Advancements in the Synthesis of Fused Tetracyclic Quinoline Derivatives Cite This: RSC Adv., 2020, 10, 19867

Total Page:16

File Type:pdf, Size:1020Kb

Advancements in the Synthesis of Fused Tetracyclic Quinoline Derivatives Cite This: RSC Adv., 2020, 10, 19867 RSC Advances REVIEW View Article Online View Journal | View Issue Advancements in the synthesis of fused tetracyclic quinoline derivatives Cite this: RSC Adv., 2020, 10, 19867 Ramadan A. Mekheimer, *a Mariam A. Al-Sheikh,b Hanadi Y. Medrasib and Kamal U. Sadeka Fused tetracyclic systems containing a quinoline nucleus represent an important class of heterocyclic bioactive natural products and pharmaceuticals because of their significant and wide-spectrum biological properties. Several of these compounds have been obtained with diverse pharmacological and biological activities, such as antiplasmodial, antifungal, antibacterial, potent antiparasitic, antiproliferative, anti-tumor and anti-inflammatory activities. This information will be beneficial for medicinal chemists in the field of drug discovery to design and synthesize new fused tetracyclic quinolines as potent therapeutical agents. This review article provides a comprehensive report regarding the methods developed for the synthesis of fused tetracyclic quinolines reported so far (till October 2019). The article includes synthesis by one-pot domino reaction, microwave synthesis Creative Commons Attribution-NonCommercial 3.0 Unported Licence. using a catalyst, using ionic liquids, photocatalytic synthesis (UV radiation), Pfitzinger reaction, I2- Received 26th March 2020 catalyzed cyclization reaction, Wittig reaction, cascade reaction, imino Diels–Alder reaction, Accepted 7th May 2020 Friedel–Craftsreaction,CDCreaction,solvent-freereactionsandusingsmallchiralorganic DOI: 10.1039/d0ra02786c molecules as catalysts. To the best of our knowledge, this is the first review focused on the rsc.li/rsc-advances synthesis of fused tetracyclic quinolines along with mechanistic aspects. antiinammatory agents,1,2 antipsychotics,3 antiprotozoals,4–9 1. Introduction 10–12 13 This article is licensed under a antituberculosis agents, anti-Alzheimers agents, anti- – Quinoline, a well known heterocyclic compound, itself has few HIV agents,14 16 antiasthmatics,17 potent melanin- – applications in chemical domains,butmanyofitsderivatives concentrating hormone 1 receptor (MCH1R) antagonists,18 22 are useful in diverse applications including pharmaceuticals, antioxidants,23 antivirals,24 antifungals,25,26 Src kinase inhibi- Open Access Article. Published on 27 May 2020. Downloaded 10/10/2021 9:10:51 AM. – agrochemicals, materials and dyestuffs. Today they are avail- tors,27 antihypertensive agents,28 anti-microbials,29 31 antibi- able as drugs. The prominent ones are the uoroquinolone otics,32 tyrokinase PDGF-RTK inhibiting agents,33 agents for antibiotics (Ciprooxacin and its analogs), antimalarials treatment of lupus34,35 and neurodegenerative diseases36 and (Quinine, Chloroquine, Quinidine, Meoquine, Primaquine, efflux pump inhibitors.37 Amodiaquinine), antibacterials (Sparoxacin, Gatioxacin), Fused tetracyclic systems containing a quinoline moiety are a cholesterol lowering agent (Pitavastatin), an antiviral agent an important class of organic molecules since many of them (Saquinavir), an anthelmintic agent (Oxamniquine), an anti- exhibit excellent biological activities. They have been well fungal–antiprotozoal agent (Clioquinol), a local anesthetic established to be useful as potent topoisomerase I and II (Dibucaine), an antiretroviral agent (Saquinavir), an anti- inhibitor, antifungal, antiplasmodial, antibacterial, potent asthmatic (Montelukast), antipsychotics (Aripiprazole, Brex- antiparasitic, antiproliferative, anti-inammatory and anti- – piprazole), an anti-TB agent (Bedaquiline), anticancer agents tumor agents.38 43 In addition, mappicine ketone, as fused (Camptothecin, Irinotecan, Topotecan), antiglaucoma (Car- quinoline natural product, is an antiviral lead compound with tiolol) and cardiotonic (Vesnarinone) agents, protein kinase selective activities against herpes viruses HSV-1 and HSV-2 and inhibitors (Lenvatinib, Bosutinib and Cabozantinib), and human cytomegalovirus (HCMV).44 A fused quinoline alkaloids a farnesyl transferase inhibitor for leukemia (Tipifarnib). cryptolepine, neocryptolepine, and isocryptolepine are antima- Moreover, several quinolines have been reported to display larial natural products having cytotoxic activities.45,46 The various useful biological and pharmacological activities as chemical structures of these natural products are shown in Fig. 1. Due to their tremendous pharmacological and biological aDepartment of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt. importance, chemists have developed a large number of E-mail: [email protected] protocols for the synthesis of fused tetracyclic systems b Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah 21589, comprising quinoline nucleus, to the best of our knowledge, Saudi Arabia This journal is © The Royal Society of Chemistry 2020 RSC Adv.,2020,10,19867–19935 | 19867 View Article Online RSC Advances Review Fig. 1 Structures of natural products containing quinoline ring. this has never been reviewed. The present review article 2. Synthesis of tetracyclic quinolines provides, for the rst time, a comprehensive compilation of synthetic methods on the synthesis of these tetracyclic ring 2.1. Tetracyclic quinolines with one heteroatom systems, as a signicant family in the eld of organic 2.1.1. Isoindolo[2,1-a]quinolines. A novel series of tetracy- chemistry. clic isoindolo[2,1-a]quinoline-5,11-dione derivatives 3 have been synthesized and evaluated as potent inhibitors of human topoisomerase-II and DNA-gyrase by Sui et al.47 On heating 2- aminoacetophenones 1 with phthalic anhydrides 2 at reux in xylene in the presence of TEA, as a base catalyst, the tetracyclic Ramadan Ahmed Mekheimer was products 3 were obtained in 35–74% yields (Scheme 1). Only in born in El-Minia, Egypt, on one case the imide intermediate 5 was isolated. The isolation of March 9, 1960 and graduated in chemistry with distinction degree Creative Commons Attribution-NonCommercial 3.0 Unported Licence. at the university of Minia. He received his B.Sc. (1982) degree Mariam Abdullah AL-Sheikh was born in 1972 in Makkah-Kingdom from Minia University. In 1987– of Saudi Arabia. She received her B.Sc. degree in pure chemistry and 1989, the University of Minia MSc degree in Organic Chemistry from the University of King awarded him a channel system AbdulAziz-Jeddah-Saudi Arabia, involving a dissertation entitled program to complete his PhD “Novel synthesis of heterocyclic compounds containing nitrogen thesis under the supervision of and/ or sulphur” in 1999. Also, she obtained her PhD in 2003 from Prof. Dr Thomas Kappe in Insti- the University of King AbdulAziz on utility of a-enones in the This article is licensed under a tute of organic chemistry, Karl- synthesis of some new heterocyclic compounds under the supervi- Franzens University, Graz, Austria, and he received his PhD sion of Prof. Mohamed Hilmy Elnagdi and Prof. Ebtisam Hafez. In, (1990) degrees from Chemistry Department, Faculty of Science, 2009 and 2013 the University of King AbdulAziz awarded her the Minia University. Aer his PhD degree he take time in establishing University Prize designated for research and academic science. This Open Access Article. Published on 27 May 2020. Downloaded 10/10/2021 9:10:51 AM. his organic synthesis lab. In, 1994 the University of Minia awarded prize has been given to the best organic researcher scientist in the him the University Prize designated for the outstanding organic University. She is currently working as Associate Professor of researcher scientist. In 1995, he became assistant Professor. During Organic Chemistry at University of King AbdulAziz. Her current a postdoctoral stay in 1997–1998 at the University of Connecticut, research interest is focused in the development of new synthetic Storrs, USA, he joined the group of Professor M. Smith. In 2000, the methodology in organic chemistry, which includes the chemistry of Academy of Science and Technology, Cairo, Egypt awarded him nitrogen- and sulfur-containing compounds for the synthesis of “The State's Encouragement National Prize in Organic Chemistry”. biologically active heterocycles. Since 2001, he has been Full Professor of Organic Chemistry at the Hanadi Yousef Medrasi was born in 1976 in Makkah-Kingdom of University of Minia. At the beginning of his career, he was interested Saudi Arabia. She obtained her MSc degree in Organic Chemistry in the development of new methodologies for the synthesis of new from the University of King AbdulAziz-Jeddah-Saudi Arabia, nitrones, heterocyclic azides and studying their chemical behavior, involving a dissertation entitled “Novel approaches to functionally synthesis of amino-quinolines as anti-malaria and the synthesis of substituted condensed azoles and azines” in 2003. She received her novel fused-heterocyclic ring systems, especially those containing PhD degree from the University of King AbdulAziz-Jeddah-Saudi pyridine or quinoline nucleus, of biological and pharmacological Arabia, completing her doctoral thesis on alkylation reactions of interest. His current research interests include the design of efficient arenes in 2010. In, 2013 the University of King AbdulAziz awarded environmental benign synthetic approaches for the synthesis of her the University Prize designated for the outstanding organic potentially bioactive heterocyclic compounds utilizing microwave researcher scientist. She is currently working as Assistant Professor and ultrasound irradiations and solar energy as energy sources of Organic Chemistry
Recommended publications
  • EH&S COVID-19 Chemical Disinfectant Safety Information
    COVID-19 CHEMICAL DISINFECTANT SAFETY INFORMATION Updated June 24, 2020 The COVID-19 pandemic has caused an increase in the number of disinfection products used throughout UW departments. This document provides general information about EPA-registered disinfectants, such as potential health hazards and personal protective equipment recommendations, for the commonly used disinfectants at the UW. Chemical Disinfectant Base / Category Products Potential Hazards Controls ● Ethyl alcohol Highly flammable and could form explosive Disposable nitrile gloves Alcohols ● ● vapor/air mixtures. ● Use in well-ventilated areas away from o Clorox 4 in One Disinfecting Spray Ready-to-Use ● May react violently with strong oxidants. ignition sources ● Alcohols may de-fat the skin and cause ● Wear long sleeve shirt and pants ● Isopropyl alcohol dermatitis. ● Closed toe shoes o Isopropyl Alcohol Antiseptic ● Inhalation of concentrated alcohol vapor 75% Topical Solution, MM may cause irritation of the respiratory tract (Ready to Use) and effects on the central nervous system. o Opti-Cide Surface Wipes o Powell PII Disinfectant Wipes o Super Sani Cloth Germicidal Wipe 201 Hall Health Center, Box 354400, Seattle, WA 98195-4400 206.543.7262 ᅵ fax 206.543.3351ᅵ www.ehs.washington.edu ● Formaldehyde Formaldehyde in gas form is extremely Disposable nitrile gloves for Aldehydes ● ● flammable. It forms explosive mixtures with concentrations 10% or less ● Paraformaldehyde air. ● Medium or heavyweight nitrile, neoprene, ● Glutaraldehyde ● It should only be used in well-ventilated natural rubber, or PVC gloves for ● Ortho-phthalaldehyde (OPA) areas. concentrated solutions ● The chemicals are irritating, toxic to humans ● Protective clothing to minimize skin upon contact or inhalation of high contact concentrations.
    [Show full text]
  • Rhodium-Catalyzed Synthesis of Organosulfur Compounds Involving S-S Bond Cleavage of Disulfides and Sulfur
    molecules Review Rhodium-Catalyzed Synthesis of Organosulfur Compounds Involving S-S Bond Cleavage of Disulfides and Sulfur Mieko Arisawa * and Masahiko Yamaguchi Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-22-795-6814 Academic Editor: Bartolo Gabriele Received: 17 July 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: Organosulfur compounds are widely used for the manufacture of drugs and materials, and their synthesis in general conventionally employs nucleophilic substitution reactions of thiolate anions formed from thiols and bases. To synthesize advanced functional organosulfur compounds, development of novel synthetic methods is an important task. We have been studying the synthesis of organosulfur compounds by transition-metal catalysis using disulfides and sulfur, which are easier to handle and less odiferous than thiols. In this article, we describe our development that rhodium complexes efficiently catalyze the cleavage of S-S bonds and transfer organothio groups to organic compounds, which provide diverse organosulfur compounds. The synthesis does not require use of bases or organometallic reagents; furthermore, it is reversible, involving chemical equilibria and interconversion reactions. Keywords: rhodium; catalysis; synthesis; organosulfur compounds; S-S bond cleavage; chemical equilibrium; reversible reaction 1. Introduction 1.1. Structure and Reactivity of Organic Disulfides Organosulfur compounds containing C-S bonds are widely used for the manufacture of drugs and materials. Compared with organic compounds containing oxygen, which is another group 16(6A) element, different properties appear owing to the large size and polarizability of sulfur atoms.
    [Show full text]
  • B.Sc. III YEAR ORGANIC CHEMISTRY-III
    BSCCH- 302 B.Sc. III YEAR ORGANIC CHEMISTRY-III SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY ORGANIC CHEMISTRY-III BSCCH-302 BSCCH-302 ORGANIC CHEMISTRY III SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 ORGANIC CHEMISTRY-III BSCCH-302 Expert Committee Prof. B.S.Saraswat Prof. A.K. Pant Department of Chemistry Department of Chemistry Indira Gandhi National Open University G.B.Pant Agriculture, University Maidan Garhi, New Delhi Pantnagar Prof. A. B. Melkani Prof. Diwan S Rawat Department of Chemistry Department of Chemistry DSB Campus, Delhi University Kumaun University, Nainital Delhi Dr. Hemant Kandpal Dr. Charu Pant Assistant Professor Academic Consultant School of Health Science Department of Chemistry Uttarakhand Open University, Haldwani Uttarakhand Open University, Board of Studies Prof. A.B. Melkani Prof. G.C. Shah Department of Chemistry Department of Chemistry DSB Campus, Kumaun University SSJ Campus, Kumaun University Nainital Nainital Prof. R.D.Kaushik Prof. P.D.Pant Department of Chemistry Director I/C, School of Sciences Gurukul Kangri Vishwavidyalaya Uttarakhand Open University Haridwar Haldwani Dr. Shalini Singh Dr. Charu Pant Assistant Professor Academic Consultant Department of Chemistry Department of Chemistry School of Sciences School of Science Uttarakhand Open University, Haldwani Uttarakhand Open University, Programme Coordinator Dr. Shalini Singh Assistant Professor Department of Chemistry Uttarakhand Open University Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 ORGANIC CHEMISTRY-III BSCCH-302 Unit Written By Unit No. Dr. Charu Pant 01, 02 & 03 Department of Chemistry Uttarakhand Open University Haldwani Dr.
    [Show full text]
  • Heterocyclic Chemistry Updated
    1 | Page Heterocyclic Chemistry By Dr Vipul Kataria Definition: A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements (N, O, S, P) as members of its ring. Introduction: Heterocyclic compounds may be defined as cyclic compounds having as ring members atoms of at least two different elements. It means the cyclic compound has one another atom different than carbon. Heterocyclic compounds have much importance in organic chemistry because of abundant presence of heterocyclic compounds in present pharmaceutical drugs. Like other organic compounds, there are several defined rules for naming heterocyclic compounds. IUPAC rules for nomenclature of heterocyclic systems (SPU 2012, 2 Marks) The system for nomenclature for heterocyclic systems was given by Hantzsch and Widman. The Hantzsch-Widman nomenclature is based on the type (Z) of the heteroatom; the ring size (n) and nature of the ring, whether it is saturated or unsaturated. This system of nomenclature applies to monocyclic 3-to-10-membered ring heterocycles. Type of the heteroatom: The type of heteroatom is indicated by a prefix as shown below for common hetreroatoms. Dr Vipul Kataria, Chemistry Department, V. P. & R. P. T. P. Science College, VV Nagar 2 | Pag e When two or more of the same heteroatoms are present, the prrefix di, tri, tetra… are used. e.g. dioxa, triaza, dithia. If the heteroatoms are different their atomic number in that grroup is considered. Thus order of numbering will be O, S, N, P, Si. Ring size: The ring size is indicated by a suffix according to Table I below.
    [Show full text]
  • Heterocyclic Compounds with Biological Meaning
    Heterocyclic compounds with biological meaning 1 Heterocyclic compounds Cyclic, organic compounds which besides carbon atoms have one or more heteroatom (other elements than C). Heterocyclic atoms: – nitrogen, N – sulphur, S – oxygen, O – phosphorus, P – barium, Ba – zinc, Zn – silicon, Si. 2 Heterocyclic compounds From the biological point of view, the most important are heterocyclic compounds with 5- and 6-membered rings, containing: S, N, O. Most of the heterocyclic compounds have their common names. Substituent’s position in the ring is described by : – number – position of heteroatom – no. 1 – Greek letter – describes carbon atom the closest to heteroatom as a, then β and γ, respectively. 3 Heterocyclic compounds Heterocyclic compounds are: • widespread in nature • biologically active • some of them are toxic (e.g. coniine, coumarin and derivatives). Occurrence in: • natural dyes - heme, chlorophyll • alkaloids – atropine and nicotine • amino acids such as tryptophan and histidine • enzymes, nucleoproteins, antibiotics • vitamins • many synthetic pharmaceuticals. 4 Heterocyclic compounds Aromatic character of heteroatom-containing ring comes from aromatic sextet which consists of: • „not bound” electron pairs of heteroatoms • four electrons π from carbon atoms Pyrrole Furane Thiophen 5 5- membered ring heterocyclic compounds with one heteroatom 5-membered rings: • contain mostly oxygen, sulphur and nitrogen • are flat • are aromatic 6 5- membered ring heterocyclic compounds with two heteroatoms oxazole imidazole thiazole pyrazole 7 5- membered ring heterocyclic compounds With one heteroatom With two heteroatoms Condensation products with benzene 8 Pyrrole and derivatives • Pyrrole derivatives: • pyrroline • pyrrolidone • proline, • Hydroksyproline. • Condensation’s products of pyrrole with benzene: – indole, – tryptophan, – serotonin. • Condensation’s products of pyrrole with formaldehyde: – heme – hemoglobin – billirubin – porphyrins – Biliverdin.
    [Show full text]
  • New Chiral Auxiliaries for the [3+2]-Cycloaddition of Nonstabilised Azomethine Ylides
    New Chiral Auxiliaries For The [3+2]-Cycloaddition Of Nonstabilised Azomethine Ylides Allan Rostrup Forup Jensen A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Christopher Ingold Laboratories University College London London 20 Gordon Street WC1H OAJ ProQuest Number: 10610918 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10610918 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 /\cjmowieugemenis First and foremost I wish to thank my supervisor, Professor K. J. Hale, for the constant support, encouragement and guidance he has provided throughout the duration of this project. I also wish to take this opportunity to thank my sponsor, Rhone- Poulenc-Rorer, without whom this project would not have been possible. I also wish to thank past and present members of the Hale group for their friendship and encouragement. In particular, Dr. J. Cai was an invaluable help and inspiration. For their friendship and enormous support through good and bad times, Rukpong Tupprasoot, Neha Jogiya, Andrew Calabrese, Dr. Gurpreet Bhatia, Marc Hummersone, Rafaqat Hussain, also deserve to be mentioned.
    [Show full text]
  • Synthesis of Heterocyclic Compounds and Its Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Arabian Journal of Chemistry (2015) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Synthesis of heterocyclic compounds and its applications Mohan N. Patel *, Parag S. Karia, Pankajkumar A. Vekariya, Anshul P. Patidar Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India Received 28 February 2015; accepted 26 June 2015 KEYWORDS n n Abstract The octahedral ruthenium(II) complexes [Ru(L )(PPh3)2Cl2][L= biphenyl furanyl Heterocyclic compound; pyridine derivatives] were synthesized and characterized using LC–MS, IR spectroscopy, elemental Ruthenium(II) complexes; analysis and magnetic measurements. Complexes show enhancement in antibacterial activity Nucleic acid intercalating compared to free ligands. From the binding mode investigation by absorption titration and agent; viscosity measurement, it is observed that complexes bind to DNA via intercalation and also Cytotoxicity complexes promote the cleavage of supercoiled pUC19 plasmid DNA. Cytotoxicity analysis shows 100% mortality of Brine shrimp after 48 h. ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction containing planar polycyclic hetero aromatic ligands (Ji et al., 2001). Studies on DNA-binding of the complexes are Recently, metal complexes as DNA interacting agents have crucial in development of nucleic acid interaction, chemother- been talk in medicinal inorganic chemistry (Fei et al., 2014; apy and photodynamic treatment (Huppert, 2008; Zhao et al., 2011; Abou-Hussen and Linert, 2009; Patel, Balasubramanian and Neidle, 2009; Georgiades et al., 2010).
    [Show full text]
  • Expert Consensus Guidelines for Stocking of Antidotes in Hospitals That Provide Emergency Care
    TOXICOLOGY/CONCEPTS Expert Consensus Guidelines for Stocking of Antidotes in Hospitals That Provide Emergency Care Richard C. Dart, MD, PhD From the Rocky Mountain Poison & Drug Center - Denver Health, Denver, CO (Dart, Heard, Schaeffer, Stephen W. Borron, MD, MS Bogdan, Alhelail, Buchanan, Hoppe, Lavonas, Mlynarchek, Phua, Rhyee, Varney, Zosel); Department of E. Martin Caravati, MD, MPH Surgery, University of Texas Health Sciences Center, San Antonio, TX (Borron); Division of Emergency Daniel J. Cobaugh, PharmD Medicine, Utah Poison Control Center, University of Utah Health Sciences Center, Salt Lake City, UT Steven C. Curry, MD (Caravati); ASHP Research and Education Foundation, Bethesda, MD (Cobaugh); Department of Jay L. Falk, MD Medical Toxicology and Banner Poison Control Center, Banner Good Samaritan Medical Center, Lewis Goldfrank, MD Phoenix, AZ (Curry); Department of Emergency Medicine, Orlando Regional Medical Center, University of Susan E. Gorman, PharmD, MS Florida, Orlando, FL (Falk); New York City Poison Center; New York University School of Medicine, New Stephen Groft, PharmD York, NY (Goldfrank); Division of Strategic National Stockpile, Centers for Disease Control and Kennon Heard, MD Prevention, Atlanta, GA (Gorman); Office of Rare Diseases Research, Bethesda, MD (Groft); Division of Ken Miller, MD, PhD Emergency Medicine, School of Medicine (Dart, Heard, Lavonas, Schaeffer) and Department of Kent R. Olson, MD Pharmaceutical Sciences, School of Pharmacy (Bogdan), University of Colorado Denver, Aurora, CO; Gerald O’Malley, DO Orange County Fire Authority and Orange County Health Care Agency Emergency Medical Services, Donna Seger, MD Irvine, CA, and National Association of EMS Physicians, Lenexa, KS, (Miller); University of California, Steven A. Seifert, MD San Francisco, and San Francisco Division, California Poison Control System, San Francisco, CA Marco L.
    [Show full text]
  • Heterocyclic Compou Review Cyclic Compounds and Its Biological
    Original Article Heterocyclic compou nds and its biological activity a review Kedar Nathrao A Department of Chemistry, Dayanand Science College Latur -413512, Maharashtra, INDIA. Email: [email protected] Abstract Heterocyclic compounds are of particular interest in medicinal chemistry. The chemistry of heterocyclic compounds is one of the most complex branches of chemistry. It is equally interesting for its theoretical implication for the diversity of its synthetic procedure and for the physiological and industrial significances. More than 90% of new dru ges contain heterocycles and the interface between chemistry and biology, at which so much new scientific insight, discovery and application is taking place is crossed by hetrocyclic compounds. This review article covers the most active hetrocycles that ha ve shown considerable biological action as antifungal, anti -inflammatory antibacterial, anticonvulsant, antiallergic, herbicidal, anticancer activity. Majority of the large number of drugs being introduced in pharmacopeias every year are heterocyclic compounds. Keywords: Heterocyclic, biological activities. *Address for Correspondence: Dr. Kedar Nathrao A, Department of Chemistry, Dayanand Science College Latur -413512, Maharashtra, INDIA. Email: [email protected] Received Date: 25/05/2016 Revised Date: 12/0 6/2016 Accepted Date: 08/07/2016 therapeutically significant molecular sections, the Access this article online pharamacophores, the portion that can be deleted are of no interest as components of drug action; they are Quick Response Code: Website: regarded as the result of biosynthetic efforts on the parent www.statperson.com organism to construct materials for its own mateboli c or defensive purposes. Few heterocyclic compounds containing the five-membered oxadiazole nucleus possess 1,3,4 a diversity of us eful biological effects.
    [Show full text]
  • Heterocyclic Compound –A Review
    IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 2278-5736, PP 43-46 www.iosrjournals.org Heterocyclic Compound –A Review Shital V. Hote 1, Shital P. Bhoyar2 1, 2 Department of Applied Chemistry, Shri Datta Meghe Polytechnic, Nagpur, India ABSTRACT : Main aim of this paper is to present the information regarding the Heterocyclic compounds that constitute the largest family of organic compounds. These are extremely important with wide array of synthetic, pharmaceutical and industrial applications. There is always a strong need for new and efficient processes in synthesizing of new Heterocycles. Several 1,3,4,5-tetraaryl-2 pyrazoline, 41 –piperazine, 3- methoxybenzofuran and thiazolidin-4-one substituted 1, 2, 4-triazole, 4- NO2, 2-OH and 4-Cl in phenyl ring at 5- position of pyrazoline ring of synthesized compounds. The new compounds were characterized using IR, 1H-NMR, 13C-NMR and mass spectra. Biological screening of some compounds is reported. Keywords: Synthesized compounds, heterocyclic substances. I. INTRODUCTION Compounds classified as heterocyclic probably constitute the largest and most varied family of organic compounds. After all, every carbocyclic compound, regardless of structure and functionality, may in principle be converted into a collection of heterocyclic analogs by replacing one or more of the ring carbon atoms with a different element. Even if we restrict our consideration to oxygen, nitrogen and sulfur (the most common heterocyclic elements), the permutations and combinations of such a replacement are numerous. Derivatives of the simple fused ring heterocycle purine constitute an especially important and abundant family of natural products. The amino compounds adenine and guanine are two of the complementary bases that are essential components of DNA.
    [Show full text]
  • Reactions of Alcohols & Ethers 1
    REACTIONS OF ALCOHOLS & ETHERS 1. Combustion (Extreme Oxidation) alcohol + oxygen carbon dioxide + water 2 CH3CH2OH + 6 O2 4 CO2 + 6 H2O 2. Elimination (Dehydration) ° alcohol H 2 S O 4/ 1 0 0 C alkene + water H2SO4/100 ° C CH3CH2CH2OH CH3CH=CH2 + H2O 3. Condensation ° excess alcohol H 2 S O 4 / 1 4 0 C ether + water H2SO4/140 ° C 2 CH3CH2OH CH3CH2OCH2CH3 + H2O 4. Substitution Lucas Reagent alcohol + hydrogen halide Z n C l2 alkyl halide + water ZnCl2 CH3CH2OH + HCl CH3CH2Cl + H2O • This reaction with the Lucas Reagent (ZnCl2) is a qualitative test for the different types of alcohols because the rate of the reaction differs greatly for a primary, secondary and tertiary alcohol. • The difference in rates is due to the solubility of the resulting alkyl halides • Tertiary Alcohol→ turns cloudy immediately (the alkyl halide is not soluble in water and precipitates out) • Secondary Alcohol → turns cloudy after 5 minutes • Primary Alcohol → takes much longer than 5 minutes to turn cloudy 5. Oxidation • Uses an oxidizing agent such as potassium permanganate (KMnO4) or potassium dichromate (K2Cr2O7). • This reaction can also be used as a qualitative test for the different types of alcohols because there is a distinct colour change. dichromate → chromium 3+ (orange) → (green) permanganate → manganese (IV) oxide (purple) → (brown) Tertiary Alcohol not oxidized under normal conditions CH3 KMnO4 H3C C OH NO REACTION K2Cr2O7 CH3 tertbutyl alcohol Secondary Alcohol ketone + hydrogen ions H O KMnO4 H3C C CH3 + K2Cr2O7 C + 2 H H3C CH3 OH propanone 2-propanol Primary Alcohol aldehyde + water carboxylic acid + hydrogen ions O KMnO4 O H H KMnO H H 4 + CH3CH2CH2OH C C C H C C C H + 2 H K2Cr2O7 + H2O K Cr O H H H 2 2 7 HO H H 1-propanol propanal propanoic acid 6.
    [Show full text]
  • Chemical Disinfectants | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC 3/19/20, 14:52
    Chemical Disinfectants | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC 3/19/20, 14:52 Infection Control Chemical Disinfectants Guideline for Disinfection and Sterilization in Healthcare Facilities (2008) Alcohol Overview. In the healthcare setting, “alcohol” refers to two water-soluble chemical compounds—ethyl alcohol and isopropyl alcohol —that have generally underrated germicidal characteristics 482. FDA has not cleared any liquid chemical sterilant or high- level disinfectant with alcohol as the main active ingredient. These alcohols are rapidly bactericidal rather than bacteriostatic against vegetative forms of bacteria; they also are tuberculocidal, fungicidal, and virucidal but do not destroy bacterial spores. Their cidal activity drops sharply when diluted below 50% concentration, and the optimum bactericidal concentration is 60%–90% solutions in water (volume/volume) 483, 484. Mode of Action. The most feasible explanation for the antimicrobial action of alcohol is denaturation of proteins. This mechanism is supported by the observation that absolute ethyl alcohol, a dehydrating agent, is less bactericidal than mixtures of alcohol and water because proteins are denatured more quickly in the presence of water 484, 485. Protein denaturation also is consistent with observations that alcohol destroys the dehydrogenases of Escherichia coli 486, and that ethyl alcohol increases the lag phase of Enterobacter aerogenes 487 and that the lag phase e!ect could be reversed by adding certain amino acids. The bacteriostatic action was believed caused by inhibition of the production of metabolites essential for rapid cell division. Microbicidal Activity. Methyl alcohol (methanol) has the weakest bactericidal action of the alcohols and thus seldom is used in healthcare 488. The bactericidal activity of various concentrations of ethyl alcohol (ethanol) was examined against a variety of microorganisms in exposure periods ranging from 10 seconds to 1 hour 483.
    [Show full text]