New Phytologist Supporting Information Methods S1 for the Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northstar Fire Department, Fire Resistant Landscaping Plant List
Northstar Fire Department, Fire Resistant Landscaping Plant List Many common plants naturally resist fire and can even slow its spread. In general, irrigated and well maintained leafy plants burn slowly. By replacing highly flammable vegetation with these fire resistant recommended species, you can significantly improve the statistical survivability of your home when a wildfire threatens. Courtesy of the “Villager Nursery” in Truckee, this list of fire resistive plants should be considered when enhancing or adding landscape. Here are some other key components to remember when selecting appropriate fire resistant landscaping plants. Choose plants that don’t produce much litter such as dead branches and twigs Plants that produce oils, resins or waxes should be avoided When planting from the approved list, appropriately space plants to prevent fire spread Never plant under conifer trees, this can create a ladder effect which allows smaller ground fires the ability to transfer into larger trees creating crown fires To help ensure their fire resistance, plants must be maintained, watered, and pruned. Routine care will provide you with an attractive defensible space landscape and help ensure the survival of your property in the event of a wildfire. Northstar Fire Department enforces both State and District fire codes that may directly affect your landscape. Northstar Fire Department recommends that prior to changing your landscape you consult with us in order to make sure your property will be compliant with applicable fire codes. Trees Common Name Scientific Name Please note that there Apple Malus spp. may be other vegetative Bigtooth Maple Acer grandidentatum species that are Cherry Prunus spp. -
AGCBC Seedlist2019booklet
! Alpine Garden Club of British Columbia Seed Exchange 2019 Alpine Garden Club of British Columbia Seed Exchange 2019 We are very grateful to all those members who have made our Seed Exchange possible through donating seeds. The number of donors was significantly down this year, which makes the people who do donate even more precious. We particularly want to thank the new members who donated seed in their first year with the Club. A big thank-you also to those living locally who volunteer so much time and effort to packaging and filling orders. READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE FILLING IN THE REQUEST FORM. PLEASE KEEP YOUR SEED LIST, packets will be marked by number only. Return the enclosed request form by mail or, if you have registered to do so, by the on-line form, as soon as possible, but no later than DECEMBER 8. Allocation: Donors may receive up to 60 packets and non-donors 30 packets, limit of one packet of each selection. Donors receive preference for seeds in short supply (USDA will permit no more than 50 packets for those living in the USA). List first choices by number only, in strict numerical order, from left to right on the order form. Enter a sufficient number of second choices in the spaces below, since we may not be able to provide all your first choices. Please print clearly. Please be aware that we have again listed wild collected seed (W) and garden seed (G) of the same species separately, which is more convenient for people ordering on-line. -
2020 Plant List 1
2020 issima Introductions Sesleria nitida Artemisia lactiflora ‘Smoke Show’ Succisella inflexa 'Frosted Pearls' Impatiens omeiana ‘Black Ice’ Thalictrum contortum Kniphofia ‘Corn Dog’ Thalictrum rochebrunianum var. grandisepalum Kniphofia ‘Dries’ Tiarella polyphylla (BO) Kniphofia ‘Takis Fingers’ Verbascum roripifolium hybrids Persicaria amplexicaulis ‘Ruby Woo’ Veronica austriaca 'Ionian Skies' Sanguisorba ‘Unicorn Tails’ Sanguisorba obtusa ‘Tickled Pink’ Stock Woody and Herbaceous Perennials, New & Returning for 2020 indexed alphabetically: Alchemilla alpina Acanthus ‘Summer Beauty’ Aletris farinosa Acanthus Hollard’s Gold’ Anemone nemorosa ‘Vestal’ Acanthus syriacus Anemone nemorosa Virescens Actaea pachypoda Anemone ranunculoides Actaea rubra leucocarpa Anemone seemannii Adenophora triphylla Berkheya purpurea Pink Flower Agastache ‘Linda’ Berkheya species (Silver Hill) Agastache ‘Serpentine’ Boehmeria spicata 'Chantilly' Ajuga incisa ‘Blue Enigma’ Callirhoe digitata Amorphophallus konjac Carex plantaginea Anemonella thalictroides ‘Cameo’ Carex scaposa Anemonella thalictroides ‘Oscar Schoaff’ Deinanthe caerulea x bifida Anemonopsis macrophylla – dark stems Dianthus superbus var. speciosus Anemonopsis macrophylla – White Flower Digitalis ferruginea Angelica gigas Disporum sessile ‘Variegatum’ Anthemis ‘Cally Cream’ Echium amoenum Anthericum ramosum Echium russicum Arisaema fargesii Echium vulgare Arisaema ringens Erigeron speciosus (KDN) Arisaema sikokianum Eriogonum annuum (KDN) Artemisia lactiflora ‘Elfenbein’ Geranium psilostemon -
Floral Morphology in : Relation. to Adaptation And
/ FLORAL MORPHOLOGY IN : RELATION. TO ADAPTATION AND TAXONOMY IN, THE CARYOPHYLLACEAE BY . KATHERINE L NOVOSEL Thesis presented for the Degree of Doctor of Philosophy University of Edinburgh 1982 5.. ABSTRACT The floral morphology of several species in the 3 subfamilies of the family Caryophyllaceae has been investigated from different aspects. The reproductive biology of the family has been examined to determine if style number and stigmatic area are in any way related to ovule/seed number, and it has been found that there is no positive relationship. The genera in the family have also been placed in groups according to the distribution of the stigmatic papillae and the degree of style fusion. Species in 4 genera, Spergula, Spergularia, Stellaria, Myosoton have been examined in greater detail but again few correlations could be found. De-styling experiments on 3 5-styled species in the subfamily Dianthoideae have shown that pollen tubes readily cross between 'carpels' in these species and that if only 3 styles remain the number of seeds formed is the saine.as in 5-styled ovaries. The vascular tissue of the ovary and the position of the trans- mitting tissue has been studied in species in the subfamilies Dianthoideae and Paronychioideae. This has revealed that the trans- mitting tissue is part of the septal tissue and confirmed the views of other authors that the ovary in this family has not evolved from the traditional 'carpel' but that the ovary is composed of a sterile part and a fertile part. The taxonomy of the subfamily Paronychioideae has been investi- gated. -
2021 Plant List
2021 Plant List New items are listed with an asterisk (*) Conifers Pinus thungerbii Abies koreana 'Horstmann's Silberlocke' Pinus x 'Jane Kluis' * Chamaecyparis nootkatensis 'Pendula' Sciadopitys vert. 'Joe Dozey' Chamaecyparis noot. 'Glauca Pendula' Sciadopitys vert. 'Wintergreen' Chamaecyparis obtusa 'Chirimen' * Taxodium distichum 'Pendula' Chamaecyparis obtusa 'Gracilis' -Select Taxodium distichum 'Peve Mineret' Chamaecyparis obtusa 'Kosteri' Taxus cuspidaata 'Nana Aurescens' Chamaecyparis obtusa 'Nana' Tsuga con. 'Jervis' Chamaecyparis obtusa 'Nana Gracilis' Chamaecyparis obtusa 'Spiralis' Ferns Chamaecyparis obtusa 'Thoweil' Adiantum pedatum ….Maiden Hair Chamaecyparis obtusa 'Verdoni' Athyrum filix-femina 'Minutissima' Juniperus procumbens 'Nana' Athyrium 'Ghost' Larix decidua 'Pendula' Athyrum niponicum 'Godzilla' Larix decidua 'Pendula' -Prostrate Form Athyrum niponicum 'Pictum' Picea abies 'Hasin' * Athyrum niponicum pic. 'Pearly White' Picea abies 'Pusch' * Dennstaedtia punctilobula Picea omorika 'Nana' Dryopteris ery. 'Brilliance' Picea omorika 'Pendula' Dryopteris marginalis Picea orientalis 'Nana' Matteucciastruthiopteris var. pensylvanica Picea orientalis 'Shadow's Broom' * Osmunda cinnamomea Picea pungens 'Glauca Globosa' Polystichum acrostichoides Pinus mugo 'Mughus' - Rock Garden Strain Polystichum polyblepharum Pinus mugo 'Slowmound' Pinus nigra 'Hornibrookiana' Grasses Pinus parviflora 'Aoi' These are but a fraction of the grasses we'll be Pinus parviflora 'Glauca Nana' offering this year. Many more to come. They'll -
Dianthus Barbatus (Barbarini™ Rose Sweet William, Sweet William) Dianthus Barbatus Are of Hybrid Origin, Southern Europeorigin
Dianthus barbatus (Barbarini™ Rose Sweet William, Sweet William) Dianthus barbatus are of Hybrid Origin, Southern Europeorigin. They aregrown in a nuetral-alkaline enivornment in loam-sandy soil. They need full sunlight and a moderate amount of water. The plant grows fast, its leaves grow opposite to each other and a lanceolate shape. The flowers bloom in spring and sumer and are pink in color. Sweet William is used as a bedding plant, container, cutflower, edging, mixed border, rock garden /wall, and it attarcts butterflies. Landscape Information Plant Type: Groundcover Origin: Hybrid Origin, Southern Europe Heat Zones: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 Hardiness Zones: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 Uses: Mass Planting, Container, Cut Flowers / Arrangements, Reclamation, Ground cover Size/Shape Growth Rate: Fast Tree Shape: Height at Maturity: Less than 0.5 m Spread at Maturity: Less than 50 cm Plant Image Dianthus barbatus (Barbarini™ Rose Sweet William, Sweet William) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Semi Evergreen Leaf Type: Simple Leaf Shape: Lanceolate Leaf Margins: Entire Leaf Scent: No Fragance Color(growing season): Green Flower Flower Showiness: True Flower Size Range: 7 - 10 Flower Image Flower Scent: No Fragance Flower Color: Red, Purple, Pink Seasons: Spring, Summer Fruit Seasons: Spring, Summer Dianthus barbatus (Barbarini™ Rose Sweet William, Sweet William) Horticulture Management Tolerance Frost Tolerant: Yes Heat Tolerant: Yes Drought Tolerant: No Salt Tolerance: Poor Requirements Soil Requirements: Loam, Sand Soil Ph Requirements: Neutral, Alkaline Water Requirements: Moderate Light Requirements: Full, Part Management Diseases: Powdery Mildew, Rusts, Botrytis Edible Parts: None Pests: Mites, Aphids, Snail Plant Propagations: Seed Bark Image. -
Hidden Lake Gardens Michigan State University Plants Flowering Week of July 30 – August 5, 2017
Hidden Lake Gardens Michigan State University Plants flowering week of July 30 – August 5, 2017 Woody Plants Aesculus parviflora Bottlebrush Buckeye Buddleia varieties Butterfly Bush Campsis radicans Trumpet Creeper Tetradium daniellii Evodia Hibiscus syriacus Rose of Sharon Hydrangea species and cultivars Hydrangea Perennials Achillea cultivars Yarrow Allium ‘Millenium’ Ornamental Onion Asclepias incarnate Swamp Milkweed Astilbe cultivars False Spirea Coreopsis cultivars Tickseed Crocosmia cultivars Montbretia Echinacea purpurea Coneflower Eupatorium purpureum Joe-Pye Weed Dahlia cultvars Dahlia Daucus carota Queen Anne’s Lace Geranium cultivars Cranesbill Helenium autumnale Sneezeweed Helianthus cultivars Sunflower Heliopsis cultivars False Sunflower Hemerocallis cultivars Daylily Heuchera cultivars Alumroot, Choral Bells Hosta cultivars Hosta Lamium maculatum Spotted Deadnettle Lathyrus odoratus Sweet Pea Lavandula angustifolia Lavender Leucanthemum cultivars Shasta Daisy Liatris spicata Spiked Gayfeather Lobelia cardinalis Cardinal Flower Monarda species Bee-balm Perovskia atriplicfolia Russian Phlox paniculata cultivars Garden Phlox Platycodon grandifloras Balloonflower Rosa cultivar Rose Rudbeckia cultivars Black-eyed Susan Salvia cultivars Sage Solidago canadensis Goldenrod Stokesia laevis cultivars Stokes Aster Teucrium chamaedrys Germander Veronica cultivars Speedwell Annuals and Bedding Plants Many varieties including the following: Alyssum ‘Carpet of Snow’ Sweet Alyssum Angelonia angustifolia ‘Serenita Raspberry’ Summer Snapdragon -
Euphorbia Graminea Annual Plant Height: 15-24” Plant Width: 15-20”
Fragrant Carpet Mix– Euphorbia Glitz White- Agastache aurantiaca Euphorbia graminea Annual Annual Full sun; moist, well-drained Plant height: 15-24” soil. Plants reach 12–18 Plant width: 15-20” inches and spread 10–12 Low maintenance inches. Heat and drought tolerant Rebounds quickly from adverse weather - Attracts bees, butterflies and hummingbirds! perfect for the landscape! Aromatic flowers bloom in a variety of colors ranging from lilac to tangerine Purple Prince Alternanthera – Double Harmony Anemone Alternanthera brasiliana Mix– Anemone coronaria Annual Perennial Full sun to partial shade: dry or Partial shade; moist, well- moist, well-drained soil. Plants drained soil. Plants reach 12 reach 10–16 inches and spread inches and spread 8 inches 18–20 inches. with 3–3.5 inch blooms. Great for beds, containers, ground cover. This mix of 5 colors is excellent for containers Heat and drought resistant and cutting Start indoors and and set outdoors when night temperatures get above 60º Flowers in early spring and again in early fall Liberty Classic Mix– Montego Formula Mix– Antirrhinum majus Antirrhinum majus Annual Annual Full sun; moist, well-drained soil. Full sun; moist, well-drained Plants reach 18–22 inches, and soil. Plants reach 6–8 inches, spread 12–14 inches. and spread 6–8 inches. Great for beds and larger pots Ideal for production in packs and small pots. Colorful snapdragons attract bees Bright multi-flowering blooms Ballerina Red Thrift- Showstar– Armeria pseudarmeria Astilbe arendsii Perennial Perennial Full sun to partial shade; moist, Full sun to partial shade; moist, well-drained soil. Plants reach 12 – well-drained soil. -
Premier Ball Dianthus Barbatus Technical Guide Premier Ball Dianthus Barbatus
2017 Pe 2018 Premier Ball Dianthus barbatus Technical Guide Premier Ball Dianthus barbatus Premierball Sunderland Dianthus barbatus is a perennial plant. It is a lovely variety of the Dianthus species. Having stems of 70 to 90 cm high, with a 10 to 13 cm head flower diameter, in very intense colors; red, pink, white and also bicolor. It has a production cycle of 10 to 12 weeks (under tropical conditions). It can vary according to weather conditions, and sowing latitude. It grows better in deep, organically rich and well drained soils; the hydroponic alternative is a very viable one. Production Planting density: 20 to 24 plants per square meter. Rich well drained, with good aeration, not much humidity, and a PH between 5.8 and 6.5 organic soils are required. Hydroponic farming is also possible as long as there is an appropiate use and quality of the substrate used, and a well management. It is in this first stage that the plant presents a higher demand on nitrogen, thus, it is recommended to do applications of calcium nitrate CN (N03) 2 per 200 ppm. The use of a net in 2 to 3 levels is recommended to guide the stems along the growth of the plant. Between week 6-7 or/and after reaching a height of 10 cm or 8 pairs of leaves well developed, the pinch should be done on the third internode or 3 pairs of leaves removing the apical growth meristem. Once the plant has formed body; stems begin to come out. To obtain better results and better quality; it is important to Mother plants and harvests of cuttings of the Dianthus Barbatus make a selection leaving 5 to 7 (depending on the quality and market) stems in the plant, it is this moment when the plant requires more and better light exposure, this to assure good stem development and height. -
Caryophyllaceae
Reduction of the androecium in Spergularia marina (Caryophyllaceae) A.A. Sterk Hugo de Vries-Laboratorium, Universiteit van Amsterdam SUMMARY A study of the variation in the number of fertile stamens in flowers of Spergularia marina revealed that this number fluctuates between 0 and 10 but is usually 2 to 5. A statistical ana- lysis showed that reduction did not take place at random, because certain stamens tend to dis- appear more often than other ones, the progressive reduction also proceeding according to certain rules. Although the causal explanation for these phenomana can only be a tentative one for the time being, the statistical data are put on record in order to draw the attention to the occurrence of such singular processes. A study of androecial variability in Spergularia marina (L.) Griseb. showed that the number of fertile stamens per flower fluctuates between 0 and 10. Flowers with an optimum development of the androecium (with two whorls of 5 fertile stamens) are very rare. The majority of the flowers have 2 to 5 fertile androecial elements and evidently the reduction of the androecium has progres- sed rather far in this species (Sterk 1968, 1969). It is a question whether the reduction proceeds according to a certain pattern first certain androecial or at random. In the case configurations may be expected to occur in relatively high frequencies, but in the second no such preference of occurrence of special configurations may be anticipated. The possibility to study the reduction is provided by the circumstance that, at least in the populations studied, all phases of a progressive reduction are represented, i.e., all intermediatestages between flowers without fertile stamens and flowers with 10 fertile stamens occur. -
Distributions of Vascular Plants in the Czech Republic. Part 2
Preslia 88: 229–322, 2016 229 Distributions of vascular plants in the Czech Republic. Part 2 Rozšíření cévnatých rostlin v České republice. Část 2 Zdeněk K a p l a n1,JiříDanihelka1, 2,JitkaŠtěpánková1, Libor E k r t3, Jindřich C h r t e k Jr.1,JiříZázvorka1,VítGrulich2, Radomír Ř e p k a4, Jan P r a n č l1, 5,MichalDucháček6,PavelKúr3, Kateřina Š u m b e r o v á1 &JosefBrůna1 1Institute of Botany, The Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Repub- lic, e-mail: [email protected], [email protected], [email protected], zazvorka @ibot.cas.cz, [email protected], [email protected], [email protected], [email protected]; 2Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected], [email protected]; 3 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic, email: [email protected], [email protected]; 4Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, CZ-613 00 Brno, Czech Republic, e-mail: [email protected]; 5Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic; 6Department of Botany, National Museum, Cirkusová 1740, CZ-193 00 Praha 9-Horní Počernice, Czech Republic, e-mail: [email protected] Kaplan Z., Danihelka J., Štěpánková J., Ekrt L., Chrtek J. Jr., Zázvorka J., Grulich V., Řepka R., Prančl J., Ducháček M., Kúr P., Šumberová K. -
SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE
National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE Contents White / Cream ................................ 2 Grasses ...................................... 130 Yellow ..........................................33 Rushes ....................................... 138 Red .............................................63 Sedges ....................................... 140 Pink ............................................66 Shrubs / Trees .............................. 148 Blue / Purple .................................83 Wood-rushes ................................ 154 Green / Brown ............................. 106 Indexes Aquatics ..................................... 118 Common name ............................. 155 Clubmosses ................................. 124 Scientific name ............................. 160 Ferns / Horsetails .......................... 125 Appendix .................................... 165 Key Traffic light system WF symbol R A G Species with the symbol G are For those recording at the generally easier to identify; Wildflower Level only. species with the symbol A may be harder to identify and additional information is provided, particularly on illustrations, to support you. Those with the symbol R may be confused with other species. In this instance distinguishing features are provided. Introduction This guide has been produced to help you identify the plants we would like you to record for the National Plant Monitoring Scheme. There is an index at