISHED IN 2020 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2020 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. -
5, and J. Chris Pires
American Journal of Botany 99(2): 330–348. 2012. Q UALITY AND QUANTITY OF DATA RECOVERED FROM MASSIVELY PARALLEL SEQUENCING: EXAMPLES IN 1 ASPARAGALES AND POACEAE P . R OXANNE S TEELE 2 , K ATE L. HERTWECK 3 , D USTIN M AYFIELD 4 , M ICHAEL R. MCKAIN 5 , J AMES L EEBENS-MACK 5 , AND J. CHRIS P IRES 3,6 2 Department of Biology, 6001 W. Dodge Street, University of Nebraska at Omaha, Omaha, Nebraska 68182-0040 USA; 3 National Evolutionary Synthesis Center, 2024 W. Main Street, Suite A200, Durham, North Carolina 27705-4667 USA; 4 Biological Sciences, 1201 Rollins St., Bond LSC 311, University of Missouri, Columbia, Missouri 65211 USA; and 5 Plant Biology, 4504 Miller Plant Sciences, University of Georgia, Athens, Georgia 30602 USA • Premise of the study: Genome survey sequences (GSS) from massively parallel sequencing have potential to provide large, cost-effective data sets for phylogenetic inference, replace single gene or spacer regions as DNA barcodes, and provide a plethora of data for other comparative molecular evolution studies. Here we report on the application of this method to estimat- ing the molecular phylogeny of core Asparagales, investigating plastid gene losses, assembling complete plastid genomes, and determining the type and quality of assembled genomic data attainable from Illumina 80 – 120-bp reads. • Methods: We sequenced total genomic DNA from samples in two lineages of monocotyledonous plants, Poaceae and Aspara- gales, on the Illumina platform in a multiplex arrangement. We compared reference-based assemblies to de novo contigs, evaluated consistency of assemblies resulting from use of various references sequences, and assessed our methods to obtain sequence assemblies in nonmodel taxa. -
NEW RECORDS of SECONDARY THICKENING in MONOCOTYLEDONS Paula Rudall a Secondary Thickening Meristem Is Recorded for the First
lAWA Journal, Vol. 16 (3),1995: 261-268 NEW RECORDS OF SECONDARY THICKENING IN MONOCOTYLEDONS by Paula Rudall Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom SUMMARY A secondary thickening meristem is recorded for the first time in some herbaceous taxa of Asparagales (Herreria montevidensis and Thysanotus spiniger), and the new records are assessed in a systematic context. Key words: Secondary thickening meristem, monocotyledons, Aspara gales. INTRODUCTION All monocotyledons lack a vascular cambium, which is typically a single persistent row of cells producing phloem centrifugally and xylem centripetally. However, some monocotyledons achieve stem thickening by means of a different type of lateral meristem, either a primary thickening meristem (PTM) near the apex, together with diffuse secondary growth (as in palms), or a secondary thickening meristem (STM) further away from the apex (as in some Asparagales; see Rudalll991, for review). The PTM and STM are probably developmentally related, although there is complex tissue involvement. In taxa with an STM, the PTM and STM may sometimes be longitudi nally continuous, at least at some stage in the life cycle (Stevenson 1980). Virtually all monocotyledons have a PTM, but among tree-forming or woody taxa this has developed along different lines, probably more than once, either as an exten sive apical PTM, as in palms, or as an STM, in some Asparagales (see below). The PTM and STM are not homologous with the vascular cambium, as they are tiered (etagen) meristems which produce distinct vascular bundles (of both xylem and phloem) in a parenchymatous ground tissue (Fig. 1-3), mainly centripetally. -
Conservation Status of New Zealand Indigenous Vascular Plants, 2012
NEW ZEALAND THREAT CLASSIFICATION SERIES 3 Conservation status of New Zealand indigenous vascular plants, 2012 Peter J. de Lange, Jeremy R. Rolfe, Paul D. Champion, Shannel P. Courtney, Peter B. Heenan, John W. Barkla, Ewen K. Cameron, David A. Norton and Rodney A. Hitchmough Cover: The Nationally Critical shrub Pittosporum serpentinum from the Surville Cliffs is severely affected by possums, and no seedlings have been found during recent surveys. Photo: Jeremy Rolfe. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 3 years. After each 3-year cycle there will be a report analysing and summarising trends across all groups for that listing cycle. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright August 2013, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–0–478–14995–1 (web PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Lynette Clelland. Publication was approved by the Deputy Director-General, Science and Capability Group, Department of Conservation, Wellington, New Zealand.